流变相法制备LiNi $_{0.5}$ Mn $_{1.5}$ O $_4$ 锂离子电池正极材料及其电化学性质 Preparation and Electrochemical Characterization of LiNi $_{0.5}$ Mn $_{1.5}$ O $_4$ Positive Electrode for Lithium Ion Batteries by Rheological Method

摘要点击: 16 全文下载: 7

查看全文 查看/发表评论 下载PDF阅读器

中文关键词: 锂离子电池; Li Ni $_{0.5}$ Mn $_{1.5}$ O₄; 正极材料; 流变相法

英文关键词: lithium ionic battery; $\operatorname{LiNi}_{0.5}\mathrm{Mn}_{1.5}\mathrm{O}_4$; cathode; rheological method

基金项目:

作者 单位

何则强 吉首大学化学化工学院,吉首 416000;中南大学化学化工学院,长沙 410083

熊利芝 吉首大学化学化工学院,吉首 416000 吴显明 吉首大学化学化工学院,吉首 416000 刘文萍 吉首大学化学化工学院,吉首 416000 陈上 吉首大学化学化工学院,吉首 416000 黄可龙 中南大学化学化工学院,长沙 410083

中文摘要:

英文摘要:

LiNi $_{0.5}$ Mn $_{1.5}$ O $_4$ was prepared by rheological method using CH $_3$ COOLi, Ni (CH $_3$ COO) $_2$ and Mn(CH $_3$ COO) $_2$ as raw materials. XRD and SEM results show that LiNi $_{0.5}$ Mn $_{1.5}$ O $_4$ synthesized at 850 °C has cubic spinel structure with clearly defined shape and particle size of 0.2 \sim 0.4 μ m. Electrochemical tests show that the LiNi $_{0.5}$ Mn $_{1.5}$ O $_4$ presents a plateau near 4.7 V and delivers the maximum discharge capacity of 140.5 mAh· g $^{-1}$. After 100 cycles, the capacity loss per cycle was only 0.015% discharged at 0.2C and the capacity retention was more than 76.3% discharged at 2.0C at room temperature and the capacity loss per cycle was only 0.32% discharged at 0.2C at 55 °C.

<u>关闭</u>

您是第149249位访问者

主办单位: 中国化学会 单位地址: 南京大学化学楼

本系统由北京勤云科技发展有限公司设计