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Fluorescence lifetime measurements in a polymer chain are modeled using a memory function
expansion, computer simulations, and simple scaling arguments. Unless the quenching rate is
localized and infinitely fast, the fluorescence lifetime is generally not equivalent to the first passage
time. The fluorescence lifetime distribution is decomposed into memory functions that can be
measured separately in single-molecule experiments. The leading order of the expansion gives the
Wilemski–Fixman~WF! approximation, and the convergence of higher order terms determines its
validity. Simulations of the fluorescence quenching on a Rouse chain verify the accuracy of the WF
approximation at small contact radii, short contour lengths, and small quenching rates. Detailed
investigation of the average fluorescence lifetime reveals two competing mechanisms: the
independent motion of end-to-end vector, which dominates at small contact radius, and the slowest
relaxation of polymer, which dominates at large contact radius. The Wilemski–Fixman rate is used
in combination with scaling arguments to predict the dependence of fluorescence lifetime on the
contour length. Our predictions for the scaling of the average lifetime with the contour length are in
good agreement with both simulations and recent experiments by Eaton and his group@L. J.
Lapidus, W. A. Eaton, and J. Hofrichter, Proc. Natl. Acad. Sci. U.S.A.97, 7220~2000!#. © 2004
American Institute of Physics.@DOI: 10.1063/1.1756578#

I. INTRODUCTION

Fluorescence quenching on a polymer chain has been of
theoretical and experimental interest for a long time.1–4 The
strong dependence of quenching rate on the fluorophore-
quencher distance makes fluorescence quenching a sensitive
probe of the loop formation dynamics in polypeptides and
DNAs. Recent developments in time-resolved single-
molecule fluorescence spectroscopy provide new tools to un-
derstand conformational dynamics on the molecular level.5–9

The internal relaxation of the polymer makes the quenching
reaction a complicated example of diffusion-controlled reac-
tions. Over several decades, there have been extensive dis-
cussions of diffusion-controlled reactions.10–18A widely used
approximation scheme to calculate intra-chain reactions in
dilute solutions was first presented by Wilemski and
Fixman,10,11 which is referred to here as the WF approxima-
tion. The main focus of this paper is to quantify the reliabil-
ity of the WF approximation for a Gaussian chain, validate
the criteria with computer simulations, and predict the con-
tour length dependence of the average fluorescence lifetime.

In paper I of this series, we studied two different regimes
of the reaction kinetics modulated by conformational fluctua-
tions and accounted for the effects of the experimental ob-
servation window in fluorescence measurements.19 The sta-
tionary reaction process dominates in the configuration-
controlled regime while the diffusion process dominates in
the diffusion-controlled regime. A path integral simulation
was used to model fluorescence quenching processes on a

semiflexible chain. We demonstrated that the first-order in-
homogeneous cumulant expansion in the configuration-
controlled regime defines a lower bound for the survival
probability, while the WF approximation in the diffusion-
controlled regime defines an upper bound and approaches the
exact result at large diffusion coefficients. In the present pa-
per, we derive the applicability criteria of the WF approxi-
mation by a memory function expansion combined with scal-
ing arguments, and establish its relation to chain length,
contact radius, and quenching rate. Within the region of va-
lidity for the WF approximation, we investigate the chain
length dependence of the fluorescence lifetime measurement
of a single Gaussian chain.

Although the relaxation of each normal mode of a poly-
mer chain is Gaussian and Markovian, the end-to-end dis-
tance motion is generally non-Markovian. The quenching
rate probed by fluorescence experiments is a function of the
end-to-end distance and is in general not localized. If the
quenching rate is infinitely fast and localized at the contact
radius, the fluorescence is quenched upon first contact and
the fluorescence lifetime becomes the first contact time or the
first passage time. Yet this equivalence does not hold for a
general quenching rate. Several simplified approaches have
been proposed to address the fluorescence-quenching prob-
lem in a polymer chain. The Szabo–Schulten–Schulten
~SSS! theory in Ref. 12 considers the effective diffusion of
the end-to-end distance. A similar approach has been adopted
to study the semiflexible polymers where a potential of mean
force is mapped out from the equilibrium distribution of the
end-to-end distance.20 These reduced approaches neglect the
non-Markovian nature of the end-to-end distance motion and
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do not necessarily describe the complete range of scaling
relations between the first passage time and the contour
length even for a simple Rouse chain. The WF approxima-
tion, although derived from a Markovian approximation for
the quenching rate, works surprisingly well for a Gaussian
chain and has been validated in a set of experiments and
simulations.2 For a diffusion process with a delta-function
reaction rate, the quenching rate degree of freedom is Mar-
kovian and the WF approximation becomes exact. In Appen-
dix A, we demonstrate this special case and the equivalence
of the delta-function sink and the radiative boundary condi-
tion. In general, the applicability of WF approximation to a
polymer system depends strongly on the contour length, the
experimental quenching rate, the contact radius, the solvent
viscosity, etc. In Sec. II, we discuss a generalized expansion
of the WF approximation and a quantitative criteria for its
reliability for a Gaussian chain.

For real polymers such as polypeptide chains, fluores-
cence lifetime measurements provide a quantitative tool to
investigate the effects of chain contour length and stiffness.
In a series of fluorescence quenching experiments, Eaton
et al. studied these effects in the diffusion-controlled regime
by varying intervening residues on a polypeptide chain. In
their experiments, a fluorophore-quencher pair, for example,
tryptophan and cysteine, are attached to the ends of a
polypeptide chain. On optical excitation, the fluorophore is
excited to a state with long lifetime, and is quenched effi-
ciently upon contact with the quencher. The average quench-
ing lifetime ^t& clearly indicates the loop formation. Their
experiments show that the effective quenching ratekeff

51/̂ t& exhibits anN23/2 dependence for long chains and has
a nonmonotonicN dependence for short chains due to chain
stiffness. In Sec. III C, a theoretical calculation is carried out
to investigate this observation. Fluorescence resonance en-
ergy transfer~FRET! is another promising tool to probe
polymer dynamics on short time and length scales. In FRET
experiments donor and acceptor dye molecules are attached
at two different points of one polymer or two different poly-
mers. Upon excitation, nonradiative energy transfer from do-
nor to acceptor may occur. The energy transfer rate has an
inverse power-law dependence on the donor–acceptor dis-
tance. According to Fo¨rster theory, K(R)5kF(R/RF)26,
with RF the Förster radius at 50% transfer efficiency. A re-
cent Brownian dynamics simulation by Srinivas and Bagchi
showed a power-law dependence of the average lifetime on
the chain length with an exponent of 2.6.21 A power-law
dependence with a smaller exponent was observed earlier by
Pastor, Zwanzig, and Szabo in a simulation of the first pas-
sage time in a Rouse chain.13 The larger exponent observed
in the FRET simulation may arise from the 1/R6 dependence,
or an enhancement of the effective persistence length from
the excluded volume effects. In Sec. III we analyze the con-
tour length dependence based on the semiflexible Gaussian
chain model for polymers.22

II. MEASUREMENTS AND CALCULATIONS
OF AVERAGE FLUORESCENCE LIFETIME

Let us consider a general scenario where a fluorophore is
attached to one end of a chain polymer and a quencher is

attached to the other end. The fluorescence-quenching pro-
cess determined by the rateK is coupled to the internal re-
laxation of the polymer described by the relaxation operation
L. The survival probability of the fluorescence evolves as

Ṗ~ t !5LP~ t !2KP~ t !, ~1!

where the operatorL represents the internal relaxation of the
polymer and reduces to the Smoluchowski operator for
simple diffusion, andK5K(R) is the first-order reaction rate
coefficient which depends on the fluorophore-quencher dis-
tanceR. In bulk measurements, we optically excite the fluo-
rophores attached to polymers in solution to their excited
states at zero time and then monitor the total fluorescence
intensity. The average fluorescence lifetime is obtained by
integrating the decay profile of fluorescence intensity. In
single-molecule experiments, short laser pulses are con-
stantly applied to the single polymer at high frequency so
that the fluorophore is quickly pumped back to its excited
state once the fluorescence is quenched by the quencher. As a
result, fluorescence trajectories are registered with instanta-
neous interruptions of quenching events. With these se-
quences of events, we can determine the fluorescence life-
time distribution function and other single-molecule
quantities, such as the multiple-event density and high order
memory functions discussed later in this section. In compari-
son to bulk measurements, these single-molecule trajectories
provide detailed information of the polymer dynamics with-
out inhomogeneous averages, which is a powerful tool to
probe conformational dynamics on the molecular level.

A. First passage time and fluorescence lifetime

When the quenching process is localized, e.g.,K(R)
5q0d(R2a), the fluorescence-quenching event is a clear
indication of the formation of a physical contact. Forq0

→`, the fluorescence is quenched upon first contact and the
quenching reaction reduces to the Smoluchowski boundary
condition. In this limit the quenching time or the fluores-
cence lifetime becomes the first passage time or the first
contact time. In reality, the fluorescence is not quenched
completely upon contact. As a result, the fluorescence life-
time includes contributions from the second contact, the third
contact, and so forth. These additional contributions distin-
guish the fluorescence lifetime from the first passage time.

In Fig. 1, we plot the simulation results of a Rouse chain.
The simulation details are elaborated in Sec. II D. The delta-
function quenching rateK(R)5q0d(R2a) is approximated
by a narrow Gaussian and the contact radius is identical to
the bond length. The mean first passage time is obtained
from simulation assuming the same Smoluchowski boundary
condition as in Ref. 13. At largeq0’s, the average fluores-
cence lifetime approaches the mean first passage time. This
result demonstrates the difference between the fluorescence
lifetime and the first passage time, and this difference ap-
proaches zero in the limitq0→`.

In Appendix A, we discuss the equivalence of radiative
boundary condition and delta-function sink. For the reaction
rate given byK(r )5k0d(r 2a) and r governed by the dif-
fusion operatorL, the WF approximation becomes exact and
x̂1(0) is the first contact time. In the limitk0→`, the aver-

573J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 Fluorescence lifetimes. II. Polymer contour length dependence

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



age fluorescence lifetime is equivalent to the first passage
time. In general, this equivalence does not hold whenK is
not infinitely fast and localized, or whenL is not a diffusion
operator.

B. Generalized Wilemski–Fixman expansion
and single-molecule measurements

In the time domain, the quenching time distribution is
the time derivative of the survival probabilityF(t)5
2dS(t)/dt, which in Laplace space is

F̂~z!512zŜ~z!. ~2!

For the diffusion-controlled reaction, the survival probability
is Ŝ(z)5^(z1K2L)21&, where ^¯& represents the en-
semble average over the initial equilibrium configuration. As
such, the mean quenching time^t&52F̂8(z50) is equiva-
lent to the average lifetimeŜ(0). We canalso demonstrate
this relation within the modulated reaction model discussed
in literature.22–24 The probability density for a quenching
event at timet is the cumulative probability to have the pre-
vious quenching event occurring at leastt time before, giving

F~ t !5K E
t

`

Ke2~K2L!tKdtL . ~3!

The Laplace transform of the quenching time distribution is
F̂(z)5z21^K@(K2L)212(z1K2L)21#K&, which is
equivalent to Eq.~2!. This interpretation relates the quench-
ing time distribution function to the single event distribution
function, ^Ke2(K2L)tK&, discussed in Refs. 23 and 24,
which provides a unique way to determine the lifetime dis-
tribution function in single-molecule measurements.

To calculate the average fluorescence lifetime, we derive
a rigorous expression ofŜ(0). First we expand the survival
probability as

Ŝ~z!5 K 1

z1K2LL
5

1

z
2

1

z2
^K&1

1

z2
^KĜ~z!K&

2
1

z2
^KĜ~z!KĜ~z!K&1¯

5
1

z
2

1

z2
^K&1

1

z2 S ^K&2

z
1^KĜ8K& D

2
1

z2 S ^K&3

z2
12^KĜ8K&

^K&
z

1^KĜ8KĜ8K& D 1¯,

~4!

where Ĝ(z)51/(z2L) is the Laplace transform of the
Green’s functionG(t) for internal relaxation, andĜ8(z)
5Ĝ(z)2Peq/z is obtained by subtracting the asymptotic
limit Peq/z from Ĝ(z). This expansion is identical to Eq.
~10! in paper I of this series,19 and is cited here for complete-
ness. Then we re-sum the expansion, leading to

Ŝ~z!5
11V~z!

k1z@11V~z!#
. ~5!

k5^K& is the homogeneous average of the reaction rate and
V(z)5k21(n50

` (21)nŶn(z). Given the definition of thenth
order memory functionx̂n(z)5k2(n11)^KĜ8K¯Ĝ8K&, we
obtain the relation betweenŶn(z) and the memory functions

k22Ŷ0~z!5x̂1~z!,

k23Ŷ1~z!5x̂2~z!2x̂1
2~z!,

~6!
k24Ŷ2~z!5x̂3~z!22x̂1~z!x̂2~z!1x̂1

3~z!,

k2~n11!Ŷn21~z!5x̂n~z!2 (
j 51

n21

x̂ j~z!k2~n2 j 11!Ŷn2 j 21~z!.

The re-summation result for the special case withL being
the diffusion operator is derived in Ref. 19. Under the Mar-
kovian assumption of the quenching rate,x̂n(z)5x̂1

n(z), we
haveYn>150, and the expansion in Eq.~5! reduces to the
well-known WF approximation

Ŝ~z!5
11kx̂1~z!

k1z@11kx̂1~z!#
. ~7!

In fact, thenth order memory function can be measured
directly from single-molecule experiments. In these experi-
ments, a high frequency laser source is constantly applied so
that the fluorophore is re-excited once the fluorescence is
quenched. Consequently, temporal trajectories of quenching
events in a single polymer are recorded. Then11 event
density N̂n115k21^KĜ(z)K¯KĜ(z)K& can be collected
from these single-molecule trajectories and provides a com-
prehensive probe of thenth order memory function23,24

x̂n~z!5k2nF N̂n11~z!2z21(
j 50

n21

kj 11x̂ j~z!N̂n2 j~z!G ~8!

FIG. 1. The difference between the mean first passage time and the average
fluorescence lifetime. The delta-function quenching rateK(R)5q0d(R
2a) is approximated by a narrow Gaussian in the simulation. The mean first
passage time is obtained by assuming a Smoluchowski boundary condition.

574 J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 S. Yang and J. Cao

Downloaded 03 Feb 2006 to 18.60.4.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



with N̂151 and x̂0(z)51. Equations~5! and ~8! provide a
link between the ensemble-averaged fluorescence intensity
measurements and the single-molecule multi-event measure-
ments.

C. Criteria for applying WF approximation

The average fluorescence lifetime is obtained easily
from the expansion

^t&5Ŝ~0!5k211k22(
n50

`

~21!nŶn~0!, ~9!

which reduces to the WF approximation̂t&51/̂ K&
1x̂1(0) if truncated at the first order. The accuracy of the
WF approximation is determined by the contribution from
higher order terms in the expansion. Although a rigorous
proof of the convergence criteria for the alternating series
expansion is not available, we can estimate the higher order
contributions for a Gaussian chain. From previous discus-
sion, we know that all the nonzero contributions of the
higher order terms arise from the non-Markovian nature of
the quenching rate. Rescaling the time by the slowest relax-
ation timetR , we estimateŶn(0)}kn12tR

n11, which leads to
the sufficient criteria for the applicability of the WF expres-
sion

ktR,1. ~10!

This criteria involves two time scales of the reaction dynam-
ics: the homogeneous average reaction time 1/k and the
slowest relaxation timetR . Equation~10! requires the relax-
ation time scale to be smaller than the reaction time scale,
which is consistent with the local equilibrium
approximation.13,25

For a quenching reaction with a delta-function sink
K(R)5q0d(R2a) on a Rouse chain, the homogeneous av-
erage rate isk;q0a2/N3/2b3, given that the contact radiusa
is normally much smaller than the equilibrium end-to-end
distance. The slowest relaxation time istR;N2b2/D0 where
b is the equilibrium bond length. Combination ofk and tR

yields an explicit expression of the criteria in Eq.~10!

ktR;q0b
N1/2b2

D S a

bD 2

. ~11!

Therefore, for a Gaussian chain of fixed bond length the WF
approximation is accurate for short contour lengthN, small
contact radiusa, small quenching rateq0 , or large diffusion
coefficientD0 .

D. Simulation of a Rouse chain

To examine the accuracy of the criteria in Sec. II C, we
perform computer simulations to compute the average fluo-
rescence lifetime in a Rouse chain. In our simulation, we
consider a Rouse chain with a fluorophore attached to one
end and a quencher attached to the other end. The potential
energy of the chain is

bU5
3

2b2 (
n51

N21

~rn2rn11!2, ~12!

whereb is the equilibrium bond length andrn is the position
of the nth bead. The quenching time is averaged over many
trajectories. For each trajectory, the initial configuration is
generated from the equilibrium distributionPeq5N exp
@2bU#, andN is the normalization factor. Here we adopt the
Ermak–McCammon algorithm to generate dynamic trajecto-
ries of Rouse chain.13,26 The evolution of the nth bead’s po-
sition is

rn~ t1D!5rn~ t !2D0¹nbUD1xn , ~13!

whereD is the time step andxn is a random displacement
from a normal distribution with zero mean and variance
2D0D. The quenching probability for each time step is 1
2exp@2K(R)D# and R is the end-to-end distance at timet.
Upon detection of a quenching event in our simulation, we
record the quenching time and restart the simulation with a
new initial configuration. In our simulation we takeb51,
D051 and use a specific functional form of quenching
rate,3,4 K(R)5q0 exp@2g(R2a)# with g5a21.

The results for the average fluorescence lifetime are dis-
played in Fig. 2. The criteria in Eq.~11!, although obtained
from simple scaling arguments, is surprisingly reliable. At
a50.1,q055.6, the WF expression reproduces all the simu-
lation results for the contour lengths up toN5100. At a
larger contact radiusa51 with q0 fixed, the WF approxima-

FIG. 2. The average fluorescence lifetime from the WF approximation com-
pared to the simulation:~a! a50.1, q055.6; ~b! a51.0, q055.6; ~a! a
51.0, q050.56. The simulation results are shown as plus symbols and the
WF approximation̂ t&51/̂ K&1x̂1(0) is shown as dot-dashed lines. Asa,
q0 , or N decreases, the WF approximation approaches the simulation re-
sults.
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tion deviates from the simulation result, and the deviation
becomes more prominent at larger contour lengths. At lower
quenching ratesq0 , the WF approximation shows excellent
agreement with simulation. In all three subplots, the agree-
ments are generally better for shorter Rouse chains. As pre-
dicted by Eq.~11!, for short contour lengths, small contact
radii or smallq0 , the relaxation time scale is much smaller
than the reaction time scale. In this limit, the Markovian
assumption of the quenching rate or the local equilibrium
approximation becomes valid, so the WF approximation is
accurate.

It can be seen from Fig. 2 that the WF results have
different slopes in the log–log plot at different contact radii.
As demonstrated in Sec. II C, the WF approximation includes
two contributions, the homogeneous average rate 1/^K& and
the average relaxation timex̂1(0). To examine the details of
the length dependences, we plot these two contributions
separately in Fig. 3. The scalings of both quantities with
contour length show strong dependencies on the contact ra-
dius; 1/̂ K& scales asN3/2 at a50.1 and has a smaller scaling
exponent at a larger contact radiusa51. The scaling expo-
nent of x̂1(0) decreases with the contact radius. Different
contour length dependences are also observed for different
contact radii with Smoluchowski boundary conditions, as
shown by Pastor and Szabo’s simulations, which corresponds
to a delta-function sink in the limitq0→` ~see Sec. II!.
Based on our calculation and their simulation, different scal-

ing relations for different radii arise naturally fromx̂1(0).
We investigate the contour length dependence in the follow-
ing section and discuss Fig. 3 further.

III. CONTOUR LENGTH DEPENDENCE
AND SEMIFLEXIBILITY

For synthetic and biological polymers, fluorescence life-
time measurements provide a quantitative tool to investigate
the dependence of fluorescence lifetime on contour length.
Real polymers have excluded volume, hydrodynamic, and
monomer-specific interactions, resulting in variations in
chain stiffness over a wide range of length scales. In this
section we study the effects of semiflexibility and contour
length dependence on conformational dynamics of single
macromolecules. We limit our discussion to fluorescence
quenching and fluorescence resonance energy transfer
~FRET!. The major difference between them is the distance
dependence ofK(R): the fluorescence-quenching rate falls
off exponentially,K(R)5q0 exp@2g(R2a)#, and the FRET
rate has an inverse power-law dependence,K(R)
5kF(R/RF)26.

For a Gaussian chain, the equilibrium distribution of the
end-to-end distance is

Peq~R!54pR2@2p^R2&/3#23/2exp@23R2/2^R2&#, ~14!

where ^R2& is the mean square end-to-end distance. The
Green’s function of the end-to-end distance is

G~R,tuR0!5A2

p

A3R

A^R2&R0f~ t !A12f2~ t !

3expF2
3~R21f2~ t !R0

2!

2^R2&@12f2~ t !#
G

3sinhS 3RR0f~ t !

^R2&@12f2~ t !#
D , ~15!

wheref(t) is the normalized distance correlation function
defined in the literature.22 For a Rouse chain, the explicit
form of f(t) is given by Szabo and others.13,25

In paper I,19 we demonstrate that either the reaction or
the relaxation time scale can dominate chain conformational
kinetics depending on the experimental scenarios. The
present discussion centers on the diffusion-controlled re-
gime, which has been measured experimentally and studied
numerically.2,4,13 The WF theory defines two fundamental
quantities, the homogeneous average ratek5^K& and the
memory functionx1(t). Both are sensitive to the functional
form of the reaction rate. In Secs. III A and III B, we assume
a delta-function reaction sinkK(R)5q0d(R2a) and ana-
lyze the dependence ofk andx̂1(0) on the persistence length
and chain length. Here,a is the contact radius for fluores-
cence quenching processes and the Fo¨rster radiusRF for
FRET processes. In Sec. III C, we use an exponential
quenching rate and compare our predictions with the
fluorescence-quenching experiment by Eaton and his co-
workers. In Sec. III D, we discuss the lifetime and yield mea-
surements in FRET experiments.

FIG. 3. Scaling of 1/̂K& and x̂1(0): ~a! a50.1, q055.6; ~b! a51.0, q0

55.6; ~a! a51.0, q050.56. 1/̂K& is shown as plus symbols andx̂1(0) is
shown as square symbols. The scaling relations are shown in dot-dashed
lines.
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A. Homogeneous average rate k

Given the equilibrium distribution in Eq.~14! and the
delta-function sink, we have

k}
a2

^R2&3/2
expF2

3a2

2^R2&
G , ~16!

where the mean square end-to-end distance^R2& is a func-
tion of N. As illustrated in Fig. 4, at extremely smallN, a2

.^R2&, the homogeneous average ratek is a probe of the
right edge of the distribution and is dominated by the expo-
nential factor exp@23a2/2^R2&#. For a2 smaller than̂ R2&,
the probe falls on the left edge of the distribution andk has a
complicated dependence onN for small N. In the limit of
largeN, and the homogeneous average ratek is dominated by
the prefactora2/^R2&3/2. The scaling exponents ofk with
contour length in this regime,a2!^R2&, is summarized in
Table I: For a flexible chain with persistence lengthLp!N,
the mean square end-to-end distance is^R2&52Nb2Lp andk
scales asN23/2; while for a stiff chain with persistence
lengthLp>N, ^R2&5N2b2 andk scales asN23.

B. Memory function x̂1„0…

The memory functionx1(t) for a delta-function sink is
rigorously obtained as

x1~ t !5
^KG~ t !K&

k2
21

5
1

2x0f~ t !A12f2~ t !
sinhS 2x0f~ t !

12f2~ t !
D

3expF2
2x0f2~ t !

12f2~ t !
G21, ~17!

where x053a2/2^R2& and f(t) is the normalized distance
correlation function. To estimate the contour length depen-
dence, we expandx1(t) at small 2x0f(t)/@12f2(t)#, giv-
ing

x1~ t !'@12f2~ t !#23/22122x0f2~ t !@12f2~ t !#25/2

1¯ . ~18!

At short times, both ends move independently, givingf(t)
'126D0 /^R2&t.22 In this time region,f(t) is close to 1
and the expansion is no longer valid. We can estimate the
invalid region of the expansion as 2x0f(t)/@12f2#.1, giv-
ing f(t).12x0 or equivalentlyt,^R2&x0/6D05a2/4D0 .
Accordingly, we break the full integration into two parts
x̂1(0)5I 11I 2 with

I 15E
0

T

x1~ t !dt, and I 25E
T

`

x1~ t !dt, ~19!

whereT5a2/4D0 . Within @0,T#, x1(t)'1/4A2x0
3/2, yield-

ing an estimation of the first term

I 1;T/4A2x0
3/25^R2&3/2/24A3D0a. ~20!

Compared to the first passage timeA2pN3/2b3/12A2D0a in
the SSS theory where only the diffusion of the end-to-end
distance is considered,13 I 1 is off by a factor of 2A2p. The
second termI 2 is essentially dominated by the slowest relax-
ation timetR , yielding a different scaling

I 2;tR . ~21!

It is clear that two competing processes contribute dif-
ferently tox̂1(0). The diffusive motion of end-to-end vector
dominates at short time, while the collective relaxation of the
polymer dominates at long time. The relative weights of
these two contributions are determined by the contact radius
a. x̂1(0) is dominated byI 1 at smalla and byI 2 at largea,
and the crossover falls roughly into the region where these
two integrals are comparable. The length dependence of
x̂(0) is determined by bothI 1 andI 2 . For the dependence on
semiflexibility and contact radius, we make several observa-
tions.

~1! For a flexible chain whenLp!N, the mean square
end-to-end distance iŝR2&52Nb2Lp and the slowest relax-
ation time istR;N2Lpb2/D0 . Hence,I 1;N3/2 dominates at
smalla while I 2;N2 dominates at largea, and the crossover
occurs aroundb/a;AN. Our numerical calculation ofx̂1(0)
for a Rouse chain (Lp51/2) with a delta-function sink cor-
roborates this result. As shown in Fig. 5,x̂1(0) scales as
N2.08 for a51, N1.68 for a50.1, andN1.53 for a50.01, re-
spectively. The calculation strongly confirms the two com-
peting contributions and thatI 1;N3/2 dominates overI 2

FIG. 4. Equilibrium distribution of the end-to-end distance for the semiflex-
ible Gaussian chain with the persistence lengthLp52. The length unit is the
equilibrium bond lengthb. The delta-function sink is represented as a solid
bar atR5a. TheN dependence of the homogeneous average ratek is illus-
trated by the crossing points of the delta-function sink and the equilibrium
distributions.

TABLE I. Summary of the scaling exponents of 1/k and x̂1(0) with the
contour length in the largeN limit where a2!^R2&. Depending on the
persistence lengthLp , this regime is separated into two regions correspond-
ing to Lp!N and Lp>N, respectively. Smalla represents the limitb/a
@AN while largea represents the opposite limit. HI refers to hydrodynamic
interactions incorporated in the Zimm model.

1/k

x̂1(0) without HI x̂1(0) with HI

Small a Largea Small a Largea

Flexible chainLp!N 3/2 3/2 2 3/2 3/2
Stiff chain Lp>N 3 3 4 3 7/2
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;N2 as the contact radius decreases. The decreasing scaling
exponents with the contact radii are also observed for an
exponential quenching rate in Fig. 3, wherex̂1(0) scales as
N2.44 at a51.0 andN1.88 at a50.1. Although the contour
lengths are not large enough to show the asymptotic scalings,
we are still able to distinguish the leading contributions at
different radii, which is a generic effect of the two competing
processes.

~2! For a stiff chain whenLp>N, the mean square end-
to-end distance iŝR2&5N2b2 and the slowest relaxation
time is tR;N4b2/LpD0 . Consequently,I 1 scales with the
contour length asN3 and I 2 scales asN4. Srinivas and Bag-
chi’s simulations21 for a semiflexible chain withLp compa-
rable to the contour length and excluded volume effects re-
ported an exponent of 2.6. This result lies between the
flexible chain limit and the stiff chain limit.

~3! In the presence of hydrodynamic interactions, the
normal modes of a semiflexible chain are approximated us-
ing the pre-averaged approximation for the hydrodynamics
tensors introduced by Zimm.27,28Details can be found in our
previous work.22 The scaling relations are summarized as:

H When Lp!N, I 1;N3/2, I 2;N3/2;

When Lp>N, I 1;N3, I 2;N7/2.
~22!

Consequently,x̂1(0) scale withN and has a smaller ex-
ponent in presence of hydrodynamic effects.

In short summary, both 1/k and x̂1(0) scale with the
contour length for long polymer chains. The scaling expo-
nents are listed in Table I. At small contact radius,x̂1(0) is
dominated by the integralI 1 , which depends only on the
equilibrium end-to-end distance.I 1 has the same scaling ex-
ponents with and without hydrodynamic interactions. While
at large contact radius,x̂1(0) is dominated by the integral
I 2 , which depends on the slowest relaxation time and has
different scaling exponents with and without hydrodynamic
interactions.

C. Intramolecular fluorescence quenching:
Comparison with Eaton’s experiments

Quenching of the long-lived triplet state of tryptophan
by cysteine provides an accurate way to measure the rate of
loop formation in polymer chains. With tryptophan at one
end of a semiflexible peptide and cysteine at the other, Eaton
et al.were able to obtain the diffusion-limited rate of contact
formation. They measured the length dependence and the
viscosity dependence of the effective quenching rate by vary-
ing the number of intervening Ala-Gly-Gln sequences. The
effective quenching rate is defined as the inverse of average
lifetime, keff51/̂ t&'k/@11kx̂1(0)#. In this section, we
mainly address two important experimental findings by the
Eaton group.

~1! The scaling of the effective quenching rate approaches
N23/2 for chain lengthN;15 but depends less onN for
shorter peptides.2

~2! The diffusion coefficient required to fit the diffusion-
influenced rate is about ten times smaller than the value
expected for free diffusion of the contacting residues.4

From the Gaussian distribution in Eq.~14! and the ex-
ponential quenching rateK(R)5q0 exp@2g(R2a)#, the ho-
mogeneous average quenching rate is obtained as

k5^K&5E
a

`

q0eg~R2a!Peq~R!dR

5
1

A2pz
expF2

1

2zG S 222z1A2pz~11z!

3expF ~11z!2

2z GerfcF11z

A2z
G D ~23!

with z5g2^R2&/3. Given that̂ R2&52NLpb2 for a flexible
chain andg5a21, z is a large number for smalla and large
N. In the asymptotic limitz→`, ^K& reduces toq0A8/pz23/2

and scales asN23/2. For the case where the contact radius is
about the bond length, the asymptotic scaling is approached
for large contour lengths. Furthermore, 1/^K& does not ex-
hibit a monotonic dependence on the contour length for short
polypeptide chains due to the chain stiffness.

In Fig. 6, the effective quenching rate is calculated nu-
merically with and without hydrodynamic interactions. The
contour length dependence of the effective quenching rate is
close to the experimental observation.2 For short peptide
chains,kx̂1(0)!1, the overall quenching rate is dominated
by thek given in Eq.~23!. At large N, the probe radiusa falls
on the left edge of the equilibrium distribution andk de-
creases with increasingN, which agrees favorably with the
calculations of Eatonet al.4 Our calculations predict a
weaker dependence onN aroundN53 due to the chain stiff-
ness. The probe positiona for a short peptide chain withN
53 occurs at the right edge of the distribution, as illustrated
in Fig. 4, and produces the small decline of the curve. In our
simulation, the effective quenching rate for long peptide
chains is dominated by 1/x̂1(0). In theabsence of hydrody-
namic interactions, 1/x̂1(0) scales with the contour length as
N22 where the contact radius is comparable to the bond

FIG. 5. The contour length dependence ofx̂1(0)5*0
`x1(t)dt for a delta-

function sink. x̂1(0) scales asN2.08 at a51, N1.68 at a50.1, andN1.53 at
a50.01. Exact calculations are plotted with symbols and the scaling rela-
tions are shown in dashed lines.
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length. While in the presence of hydrodynamic interactions,
1/x̂1(0) scales with the contour length asN23/2, which was
also observed by Eatonet al. for N;15.

To better approximate the exponential quenching rate
with the delta-function sink, the effective probe radius
should be greater than the contact radiusa. Real polymers
are closer to the worm-like chain model than the semiflexible
Gaussian chain model. The semiflexible Gaussian chain
model normally gives smooth equilibrium distribution
Peq(R), as shown in Fig. 4, while the worm-like chain model
predicts much sharper decay at right edges of the
distribution.4,29 Therefore, the worm-like chain model pre-
dicts sharper decay ofk as a falls at the right edge of the
distribution. As a combination of these two effects, the ho-
mogeneous average quenching ratek5^K(R)& should de-
cline faster at small contour lengths, as demonstrated in
Eaton’s experiments.4

In general, the effective diffusion process of the end-to-
end distanceR is non-Markovian. A natural way to introduce
an effective diffusion coefficient is

Deff5
^R2&

6*0
`f~ t !dt

. ~24!

This definition differs fromD052kBT/z used in Pastor,
Zwanzig and Szabo’s work13 and reflects the independent

motion of the polymer beads at both ends while containing
no information on the collective motion of the whole poly-
mer chain. A simple calculation shows thatDeff given by Eq.
~24! is about seven times smaller than 2kBT/z for chains of
length N510 at 1 cp and 293 K, in agreement with the
experimental findings of Eatonet al.2,4

D. Fluorescence resonance energy transfer:
Lifetime and quantum yield

Another laser-induced fluorescence spectroscopy tech-
nique that provides complementary information on the inter-
nal relaxation of biopolymers is fluorescence resonance en-
ergy transfer~FRET!. This technique has been extensively
used in single-molecule studies of conformational dynamics
of proteins, DNAs, RNAs and other biomolecules.7–9 The
inverse power-law transfer rate diverges atR→0 where the
transition dipole–dipole interaction no longer holds. To fa-
cilitate the calculation, we use a modified expression for
K(R)

K~R!5
kF

e1~R/RF!6
, ~25!

wheree is a small quantity that represents the breakdown of
the weak dipole–dipole interaction for smallR. This expres-
sion reduces to the quantum yield for FRET processes when
e51. Thus the discussion applies to quantum yield measure-
ments as well. The Fourier transform of the FRET rate is

K~q!5
2p2kFRF

2

3qe2/3 H exp@2qRFe1/6#1expF2
qRFe1/6

2 G
•F2cosSA3

2
qRFe1/6D 1A3 sinSA3

2
qRFe1/6D G J ,

~26!

which reduces to 2p2RF
3kF/3Ae when qRFe1/6!1. Consid-

ering thate is a small number, the FRET rate is well approxi-
mated by a delta-function sinkK(R)5k0d(R2RF) with k0

5pRFkF /(6Ae).22 The contour length dependence roughly
follows Table I.

IV. CONCLUSION AND DISCUSSIONS

Here we summarize our findings. For the fluorescence-
quenching process in a polymer chain, the fluorescence life-
time is not equivalent to the first passage time unless the
quenching rate is infinitely fast and localized at the contact
radius. Based on a generalized Wilemski–Fixman formalism,
the fluorescence lifetime distribution function can be decom-
posed into memory functions that are measurable in single-
molecule experiments. A sufficient criteria,ktR,1, for the
validity of the WF approximation is obtained from the ex-
pansion for a Gaussian process. This criteria for a Gaussian
chain predicts that̂t&51/k1x̂1(0) is a reliable approxima-
tion for small contact radii, slow quenching rates or short
contour lengths. The theoretical prediction is corroborated by
computer simulations of quenching processes in a Rouse
chain.

FIG. 6. Dependence of the effective quenching ratekeff51/̂ t& on the chain
length ~a! without hydrodynamic interactions and~b! with hydrodynamic
interactions. The time unit isb2/6D0 . The persistence length isLp52, and
the quenching rate at contact is estimated from experimental data to beq0

55.6. Due to the chain stiffness,keff does not have a monotonic scaling for
very short chains. For a relatively long chain, the effective rate is dominated
by 1/x̂1(0), yielding N22 scaling without hydrodynamic interactions and
N23/2 scaling with hydrodynamic interactions, respectively. TheN23/2 scal-
ing was observed by Eatonet al.2,4 for N;15.
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The dependence of physical properties, such as average
fluorescence lifetime, on the chain length is crucial for char-
acterizing polymers and can be used to quantitatively deter-
mine the chain stiffness. For reaction kinetics in the
diffusion-controlled regime, the average fluorescence life-
time is well approximated bŷt&51/k1x̂1(0). Forlocalized
reaction rateK(R)5q0d(R2a), wherea is the contact ra-
dius for fluorescence quenching or the Fo¨rster radius for
FRET, 1/k scales asN3/2 for flexible chains andN3 for stiff
chains. The scaling of thex̂1(0) with the contour lengthN is
characterized by two competing processes, the independent
motion of the end-to-end vector and the slowest relaxation of
polymer. The former dominates at a small contact radius and
the latter dominates at a large contact radius. For flexible
chains,x̂1(0) scales asN2 at a large contact radius andN3/2

at a small contact radius, while for stiff chains,x̂1(0) scales
as N3 at a large contact radius andN4 at a small contact
radius. The scaling relation for a flexible chain agrees well
with Szabo’s simulation.13 Srinivas and Bagchi’s simulations
of a semiflexible chain withLp comparable to contour length
gives an exponent of 2.6 for̂t&, which lies between the
flexible and the stiff limits.21 In the presence of hydrody-
namic interactions,x̂1(0) has a smaller scaling exponent,
which scales asN3/2 for a flexible chain, and asN3 at a small
contact radius andN7/2 at a large contact radius for a stiff
chain.

An application of the scaling relations to the
fluorescence-quenching experiments by Eaton and his group
clarifies two findings:

~1! For intramolecular fluorescence-quenching pro-
cesses, the effective quenching rate is given bykeff51/̂ t&.
For long polymer chains, the effective quenching rate is
dominated byx̂1(0) and exhibitsN23/2 scaling. For short
polymer chains, the effective quenching rate is determined
by k, the homogeneous average rate;k decreases asN in-
creases when the contact radius falls on the left edge of the
equilibrium distributionPeq(R), and increases withN when
the contact radius falls on the right edge of the equilibrium
distribution. Our calculations agree quantitatively with the
experimental data of Eatonet al.4 where the effective
quenching ratekeff approaches theN23/2 scaling for long
polymer chains and depends less onN for short chains.

~2! Through normal mode decomposition, non-
Markovian relaxation of the end-to-end distance for a semi-
flexible chain is composed of a number of Markovian pro-
cesses. The end-to-end distance undergoes an effective
diffusion on the potential of mean force. Phenomenologi-
cally, the effective diffusion coefficient is related to the dis-
tance correlation function by 6Deff*0

`f(t)dt5^R2&. Numerical
calculations demonstrate thatDeff for N510 is about seven
times smaller than the bead diffusion coefficientD0

52kBT/z at 1 cp and 293 K. This theoretical prediction
agrees with recent experimental findings by Eaton and his
co-workers. The effective diffusion constant required to fit
the diffusion-influenced rates in their experiments is about
ten times smaller compared to the free diffusion of the
residues.2,4

ACKNOWLEDGMENTS

This research was supported by the NSF Career Award
~Grant No. Che-0093210! and the Petroleum Research Fund
administrated by the American Chemical Society. J.C. is a
recipient of the Camille Dreyfus Teacher-Scholar Award. We
would like to thank Dr. Eaton for sending us their preprint.

APPENDIX A: EQUIVALENCE OF BOUNDARY
CONDITION AND DELTA-FUNCTION SINK

For a one-dimensional delta-function sink,K(x)
5k0d(x2a), the homogeneous average rate isk
5k0Peq(a). Let us now obtainx̂1(0) from the rate–rate
correlation function

k2x̂1~0!5E h~x!Peq~x!~K~x!2k!dx. ~A1!

With the adjoint operatorL1 definition which was used by
Szabo–Schulten–Schulten in their solution to diffusion with
an absorbing boundary,h(x) satisfies

L1h~x!52~K~x!2k!. ~A2!

The adjoint operatorL15ebU]x(D(x)e2bU]x) depends on
the general position dependent diffusion coefficientD(x).
Considering now the boundary conditionsh(x→6`)50,
we have

h~x!5E
2`

x ebU~y!

D~y!
dyE

y

`

~K~j!2k!e2bU~j!dj. ~A3!

Substituting this equation into Eq.~A1! and averaging over
the equilibrium distribution Peq(x)
5(*2`

` e2bU(y)dy)21e2bU(x), we obtain

k2x̂1~0!5S E
2`

`

e2bU~y!dyD 21E
2`

` ebU~x!

D~x!

3dxF E
x

`

e2bU~y!~K~y!2k!dyG2

. ~A4!

Therefore,x̂1(0) is given by

x̂1~0!5S E
2`

`

e2bU~y!dyD 21E
2`

a ebU~x!

D~x!

3dxF E
2`

x

e2bU~y!dyG2

1S E
2`

`

e2bU~y!dyD 21

3E
a

` ebU~x!

D~x!
dxF E

x

`

e2bU~y!dyG2

. ~A5!

And the average lifetime is

^t&5
1

k
1S E

2`

`

e2bU~y!dyD 21E
2`

a ebU~x!

D~x!

3dxF E
2`

x

e2bU~y!dyG2

1S E
2`

`

e2bU~y!dyD 21

3E
a

` ebU~x!

D~x!
dxF E

x

`

e2bU~y!dyG2

. ~A6!
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Equation~A6! is exactly a sum of contributions from the left
and the right regions of the boundary with proper weight. It
is the same result as the SSS theory with radiation boundary
conditions. It proves the equivalence of delta-function sink
and radiation boundary conditions. In the limitk0→`, the
radiative boundary becomes the absorbing or Smoluchowski
boundary and the fluorescence lifetime becomesx̂1(0) in
Eq. ~A5!. This is the same as the first passage time given by
the Szabo–Schulten–Schulten theory.12

In higher dimensions, the real reactive sink is defined as
a hyper plane in a multi-dimensional space. For example,
K(r )5k0d(r 2a) is actually a reactive spherical surface in a
three-dimensional space. Under such conditions, the whole
space can be separated into two regions, inside and outside
the reactive surface. This separation scheme given in Eq.
~A6! still holds for such cases. With a reactive surface, the
Wilemski–Fixman approximation is only exact when the re-
action coordinater is Markovian, for example,L5D¹•@¹
1¹bU(r )#. For this special case, we can prove that the
reaction rate degree of freedomk(r ) is precisely Markovian.
Hence the average lifetime is

^t&5
1

k
1

1

D F E
0

`

r 2ebU~r !drG21

•H E
0

a

ebU~r !r 22drF E
0

r

e2bU~r!r2drG2

1E
a

`

ebU~r !r 22drF E
r

`

e2bU~r!r2drG2J . ~A7!

For non-Markovian reaction coordinate, the reaction rate de-
gree of freedom is not Markovian even when the reaction
rate is localized. Therefore the Wilemski–Fixman approxi-
mation is no longer exact.
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