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The Zewail–Bersohn model@Ber. Bunsenges. Phys. Chem.92, 373 ~1988!# of pump–probe
experiments is generalized to nonstationary wave packets and more realistic forms of probe pulses.
The analysis illustrates the important role of probe linear chirp rate, as pointed out by Sterling,
Zadoyan, and Apkarian@J. Chem. Phys.104, 6497~1996!#, in detecting the motion of wave packets
and the physical reason for the existence of optimal probe pulses to yield the best probe signal. Since
the pump–probe process can be viewed as delayed two-photon resonant absorption, the probe signal
can be readily optimized within the framework of quantum control theory, as discussed by Yan@J.
Chem. Phys.100, 1094~1994!#. Numerical calculations based on quantum control theory are used
to confirm our theoretical predictions. We point out that the same analysis can be extended to other
impulsive nonlinear optical processes, such as multiphoton pump–probe absorption and stimulated
Raman scattering. ©1997 American Institute of Physics.@S0021-9606~97!01504-3#
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I. INTRODUCTION

Femtosecond chemistry offers experimentalists the
portunity to study elementary chemical processes on the
lecular level and to directly monitor the dynamical evoluti
from reactants to products.1 Femtosecond scale time resol
tion proves crucial in understanding the basic concepts g
erning the molecular dynamics of chemical reactions, h
they take place, and how to govern them. The key exp
mental technique in femtochemical spectroscopy is
pump–probe scheme. Many theoretical models have b
developed to describe the pump–probe process, inclu
the classical model of Bersohn and Zewail,2 the classical
theory by Walkupet al.,3 the generalized linear respons
theory by Lin and co-workers,4 the analysis by Pollard
et al.,5 the extensive work on nonlinear spectroscopy by Y
and Mukamel,6,7 and others. A review on this subject can
found in Lee8 and the references cited therein. In this pap
we will present a theoretical analysis of pump–probe sp
troscopy, in particular the probe process, within the class
and semiclassical framework, along with a treatment fr
the point of view of optimal quantum control theory.9–11

Using transient probe absorption to detect wave pac
has been discussed in different contexts, including the o
mal control of molecular dynamics.12 More recently, Ster-
ling, Zadoyan, and Apkarian13 investigated the effect of lin-
ear chirped pulses in condensed phase pump–p
experiments by classical simulations for the model system
I2 isolated in a Kr matrix, and predicted that chirped pro
pulses can be employed to characterize the momentum o
evolving molecular wave packet. They transformed
frequency-time profile of the probe pulse to coordinate-ti
space and noted that the observable signal is a function o
relative group velocities of the traveling wave packet and
traveling window function. In fact, the prediction agre
qualitatively with preliminary experiments on I2 and NaI in
our lab. In our paper, we analyze the pump–probe proces
5062 J. Chem. Phys. 106 (12), 22 March 1997 0021-9606/97
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a systematic and rigorous fashion and justify this eff
within the semiclassical framework.

A one-dimensional wave packet picture of pump–pro
spectroscopy is shown schematically in Fig. 1, where
three electronic states involved in the process are sketc
the ground, the first excited~pump!, and the second excite
state ~probe!. Assuming the molecule is initially in the
ground state, the pump pulse promotes the wave func
onto an excited state, where the excited state wave pa
propagates with time. Then, the probe pulse, after a cer
delay time with respect to the pump pulse, promotes
evolving wave packet to the second excited state, where
wave packet either dissociates to products or decays
lower-lying states. Three types of experimental results14–16

are thus accessible:~1! detection of the fragments and~2!
laser-induced fluorescence~LIF!, which are both integrated
pump–probe signals~IPP!, as a function of the probe carrie
frequency and the delay time. The third type of the measu
ment is~3! the dynamic dispersed absorption spectra of
probe pulse after passing through the sample, also terme
dispersed pump–probe signal~DPP!, as a function of the
delay time. In this paper we will deal only with the first~IPP!
kind of signal.

Femtosecond pump–probe spectroscopy, viewed a
nonlinear two-photon process, is described6 by the third-
order polarizationP~3!, a function of the pump–probe dela
time. In Sec. II, it is shown that when the pump and pro
pulses are well separated, the pump–probe process is a
step sequential excitation consisting of one stationary
sorption and one nonstationary absorption. Of concep
importance is the introduction of the initial wave functio
which is the net result of a laser excitation without any fu
ther spreading. In Appendix A, the IPP signals are expres
in terms of their initial wave function induced by the prob
pulse.

The primary feature of femtospectroscopy is the e
tremely short time duration of laser pulses such that
/106(12)/5062/11/$10.00 © 1997 American Institute of Physics
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5063J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
nuclear wave packet can often be assumed frozen du
excitation.17–20 Under this assumption, the excited state
probe state wave function can be obtained in a closed f
and thus effects of the optical pulse can easily be inve
gated. As an example, the analytical nature of this appr
mation has been recently used in studying the relations
between the linear chirp rate of the pump field and the vib
tional localization of the wave packet motion induced by t
pump pulse.21 In Sec. III and Appendix B, the validity and
implications of the frozen wave packet assumption are c
fully analyzed. The application of this approximation to t
probe process leads to the Bersohn–Zewail classical mo2

discussed in Sec. III. It is suggested within this model that
order to abstract information about the pump wave pac
from the signal, the probe pulse should be short enough
the motion of the wave packet does not smear the signal
at same time be long enough to have sufficient spectral r
lution.

In Sec. IV, we relax the frozen wave packet assumpt
to incorporate the constant motion of the molecular wa
packet and thus generalize the Bersohn–Zewail class
model to a more realistic theory. To do this, the kinetic e
ergy operator is applied twice to a Gaussian wave packe
described in Appendix C, the formula for IPP signals
evaluated for a Gaussian laser pulse, and consequentl
explicit expression for the spatial resolution of the pro
pulse is obtained. As a result of this nonstationary semic
sical analysis, an optimal pulse duration for transform li
ited laser pulses is derived and a linear relation between
chirp of the optimal probe pulse and the motion of the pu
wave packet is predicted.13 The classical analysis in Sec. I
and the semiclassical analysis in Sec. IV can be extende
other multiphoton processes, such as off-resonant t
photon absorption, studied in Appendix D.

Theory22–26 has been developed to predict an optim
laser field to drive a quantum wave packet to a desired fu
tional form at a chosen time. However, most efforts ha

FIG. 1. An illustration of pump–probe processes. Assuming the molecu
initially in the ground state,u0&, the pump pulse,E1, promotes the wave
function onto an excited stateu1&, where the excited state wave pack
propagates with time. Then, the probe pulse,E2, after a certain delay time
with respect to the pump pulse, promotes the evolving wave packet
second excited state,u2&, where the wave packet either dissociates to pr
ucts or decays to lower-lying states.
J. Chem. Phys., Vol. 106,
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been made toward single field quantum control, mainly
pump process. For example, the I2 experiment reported by
Kohler et al.27,28 is designed to focus the molecular wav
packet to a designated minimum uncertainty wave packet
the pump state wave function,10 with the probe process
treated as a detection device.12 To generalize the single field
theory, we formulate optimal control theory for an arbitra
sequential multiphoton process in Appendix E and to pum
probe processes in Sec. V, extending previous work
Rice,29 Tannor,9 and Yan.11 More pertinent to this paper, we
restrict the optimization procedure to the probe process f
given pump state wave function in Sec. V where optimiz
tion of the pump–probe signal is used to maximize the s
tial resolution of the probe pulse. Numerical examples of
optimization of the probe process based on an ideali
model confirm the linear relation between the optimal line
chirp rate and the constant velocity of the wave packet.13

In summary, the probe process in pump–probe exp
ments is studied in the framework of the Bersohn–Zew
classical model, semiclassical nonstationary analysis,
optimal control theory. The validity of the assumptions a
approximations used are rigorously established and num
cal examples are presented to verify the theoretical pre
tion. Finally, a discussion in Sec. VI concludes the paper

II. WAVE PACKET MODEL OF THE SEQUENTIAL
PUMP–PROBE PROCESS

The molecular system consists of three electronic sta
u0&, u1&, andu2&, described by three diabatic Hamiltonians,Ĥ0
for the ground stateu0&, Ĥ11\v10 for the intermediate ex-
cited ~pump! stateu1&, andĤ21\v211\v10 for the final ex-
cited ~probe! stateu2&. Here,v105v12v0 andv215v22v1
are the electronic transition frequencies between the co
sponding states. This three-level molecule then couples v
dipole interaction to time-dependent electric fields which
treated classically as

e1~ t !5E1~ t !e
2 iv10t1E1* ~ t !eiv10t ~1!

for the pump pulse, and

e2~ t !5E1~ t !e
2 iv21t1E1* ~ t !eiv21t ~2!

for the probe pulse. Within the rotating wave approximatio
the total Hamiltonian is expressed as

Ĥ~ t !5ĤM1Ĥpu1Ĥpr , ~3!

where the molecular term is the three-level Hamiltonian

ĤM5Ĥ0u0&^0u1Ĥ1u1&^1u1Ĥ2u2&^2u, ~4!

the interaction term for the pump pulse is

Ĥpu~ t !52m1E1* ~ t !u0&^1u2m1E1~ t !u1&^0u, ~5!

with m1 being the transition dipole moment between sta
u0& and u1&, the interaction term for the probe pulse is

Ĥpr~ t !52m2E2* ~ t !u1&^2u2m2E2~ t !u2&^1u, ~6!

is

a
-

No. 12, 22 March 1997
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5064 J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
with m2 being the transition dipole moment between sta
u1& andu2&, and the dipole transition between statesu0& andu2&
is assumed to be prohibited.

Since there are two laser fields which play a role,
leading term in the final probe state wave function is given
second order in the dipole interaction by

c~ t f !5S i\ D 2E
t i

t f
dt2E

t i

t2
dt1e

2 iĤM~ t f2t2!/\~Ĥpu1Ĥpr!

3e2 iĤM~ t22t1!/\~Ĥpu1Ĥpr!e
2 iĤM~ t12t i !/\c~ t i !, ~7!

wherec(t f) andc(t i) are the wave functions at the final tim
t f and the initial timet i , respectively. To be more specific t
the pump–probe scenario, the molecule, initially in
ground statec(t i)5c0u0&, is excited by the pump fieldE1(t)
to excited stateu1&, and then by the probe fieldE2(t) to
excited stateu2&. It is assumed that the pump and pro
pulses do not overlap in time and that the centers of the
pulses are separated by a delay timet. In other words, the
pump pulse is centered att50, the probe pulse is centered
t5t, and the time durations of the two pulses are assume
be substantially smaller than the delay timet. Taking these
factors into consideration, the probe state wave function
Eq. ~7! can be simplified as

c2~ t f !5S i\ D 2E
t i2t

t f2t

dt28E
t i

t281t
dt1e

2 iĤ2~ t f2t282t!/\

3m2E2
t~ t28!e2 iĤ1~ t281t2t1!/\m1E1~ t1!e

2 iĤ0~ t1!/\c0 ,

~8!

where the time variablet2 is shifted according tot28 5 t2 2 t
and the probe field is redefined asE2

t(t28) 5 E2(t28 1 t). Fur-
thermore, because the two pulses are well-separated in
and the detection timet f is much larger than the termina
time of the probe pulse, we are allowed to extend the inte
limits of t1 andt28 to infinity. The resulting expression can b
cast in a revealing format,

c2~ t f !5e2 iĤ2~ t f2t!/\c2~t!, ~9!

c2~t!5
i

\ E
2`

`

eiĤ2tm2e
2 iĤ1tc1~t!E2~ t !dt, ~10!

c1~t!5e2 iĤ1tc1 , ~11!

c15
i

\ E
2`

`

eiĤ1tm1e
2 iĤ0tc0E1~ t !dt, ~12!

where, for the simplicity of notation, the superscriptt in E2
t

is dropped, and botht28 and t1 are replaced witht.
By writing Eqs. ~9!–~12!, the pump–probe process

treated as a sequential two-photon process described
wave packet picture30,31with c1 representing the initial pump
wave packet onu1& created by the pump pulseE1(t), c1~t!
the propagating wave packet onu1& at the delay timet, c2~t!
the initial probe wave packet onu2& created by the probe
pulseE2(t), andc2(t f) the final probe wave packet onu2& at
the detection timet f . The concept of the initial wave
J. Chem. Phys., Vol. 106,
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function,21 c1 andc2~t!, refers to the immediate result of
laser pulse, excluding any further vibrational propagation
the excited state potential surface, and thus contains all
necessary information about the electronic excitation.

It is shown in Appendix A that all the integrated signa
are related to the population on the probe state,

N~t!5^c2~ t f !uc2~ t f !&5^c2~t!uc2~t!&, ~13!

where the detection timet f is set after the probe pulse ha
terminated and Eq.~9! is used to help obtain the secon
equality. Therefore, the initial wave function on the pro
state potential surface as a function of the delay timet fully
determines the time evolution of the integrated pump–pr
signals.

A careful examination of the initial pump wave functio
c2~t! and the initial probe wave functionc1 reveals the es-
sential difference between the pump and probe processec0
in Eq. ~12! is stationary under the operation ofĤ0 ~an eigen-
state ofĤ0! whereasc1~t! in Eq. ~10! is nonstationary unde
the operation ofĤ1. In this sense, the probe process can
viewed from the point of nonstationary absorption spectr
copy in contrast to the stationary excitation from the grou
state induced by the pump pulse. Since the pump and p
processes can be treated separately and the impulsive ex
tion from the ground state has been well studied within
classical and semiclassical approximations, the focus of
paper is to investigate the probe process given an exc
state wave packet moving on the pump state potential
face, that is, the evaluation ofc2~t! for a given pump state
wave functionc1~t!.

III. BERSOHN–ZEWAIL CLASSICAL MODEL: THE
STATIONARY ASSUMPTION

The duration of the probe laser pulse used to detect
wave packet is usually sufficiently small that the nucle
configuration is approximately frozen during the probe ex
tation. This observation constitutes the core assumption
derlying the well-known Bersohn–Zewail classical mode2

which amounts to a coordinate-dependent two-level-sys
approximation by ignoring the kinetic energy operator.17–20

The stationary assumption is valid only ifdx, the displace-
ment of the center of the wave packet during excitation
substantially smaller thanl, the width of the wave packet a
the time of excitation, that is

dx~ tp!!l, ~14!

wheredx is a function oftp , the time duration of the probe
pulse. Since the wave function on the pump state poten
surface is a moving wave packet, the displacement cons
of two parts: the contribution from the initial velocityvc
before the excitation, given by

tpvc!l, ~15!

and the contribution from the acceleration during the exc
tion, given by

f c
m
tp
2!l, ~16!
No. 12, 22 March 1997
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5065J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
where f c is the force due to the potential difference in t
Franck–Condon region. The condition in Eq.~15! is self-
evident whereas the condition in Eq.~16! is confirmed in
Appendix B by making use of the displaced harmonic os
lator model. Both conditions are satisfied if the motion of t
wave packet is slow and the coordinate dependence of
potential difference is weak.

Under the frozen wave packet assumption, the kine
energy operator is ignored in Eq.~10!, resulting in the initial
probe state wave function as

c2~t!5
i

\ E
2`

`

eiv~x!tm2E2~ t !dtc1~t!, ~17!

where the coordinate-dependent frequency\v(x), or U(x),
is the potential difference between excited statesu1& and u2&,

U~x!5\v~x!5V2~x!2V1~x!. ~18!

With the Fourier transformation of the electric field defin
as

Ẽ~v!5E
2`

`

E~ t !eivtdt, ~19!

the expression for the integrated pump–probe signal,
~13!, becomes

N~t!5
1

\2 ^c1~t!u@m2~x!#2uẼ2@v~x!#u2uc1~t!&, ~20!

which represents the central result of the Bersohn–Zew
classical model.1,2,8

For illustration, we take the example of a chirped Gau
ian pulse defined as

EG~ t !5E0 expF2
~ t2t0!

2

2tp
2 2 iv0~ t2t0!2 ic

~ t2t0!
2

2 G ,
~21!

where five parameters are employed to characterize the
pulse: an amplitudeE0, a carrier frequencyv0, a temporal
center t0, a temporal widthtp , and a linear chirp ratec,
respectively. From Eq.~19!, the corresponding power spe
trum reads

P~v!5uẼG~v!u25P0 expF2
~v2v0!

2

G2 G , ~22!

where the magnitude isP052ptpE0
2/G and the bandwidth is

defined as

G25c2tp
21

1

tp
2 , ~23!

which is related to the full width half maximum of the pow
spectrumbyDvFWHM 5 2Aln 2G.

It can be seen from Eqs.~20! and ~22! that the probe
pulse opens a window on the pump state potential sur
and transfers the population within the window into t
pump–probe signal. To determine the size of this windo
namely the spatial resolution, we expand the coordina
dependent frequencyv(x) to linear order inx, giving
J. Chem. Phys., Vol. 106,
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v~x!5v01g~x2x0!1•••, ~24!

wherev0 is the carrier frequency of the probe pulse,x0 is the
Franck–Condon point corresponding to the carrier f
quency, i.e.,w05w(x0), andg is the linear coefficient of the
Taylor expansion ofv(x) at x0. For a transform limited
Gaussian pulse, i.e.,c50, Eq. ~20! becomes

N~t!5
P0

\2 ^c2~gt!u@gm2~x!#2

3exp@2g2tp
2~x2x0!

2#uc2~t!&, ~25!

which defines the spatial resolution as

a5
1

gtp
. ~26!

In order to abstract valuable information about the s
tial distribution of the wave packet from the pump–pro
signal, the spatial resolution of the signal must be sma
than the characteristic width of the molecular wave pack
that is,

a!l, ~27!

or

tp@
1

gl
, ~28!

implying that a pulse of long time duration is preferred. O
the other hand, Eqs.~15! and ~16! require the pulse to be
short enough that the displacement of the wave packet du
the excitation is substantially smaller than the width of t
wave packet. Consequently, there exists an optimal p
duration which gives the best compromise between these
opposing factors. In next section, this optimal pulse durat
will be determined by a rigorous analysis.

The above formulation parallels the analysis of the pu
process in the classical approximation,21 since the moving
wave packet is treated as frozen just as in the case of
excitation from the ground state. To reflect the special f
tures of the probe process, one must take into account
crucial difference that the wave function on the excited st
potential surface is in motion whereas the wave function
the ground state potential surface is at rest. This consi
ation leads to the nonstationary analysis of the next sect

IV. GENERALIZED BERSOHN–ZEWAIL MODEL:
NONSTATIONARY ANALYSIS

To investigate the effects of the initial motion of th
delayed pump wave packet on the probe signal, we will
the stationary assumption imposed by the frozen w
packet approximation. To begin, the quantum propagato
split into the kinetic energy and potential energy parts
making use of an operator identity

eiĤ t5ei ~K̂1V̂!t5eiK̂ t/2 exp@ iV̂t1O~ t3!#eiK̂ t/2, ~29!

which is accurate to the third order in time. Then, the init
No. 12, 22 March 1997
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5066 J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
probe state wave function in Eq.~10! can be rewritten as

c2~t!'
i

\ E
2`

`

eiK̂ t/2eiÛ te2 iK̂ t/2E2~ t !dtc1~t!, ~30!

whereÛ5V̂22V̂1 is the potential difference, the transitio
dipole moment is taken as a constant,m51, and\ is omitted
for simplicity of presentation. If the potential energy opera
Û and the kinetic energy operatorK̂ are allowed to com-

mute, the two free particle operatorseiK̂ t and e2 iK̂ t in Eq.
~30! cancel each other and the classical result in Eq.~17! is
recovered. Therefore, Eq.~30! represents a more accura
and general description of impulsive excitation and detec
processes than the classical treatment discussed above.

In the probe process, the constant velocity motion of
wave packet is usually the dominant factor in comparison
the net acceleration, implying that Eq.~15! is a more strin-
gent constraint on the pulse duration than Eq.~16!. Since Eq.
~30! takes into account the constant motion of the wa
packet, the constrain of Eq.~15! can be removed while the
condition in Eq.~16! remains imposed. To satisfy Eq.~16!,
assumptions are made in writing Eq.~30! that ~i! the probe
pulse is relatively short and~ii ! the wave packet is located i
a relatively flat region on both the pump and probe st
potential surfaces such that the centroid velocity of the w
packet remains constant during excitation.

In Eq. ~30!, the first free particle operatore2 iK̂ t/2 propa-
gates the delayed wave functionc1~t! forward for timet/2,

whereas the second free particle operatoreiK̂ t/2 propagates

backward for timet/2 along with the phase factoreiÛ t.
Therefore, if it were not for the phase factor, the two kine
energy propagators would cancel, giving rise to the class
approximation. To perform these operations explicitly, let
consider the simple case of a Gaussian wave packet de
as

c1~t!5
1

~pl2!1/4
expF2

~x2xc!
2

2l2 1 i
pc~x2xc!

\ G , ~31!

wherexc , vc , andpc are the position, velocity, and momen
tum of the center of the molecular wave packet in ph
space, respectively. Here, the position, velocity, and mom
tum are measured at the delay timet and are thus functions
of t implicitly. It is shown in Appendix C that, under th
condition of \t/m!l2, the free particle propagation of
Gaussian wave packet retains the Gaussian functional f
and can be expressed by classical dynamical quantities
addition, we adopt the linear expansion of the potential d
ference as in Eq.~24!. After substituting Eqs.~24! and ~30!
into Eq. ~31! and applying the free particle propagation
Eq. ~C7! twice, we have

c2~t!5
i

\ E
2`

`

eiv0tE2~ t !C~t,t !dt, ~32!

where
J. Chem. Phys., Vol. 106,
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C~t,t !5eiK̂ t/2eigxte2 iK̂ t/2c1~t!

5
1

~pl2!1/4
expF2

~x2xc!
2

2l2 1 ipc~x2xc!

1 igxt1 i
vcgt

2

2 G . ~33!

The last term in Eq.~33! reflects the coupling between th
nuclear motion and the potential differenceÛ. Consequently,
the expression for the signal, Eq.~13!, can be expressed as

N~t!5E dtE dt8E dxeiv0~ t2t8!E~ t !E* ~ t8!

3C~t,t !C* ~t,t8!, ~34!

which, after the integration over the spatial coordinate,
comes

N~t!5E dtE dt8E~ t !E* ~ t8!exp$2~lgs!2

1 igs~2xc1vct1vct822x0!%, ~35!

with 2s5t2t8 and \v05U(x0). Here, bothxc and vc are
implicit functions of the delay timet. To be consistent with
the analytical nature of this analysis, various function
forms of the probe field, such as a Lorentzian spectral int
sity, an exponential-decay field, and a Gaussian pulse, ca
used for the evaluation of Eq.~35!.

For illustration, the Gaussian form of the light pulse d
fined in Eq.~21! is substituted into Eq.~35! and the double
time integrals are completed, resulting in

N~t!}
1

L
expF2

1

L2 ~xc2x0!
2G , ~36!

whereL measures the spatial dependence of the probe
nal, given by

L25l21
1

g2tp
2 1tp

2S vc2 c

gD
2

. ~37!

L2 characterizes the decay of the probe signal as the ce
of the wave packet moves out of the probe window,
equivalently, the sensitivity of the probe signal with respe
to the change in its carrier frequency.

By comparison with the functional form of the Gaussi
wave packet in Eq.~21!, the first term in Eq.~37! is recog-
nized as the width of the wave packet being detected and
rest of the terms in Eq.~37! define the spatial resolution o
the signal,

a25
1

g2tp
2 1tp

2~vc2c/g!2, ~38!

which, as stated earlier, determines the size of the pr
window. The smallera is, the more accurate is the one-t
one correspondence between the carrier frequency of
probe pulse and the centroid position of the wave pac
being probed, and consequently the more prominent are
peaks of the probe signal. Therefore, the optimization of
No. 12, 22 March 1997
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5067J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
pump–probe signal is equivalent to the minimization of t
spatial resolution,a. We now explicitly consider transform
limited and chirped laser pulses.

~1! For a transform-limited laser pulse,c50, the spatial
resolution in Eq.~38! becomes

a25
1

tp
2g2

1tp
2vc

2. ~39!

By minimizing a, we find an optimal pulse duration

tp
25

1

gvc
, ~40!

which has been argued in the previous section within
classical model.

~2! As seen from Eq.~38!, the primary condition for
minimizing the spatial resolution of a chirped probe pulse

c5vcg, ~41!

meaning that the shift of the carrier frequency with time sh
follow the motion of the wave packet as predicted by St
ling et al.13 With the chirp rate given as above, the spat
resolution becomes

a5
1

tpg
!l, ~42!

which is minimized by increasing the pulse duration. On
other hand, the constraint in Eq.~16! still applies, which
together with Eq.~42! again leads to an optimal value o
pulse duration.

Hence, the nonstationary semiclassical analysis not o
confirms the argument of the classical model quantitative
but also provides new insights unavailable in the stric
classical framework. The semiclassical analysis presente
this section and the classical analysis discussed in last
tion can also be applied to a wide range of nonlinear imp
sive processes, such as multiphoton pump–probe absor
and stimulated Raman scattering. In Appendix D, we anal
off-resonant two-photon absorption with the help of the cl
sical model and find that under the frozen wave packet
sumption the two-photon process can be approxima
treated as a single photon process with an effective excita
laser pulse with double the carrier frequency, double the
ear chirp rate, and the square of the field amplitude.

To verify the analysis in this section, a numerical proc
dure is required to optimize the probe resolution under c
tain constraints, that is, the optimization of the probe p
cess. Therefore, the optimization formulation in next sect
and in Appendix E serves not only the goal of the optim
quantum control of matter wave packets by tailored la
pulses but also as a means to test our theory for detec
wave packet motion in pump–probe experiments.

V. OPTIMIZATION OF PUMP–PROBE SIGNALS

As described in Sec. III, the general optimization proc
dure for a sequential multiphoton process can be formula
with the help of optimal quantum control theory. We no
focus on the pump–probe process, a sequential two-ph
J. Chem. Phys., Vol. 106,
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excitation. As pointed out earlier, the physical quantity
interest is the population on the probe state,N~t! in Eq. ~13!,
which defines the target operator to be the identity opera
Â5 Î 2 defined on the probe state potential surface. The m
ecule is assumed to be initially in a pure stater05uc0&^c0u on
the ground electronic state manifold. Applying Eq.~E 11! in
Appendix E to the pump–probe process as described ab
we have the optimization equation for the probe field,

E
t0

t i
dt28^c1~ t2!uG2

1~ t f2t2!G2~ t f2t2!uc1~ t28!&E2~ t28!

5h2E2~ t2!, ~43!

where the pump state wave functionc1~t2! is

c1~ t2!5G1~ t22t1!:G0~ t12t i !c0 , ~44!

and the optimization equation for the pump field,

E
t i

t f
dt1^G0~ t12t i !c0uA1~ t1 ,t18!uG0~ t182t i !c0&E1~ t18!

5h1E1~ t1!, ~45!

where the target for the pump field is

A1~ t1 ,t18!5G1
1~ t22t1!:G2

1~ t f2t2!G2~ t f2t2!:G1~ t22t1!.
~46!

The colon in the above equation represents an electric e
tation as defined in Eq.~E4!. Notice that the eigenequatio
for the probe fieldE1(t) depends implicitly on the pump
field E2(t), and vice versa. Hence, Eqs.~43! and ~45! are
solved independently for a given input; the resulting optim
fields are then used as the input for the next iteration,
this procedure is repeated until convergence is reach
Similar optimization procedures have been proposed be
by Yan.11

To be relevant to the theme of this paper, we will furth
limit the optimization to the probe process. To this end,
make use of the concept of the initial wave function intr
duced in Sec. II and rewrite Eq.~43! as

E
t i

t f
M ~ t,t8!E2~ t8!dt85h2E2~ t !, ~47!

where the material response matrix reads

M ~ t,t8!5^c1~t!G1~ t !G2~ t f2t !uG2~ t f2t8!

3G1~ t8!c1~t!&, ~48!

with the initial wave function on the excited state at the de
time t, c~t!, defined by Eq.~12!. As argued in Sec. IV, for a
given wave packet moving on the pump state surface,
optimization of the pump–probe signal is equivalent to t
optimization of the probe resolution. In particular, we w
investigate the relation between the linear chirp rate of
optimal probe pulse and the centroid velocity of the mole
lar wave packet.13

To simplify the analysis, the pump state potential
taken as a constant,V150, the probe state potential is take
as a linear harmonic oscillator,V25mv2x/2. The probe state
wave function then takes the Gaussian form,
No. 12, 22 March 1997
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5068 J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
FIG. 2. Contours plots of the Wigner transformation of the optimal probe fields for the wave packet ofxc52 andvc50 in ~a!, for xc51 andvc51 in ~b!, for
xc50 andvc52 in ~c!, and forxc56 andvc522 in ~d!, respectively.
n,
y

een
m-
can

oral
y

c1~ t !5
1

~pl2!1/4
expF2

~x2xc2vct !
2

2l2

1 i
pc~x2xc2vct/2!

\ G , ~49!

which is shown to satisfy the Schro¨dinger equation in Ap-
pendix C. Here, all nonessential parameters,m, v, l, and\,
assume the unit value. The initial position of the wave pac
xc has been adjusted according to its initial velocityvc so
that the probe window is approximately set atx052 corre-
sponding to a carrier frequency ofv052. The probe state
propagatorG2 in Eq. ~48! can be obtained in a closed from
for the harmonic oscillator potential and the coordinate in
gration of the response function in Eq.~48! can be performed
analytically. The time range for the probe pulse ist i50 and
t f53, and the response matrix is evaluated on a time grid
dt50.03. Then the discretized material response matrix
diagonalized and the optimal electric field thus obtained.

The Fourier transformation of the Gaussian pulse of
~21! can be expressed as
J. Chem. Phys., Vol. 10
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EG~v!5E0A ptp
2

11 ictp
2 expF ivt02 ~v2w0!

2

2G2

2 ic8
~v2w0!

2

2 G , ~50!

wherec8 is the linear chirp rate in the frequency domai
which is related the linear chirp rate in the time domain b21

c85
ctp

2

G2 . ~51!

The chirp of a laser pulse describes the correlation betw
frequency and time, which cannot be deduced from the te
poral envelope or the power spectrum. The electric field
be represented in the Wigner transformation form,10

F~ t,v!5E
2`

`

dte2 ivtE* ~ t1t/2!E~ t2t/2!, ~52!

which reduces to the power spectrumuE~v!u2 when inte-
grated over the time variable and reduces to the temp
field strengthuE(t)u2 when integrated over the frequenc
variable. Substituting the Gaussian field Eq.~21! into Eq.
~52!, we have
6, No. 12, 22 March 1997
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5069J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
FG~ t,v!5E0
2 expH 2

~ t2t0!
2

tp
2 2tp

2@~v2v0!2c~ t2t0!#
2J ,
~53!

which clearly shows that the center of the frequen
v01c(t2t0) shifts at the rate of the linear chirpc. Generally
speaking, on theF(t,v) contour diagram, there is a cent
frequency at each time, these centers form a principal axi
the contour plot as a function of time, and the slope defin
as the tangent formed by this principal axis and the time a
is equal to the time domain linear chirp rate.

The contours of the Wigner transform of the optim
fields are shown for various molecular wave packets,xc52
and vc50 in Fig. 2~a!, xc51 andvc51 in Fig. 2~b!, xc50
andvc52 in Fig. 2~c!, andxc56 andvc522 in Fig. 2~d!. As
can be seen from the slopes of the contours in these figu
the optimal probe pulse for a stationary wave packet i
transform limited pulse, the optimal probe pulse for a m
lecular wave packet moving to the right has a positive lin
chirp rate, and the optimal probe pulse for a molecular w
packet moving to the left has a negative linear chirp rate
expected from our analysis. In fact, the linear chirp rates
c50 in Fig. 2~a!, c52 in Fig. 2~b!, c54 in Fig. 2~c!, and
c524 in Fig. 2~d!, which agree exactly with the predictio
in Eq. ~41!.

VI. CONCLUSION

The Bersohn–Zewail classical model in Sec. III is ge
eralized to a nonstationary analysis in Sec. IV, and this
used to theoretically verify the correlation between the ch
of the optimal probe pulse and the motion of the molecu
wave packet being probed, as discussed by Sterl
Zadoyan, and Apkarian.13 With Eq. ~41!, information can be
learned from a generalization of pump–probe experime
with the coordinate of the molecule being measured by
carrier frequency and the velocity corresponding to the m
lecular coordinate measured by the linear chirp rate of
optimal laser pulse. Consequently, by tailoring the probe
ser pulse to yield the highest signal peak, the trajectory of
molecular wave packet can be mapped out in phase sp
Such experimental techniques may be useful in studying
lecular dynamics during chemical reactions as well as vib
tional relaxation and dephasing in condensed phases.

To test the validity of our semiclassical prediction of t
optimal probe pulse, we apply quantum optimal cont
theory and find excellent agreement. The general multip
ton quantum control formulation given in Appendix E is n
limited to a single photon process. For example, the tw
pulse formulation for the pump–probe process can be use
maximize the yield of product at a target time in the cont
of quantum control. It will be interesting to compare th
result obtained from the two-pulse optimization and the
sult from a single-pulse optimization.
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APPENDIX A: INTEGRATED PUMP–PROBE SIGNALS

The derivation and definitions in this appendix follo
closely the review paper8 by Lee on this subject. In pump–
probe experiments, the fluorescence signal or the yield
photofragments from the second excited~probe! state are
measured as a function of the pump–probe delay timet.
Theoretically, all integrated pump–probe~IPP! signals can
be described by two kinds of quantities: the total energy l
per unit area by the probe pulse, also known as the integr
pump–probe energy~IPPe! signal, defined by

I ~t!5
1

2p E
2`

`

I pr~v,t!dv, ~A1!

and the total photon loss per unit area by the probe pu
also known as the integrated pump–probe photon~IPPp! sig-
nal, defined by

N~t!5
1

2p E
2`

` I pr~v,t!

\v
dv. ~A2!

Here,I pr~v,t! is the change in spectral intensity given by

I pr~v,t!5
zr0
3n0

Im@vẼ2* ~v!P3~v,t!#, ~A3!

wherez, r0, andn0 are the length, number density, and ind
of refraction of the sample being measured,P3 is the third-
order polarization, andẼ2~v! is the Fourier transformation o
the probe field.

The molecule, initially in the ground state, is first excite
to the intermediate excited state by the pump pulse,E1(t),
and after a delay timet is excited to the probe state by th
probe pulse,E2(t). As in Sec. II, we assume that there is n
overlap between the two pulses and all dephasing and re
ation is ignored. Then the third-order polarization can
explicitly written as

P3~ t,t!5
1

\ E
2`

t

dt8E2~ t8!^c1~ t81t!ueiĤ1~ t2t8!/\

3m2e
iĤ2~ t2t8!/\m2uc1~ t1t!&, ~A4!

where the pump state wave functionc1~t1t! is defined as

c1~ t1t!5eiĤ1~ t1t!/\c15eiĤ1t/\c1~t!, ~A5!

with c1~t! given by Eq.~11! andc1 given by Eq.~12!. Sub-
stitution of Eqs.~A4! and ~A3! into Eq. ~A2! leads to

N~t!5
zr0

n0\6p
Im E

2`

`

E2* ~v!P3~v,t!dv

5
zr0
3n0\

Im E
2`

`

E2* ~ t !P3~ t !dt

5
zr0
3n0\

2 Re E
2`

`

dtE
2`

t

dt8E2* ~ t !E2~ t8!

3^c1~ t1t!um2e
ıĤ2~ t2t8!/\m2uc1~ t81t!&. ~A6!
No. 12, 22 March 1997
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5070 J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
Then, by writing the real part in Eq.~A6! as the sum of the
integrand and its complex conjugate and making use of
definition in Eq.~10!, we arrive at the explicit expression fo
the IPPp signal,

N~t!5
zr0
6n0

^c2~t!uc2~t!&, ~A7!

which is exactly Eq.~13!, except for a constant prefacto
Finally, under the assumption thatH1 commutes withm2,
Eq. ~A1! for the IPPe signal can be reduced to

I ~t!5
zr0
6n0

^c2~t!u~Ĥ22Ĥ1!uc2~t!&. ~A8!

APPENDIX B: VALIDITY OF THE FROZEN WAVE
PACKET APPROXIMATION

As explained in Sec. III, the displacement of the molec
lar wave packet during excitation consists of a contribut
from the initial velocity, Eq.~15!, and a contribution from
the net acceleration, Eq.~16!. Here, the initial wave function
of a displaced harmonic oscillator is solved to demonstr
the validity of the frozen wave packet approximation for t
excitation of the ground state by a pump pulse.

To begin, the system is initially in the ground state o
displaced harmonic oscillator,

c05
1

~pl2!1/4
expF2

~x1d!2

2l2 G , ~B1!

wherel is the Gaussian width defined asl25\/mv, with v
being the frequency of the oscillator, andd is the displace-
ment between the ground and excited state harmonic osc
tors. The quantum propagator of this system can be
pressed in a closed form as

eiĤ1tc05
1

~pl2!1/4
expF2

~x2xt!
2

2l2 1
ipt~x2xt!

\
1 ig tG ,

~B2!

where

pt52vd sin~vt !, ~B3!

xt52d cos~vt !, ~B4!

and

g t5
v2d2

4
sin~2vt !1~v101v/2!t, ~B5!

with v10 being the transition frequency between the exci
and ground states. For simplicity, the massm and the Planck
constant\ are not explicitly included in the above expre
sions.

According to Eq. ~12!, the initial excited state wave
function is expressed as

c15 im
1

~pl2!1/4
E

2`

`

eS~ t !E~ t !dt, ~B6!

where the exponential part is
J. Chem. Phys., Vol. 106,
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S~ t !52
1

2l2 S y2
dv2t2

2 D 22 iy dv2t1 i
d2v2t

2
1v10t,

~B7!

with y5x1d and the transition dipole momentm being a
constant. To be consistent with the quadratic form of
harmonic oscillator propagator, the electric field takes
functional form of a Gaussian,

E~ t !5E0e
2ıv10t expS 2t2

2tp
2 D 1c.c., ~B8!

where tp is the time duration of pulse and c.c. denotes
complex conjugate. After substituting the Gaussian field
Eq. ~B8! into Eq. ~B6! and performing the time integration
we have

c15expF2
~d2v2/22y dv2!2

2~1/tp
22y dv2/l2!

2
y2

2l2G
'expF2

U2

2G22
y2

2l2G , ~B9!

where G51/tp and U is the potential difference. The las
equality in Eq.~B9! gives rise to the classical result and
justified if

1

tp
2 @

v2yd

l
'v2dl, ~B10!

wherey is in the order of the Gaussian widthl. With the
introduction off c5mvd as the force arising from the poten
tial difference of the ground and excited states in t
Franck–Condon region, Eq.~B10! becomes exactly the sam
as Eq.~16!, which sets the condition for the validity of th
frozen wave packet approximation: the displacement dur
the excitation is considerablely smaller than the characte
tic width of the molecular wave packet.

APPENDIX C: FREE PARTICLE PROPAGATION OF A
GAUSSIAN WAVE PACKET

To examine the free particle propagator, we assume
the wave packet at zero time takes the form of a Gaus
function

c~0!5N expF2
x2

2l2 1 i
pcxc

\ G , ~C1!

where the normalization factor is

N 5
1

~pl2!1/4
. ~C2!

Applying the free particle propagator,eiK̂ t, to Eq.~C1! gives

c~ t !5eiK̂ t/\c~0!

5N A l

l~ t !
expF2

~x2 il2pc /\!2

2l2~ t !
2

l2pc
2

\2 G ~C3!

with the time-dependent Gaussian width
No. 12, 22 March 1997
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5071J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
l~ t !25l21
i\t

ml
. ~C4!

After rearrangement of the exponential part, we have

c~ t !5N A l

l~ t !
expH l2

2@l41~ t/m\!2#
F2~x2vct !

2

12i
xl2pc

\
2 il2t

pc
2

m\
1 i

\t

m
l2x2G J . ~C5!

To proceed, the imaginary part inl(t) can be ignored if the
following inequality is satisfied,

\t

m
!l2, ~C6!

where the left hand side represents the spreading of the w
packet due to quantum dispersion, which is not significan
the time is short. Under this condition, we can rewrite t
wave packet as

c~ t !5eik̂tc~0!

5N expF2
~x2vct !

2

2l2 1
ixpc2~vct/2!

\ G . ~C7!

APPENDIX D: OFF-RESONANT TWO-PHOTON
ABSORPTION

In contrast to the pump–probe process, two-photon
sorption is a coherent multiphoton process, which means
step-wise treatment used in Sec. II is not applicable here
gain a simple understanding of the process, we generalize
classical model in Sec. III to analyze this coherent tw
photon process. To begin, we write the excited part of
wave function after the excitation as

c5E
2`

` E
2`

t2
eiv1t1eiv2t2E~ t2!E~ t1!c~ t1!dt1 dt2 , ~D1!

where\v25V22V1 and\v15V12V0 . With the introduc-
tion of new integral variables 2s5t22t1 and 2t5t21t1 and
the assumption of a Gaussian pulse as in Eq.~21! with t050,
Eq. ~D1! becomes

c5E
2`

`

dtE
2`

0

dsE0
2 expF2S 1tp2 1 ic D ~s21t2!

1 i ~v11v222v0!t1 i ~v12v2!sGc~ t1s!. ~D2!

The intermediate stateu1& is assumed to be off resonanc
implying d5tp~v12v2!@1. Then the integration ofs can be
completed, resulting in
J. Chem. Phys., Vol. 106,
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c'C~G!E0
2E expF2S 1tp2 1 ic D t2

1 i ~v11v222v0!tGc~ t !dt

5C~G!E Ē~ t !ei ~v11v2!tc~ t !dt, ~D3!

whereC(G) is the result of thes integration, explicitly given
by

C~G!5
1

G
expS 2

d2

4G2D , ~D4!

which is a function of the bandwidth only. More importantl
as can be seen from Eq.~D3!, an off-resonant two-photon
process can be viewed just as a single photon process
the laser field defined by

Ē~ t !5E0
2 expF2

t2

tp
22 ict222v0tG , ~D5!

which, in comparison to the original form of the Gaussi
pulse in Eq.~21!, has double the carrier frequency, doub
the chirp rate, and the square of the field.

APPENDIX E: OPTIMIZATION OF A SEQUENTIAL
MULTIPULSE PROCESS

We begin by considering a sequential multiphoton p
cess consisting ofN nonoverlapping laser pulses given as

e~ t !5 (
n51

N

@En~ t !e
2 ivnt1En* ~ t !eivnt#, ~E1!

where the electric fieldsEn(t) are localized in time with the
subscriptn denoting the sequence of time. Here, the lig
pulses are designed in such a way thatvn corresponds to an
electronic transition frequency from stateu l n21& to stateu l n&
and so that, under the rotating wave approximation the m
ecule, starts from the ground stateu0&, goes through interme
diate excited statesu l n&, and reaches the final stateu l N&. As a
result of the excitation, the molecule on the final electro
stateu l N& can be described by a density matrix given by

r̂N~ t f !5GN~ t f2TN!•••G1~ t22t1!:G0~ t12t i !

3 r̂0G0
1~ t12t i !:G1

1~ t22t1!•••GN
1~ t f2tN!,

~E2!

whereGn(tn112tn) is the propagator on theu l n& electronic
potential surface

Gn~ tn112tn!5exp@2 iĤ l n
~ tn112tn!/\#, ~E3!

with Ĥ l n
being the corresponding Hamiltonian. Here, the c

lon represents an electronic excitation defined by

Gn~ tn112tn!:Gn21~ tn2tn21!

5
1

\ E
t l

t f
Gn~ tn112tn!mnGn21~ tn2tn21!E~ tn!, ~E4!
No. 12, 22 March 1997
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5072 J. Cao and K. R. Wilson: Wave packet motion in pump–probe experiments
with mn being the transition dipole moment between sta
u l n21& andu l n&. The notation introduced above simplifies th
analysis for the optimization of the multiphoton process.

In general, the target of quantum control can be speci
as an operatorÂ and the degree of control is measured by
expectation value of this target operator at timet f , or explic-
itly,

A~ t f !5Tr@Âr̂~ t f !#, ~E5!

where the target is defined on the final electronic state m
fold. In the weak response regime, the analysis is simpli
by linearizing the Liouville operator in terms of field. As
sume that the initial density matrix is defined on the grou
state,r̂0, and the target operator is defined on the final
cited state,Â 5 ÂlN

u l N&^ l Nu; then the leading term of the ex
pectation value of the target is

A~ t f !5E
t i

t f
dtE

t l

t f
dt8En* ~ t !Mn~ t,t8!En~ t8!, ~E6!

where the material response function matrixM is defined by

Mn~ t,t8!5
1

\2 Tr@An~ tn ,tn8!rn~ tn8 ,tn!#. ~E7!

Here, the time-dependent density operator and target op
tor are defined as

Ân5Gn
1 :Gn11

1 •••GlN
1 ÂNGN•••Gn11 :Gn ~E8!

and

r̂n5Gn21•••G1 :G0r̂0G0
1 :G1

1•••Gn21
1 . ~E9!

The goal of control is to find an external fieldE(t)
which maximizes the realization of the target under cert
constraints. To this end, we construct a functional as

J~ t f !5A~ t f !2hE
t0

t f
uE~ t !u2 dt, ~E10!

where the Lagrange multiplierh is introduced to lift the
constraint on the total radiation energy.26 Rigorously, the op-
timization of the laser field can be achieved by a variatio
differentiation of the functionalJ(t f) with respect to the
field, dJ(t f)/dE* (t)50. In the weak response regime, a
application of the variational procedure results in a line
field equation

E
t i

t f
Mn~ t,t8!En~ t8!dt85hnEn~ t !, ~E11!

which can be solved as a conventional eigenvalue probl
The eigenequation holds for every individual field, i.
n51,...,N, and the optimization is achieved by solving theN
eigenequations simultaneously.
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Recently Cao and Yan have formulated two-photon o
timal control as an eigenvalue problem such that the t
optimal fields satisfy a rigorous time-reversal relationship32

This result is significant for optimizing the pump–dump co
trol scheme9 as a method to efficiently transfer population
a highly excited vibrational eigenstate.

1A. H. Zewail, inFemtosecond Chemistry, edited by J. Manz and L. Wo¨ste
~Springer-Verlag, Weinheim, 1995!, p. 15.

2R. Bersohn and A. H. Zewail, Ber. Bunsenges. Phys. Chem.92, 373
~1988!.

3R. E. Walkup, J. A. Misewich, J. H. Glownia, and P. P. Sorokin, Ph
Rev. Lett.65, 2366~1990!.

4B. Fain, S. H. Lin, and N. Hamer, J. Chem. Phys.91, 4485~1989!.
5W. T. Pollard, S.-Y. Lee, and R. A. Mathies, J. Chem. Phys.92, 4012
~1990!.

6Y. J. Yan, L. E. Fried, and S. Mukamel, J. Phys. Chem.93, 8149~1989!.
7Y. J. Yan and S. Mukamel, Phys. Rev. A41, 6485~1990!.
8S. Y. Lee, inFemtosecond Chemistry, edited by J. Manz and L. Wo¨ste
~Springer-Verlag, Weinheim, 1995!, p. 273.

9D. J. Tannor and S. A. Rice, J. Chem. Phys.83, 5013~1985!.
10J. K. Krause, R. M. Whitnell, K. R. Wilson, and Y. J. Yan, inFemtosec-
ond Chemistry, edited by J. Manz and L. Wo¨ste ~Springer-Verlag, Wein-
heim, 1995!, page 743.

11Y. J. Yan, J. Chem. Phys.100, 1094~1994!.
12J. Che, J. L. Krause, M. Messina, K. R. Wilson, and Y. J. Yan, J. Ph
Chem.99, 14 949~1995!.

13M. Sterling, R. Zadoyan, and V. A. Apkarian, J. Chem. Phys.104, 6497
~1996!.

14R. M. Bowman, M. Dantus, and A. H. Zewail, Chem. Phys. Lett.161, 297
~1989!.

15R. B. Bernstein and A. H. Zewail, Chem. Phys. Lett.170, 321 ~1990!.
16J. H. Glownia, J. A. Misewich, and P. P. Sorokin, J. Chem. Phys.92, 3335

~1990!.
17Y. J. Yan and S. Mukamel, J. Chem. Phys.88, 5735~1988!.
18J. A. Cina and T. J. Smith, J. Chem. Phys.98, 9211~1993!.
19T. J. Smith and J. A. Cina, J. Chem. Phys.104, 1272~1996!.
20U. Banin, A. Bartana, S. Ruhman, and R. Kosloff, J. Chem. Phys.101,
8571 ~1994!.

21J. Cao and K. R. Wilson, J. Chem. Phys.~submitted!.
22D. J. Tannor, R. Kosloff, and S. A. Rice, J. Chem. Phys.85, 5805~1986!.
23R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, and D. J. Tannor, Ch
Phys.139, 201 ~1989!.

24R. S. Judson and H. Rabitz, Phys. Rev. Lett.68, 1500~1992!.
25R. Demiralp and H. Rabitz, Phys. Rev. A47, 809 ~1993!.
26Y. J. Yan, R. E. Gillilan, R. M. Whitnell, K. R. Wilson, and S. Mukame
J. Phys. Chem.97, 2320~1993!.

27B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R
Wilson, N. Schwentner, R. M. Whitnell, and Y. J. Yan, Phys. Rev. Le
74, 3360~1995!.

28B. Kohler, J. Krause, F. Raksi, K. R. Wilson, R. M. Whitnell, V. V
Yakovlev, and Y. J. Yan, Acct. Chem. Res.28, 133 ~1995!.

29S. A. Rice, Science258, 412 ~1992!.
30E. J. Heller, Acc. Chem. Res.14, 368 ~1981!.
31S. Y. Lee and E. J. Heller, J. Chem. Phys.71, 4777~1979!.
32J. Cao and Y. J. Yan, J. Chem. Phys.~to be submitted!.
No. 12, 22 March 1997

t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp


