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Abstract

In a recent article [1], the FEAST algorithm has been presented as a general
purpose eigenvalue solver which is ideally suited for addressing the numerical
challenges in electronic structure calculations. Here, FEAST is presented be-
yond the “black-box” solver as a fundamental modeling framework which can
naturally address the original numerical complexity of the electronic struc-
ture problem as formulated by Slater in 1937 [2]. The non-linear eigenvalue
problem arising from the muffin-tin decomposition of the real-space domain
is first derived and then reformulated to be solved exactly within the FEAST
framework. This new framework is presented as a fundamental and practical
solution for performing both accurate and scalable electronic structure cal-
culations, bypassing the various issues of using traditional approaches such
as linearization and pseudopotential techniques. A finite element implemen-
tation of this FEAST framework along with simulation results for various
molecular systems are also presented and discussed.
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1. Introduction

Since the 1930’s, progress in electronic structure calculations has al-
ways been tied together with advances in numerical strategies for address-
ing the eigenvalue Schrodinger equation. In particular, several attempts
have been undertaken to reduce the complexity of the eigenvalue problem
in self-consistent calculations by dissociating, screening or removing the ef-
fect of the core electrons. Most used techniques include [3, |4]: muffin-tin
approximations along with augmented plane wave (APW) [2] and linearized
APW, muffin-tin orbitals (MTO) and linearized MTO, KKR methods [3],
augmented spherical wave methods [6], pseudopotential approaches |7, |§]
and the projector augmented-wave method |9]. The conceptual approach of
the former consists in partitioning the real space into spheres around each
atom, allowing different discretization and solving strategies to take place in
separate regions in space. Therefore, the atom-centered regions can benefit
from specific discretization schemes (i.e. basis sets) that are both suitable to
capture the highly localized core states around the nuclei and considerably
reduce the effective size of the resulting eigenvalue problem in the intersti-
tial region. This approach can be cast as a domain decomposition method
which, in modern days, is most suitable for parallel computing since calcu-
lations on all these sub-domains can also be performed independently. Once
the eigenvalue problem is reformulated using domain decomposition strate-
gies, however, the resulting (and still exact) problem now takes the form
of a non-linear one in the interstitial region (i.e. H(E)y = E1)) since the
boundary conditions at the interface with the atom-centered regions are en-
ergy dependent. The major difficulty of solving this non-linear eigenvalue
problem has been largely avoided by mainstream approaches to electronic
structure calculations that rely mostly on approximations ranging from di-
rect linearization techniques (e.g. LAPW, LMTO, etc.) [10, [11, 12, 13, [14]
to pseudopotential techniques [8, [15] that eliminate the core states.

This paper presents a fundamental strategy for performing all-electron
(i.e. full-potential) electronic structure calculations which relies entirely on
the capabilities of the new FEAST algorithm framework for solving the eigen-
value problem [1]. At first, the algorithm can operate in parallel to obtain
core and valence electrons independently spanning different energy ranges.
Secondly, solving the original eigenvalue problem within a given energy range
(i.e. search interval) is mainly reformulated into solving a set of well-defined
independent linear systems along a complex energy contour. As a result,



the muffin-tin domain decomposition used to partition the real-space can act
directly on the linear systems; therefore, the eigenvalue problem does not
need to be explicitly formulated into a non-linear one. In comparison to lin-
earization techniques, the resulting linear systems also need to be evaluated
for a certain set of pivot energies, but those are now explicitly provided by
FEAST to guarantee the convergence of the solutions in the entire system.
Additionally, the complexity of interstitial problem scales linearly with the
number of atoms, and it can be shown that the proposed highly accurate all-
electron muffin-tin framework is also potentially capable of better scalability
performances than pseudopotential approaches on parallel architectures.

The outline of this paper is as follows: In section 2] we briefly summa-
rize the numerical steps and properties of the FEAST algorithm presented in
[1] for solving the traditional eigenvalue problem. Section Bl presents a gen-
eral definition of the muffin-tin strategy and the derivation of the resulting
non-linear eigenvalue problem. Section (] describes how FEAST can be effec-
tively and generally used to solve the muffin-tin problem without resorting
to linearization or other approximations. The capabilities of the new all-
electron framework as compared to other approaches are then discussed in
Section [l and illustrated using finite element (FEM) simulations for solving
the DFT/Kohn-Sham problem on various molecular systems.

2. The FEAST Algorithm

In electronic structure calculations, one considers solving the Schrodinger-
type equation in an entire domain €2 which can be finite, periodic, or Bloch
periodic:

HY(x)=E¥(x), x€ (1)

where {E;, ¥;} are the resulting eigenpairs (also parametrized by k in the
case of bandstructure calculation using a Bloch periodic system). Thereafter,
any discretization schemes in 2 would result in the generalized and linear
eigenvalue problem of size N:

HY = ESU, (2)

where S is a positive definite matrix (mass matrix) obtained using non-
orthogonal basis functions (S = I otherwise), and ¥ contains the N unknown
components of the wave function (e.g. basis set coefficients, nodal values,
etc.).



FEAST is both a new numerical algorithm [1] and a new general pur-
pose high-performance numerical library [16] for solving the standard or
generalized eigenvalue problem of type (2]), and obtaining all the eigenvalues
and eigenvectors within a given search interval [Epin, Eme:|. FEAST is a
density-matrix-based algorithm which differs fundamentally from traditional
approaches for solving the eigenvalue problem (such as Lanczos, Arnoldi,
Jacobi-Davidson, etc.) by combining properties of numerical linear algebra
and complex analysis. Its main computational tasks consist of solving very
few independent linear systems with multiple right-hand sides along a com-
plex contour and one reduced dense eigenvalue problem orders of magnitude
smaller than the original one (the size of this reduced problem is of the order
of the number of eigenpairs inside the search interval). The basic FEAST
algorithm for symmetric eigenvalue problem detailed in [1] is briefly summa-
rized in the following.

Starting from a set of My linearly independent random vectors Y, =
{y1,¥2, --YM, }» where Mj is chosen greater than the number of the eigenval-
ues M in the search interval (i.e. M represents then an over-estimation of M
which is not known a priori), a new set of vectors Q. = {Q1, 92, ..dm, }
is obtained as follows:

1
QNXMO = _2—71‘2 ch G(Z)YNXMO7 (3>
where C represents a complex contour from FE,,;, to E,..., and the system
Green’s function G at the complex energy Z is defined by G(Z) = (ZS —
H) L
In practice, the vectors Q in (3]) can be computed using a high-order
numerical integration where only very few linear systems G(Z)Y need to be
solved along the complex contour C i.e.

(Z8 -H)Q® =Y, (4)

where Q%) denotes the set of responses at a given pivot energy Z for a
given set of excitations Y in Q. Since G(Z) = G(Z), (where T stands for
transpose conjugate), it can be shown that the numerical integration in (3]
can be performed on the positive half circle of the complex contour C* (see
Figure [I).

Using a Rayleigh-Ritz procedure, and by computing
=Q'HQ and SQMOXMO = Q'sQ, (5)
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Figure 1: Representation of the complex contour integral defined by the positive half circle
C* for a given search interval [Emin, Fmaz). In practice, the vectors Q are computed via a
numerical integration (e.g. Gauss-Legendre quadrature) where only very few linear systems
G(Z)Y (4l) needs to be solved at specific points Z. along the contour.

a projected reduced dense eigenvalue problem of size M, can be formed:
HQ(I’ = ESQ‘I). (6)

This reduced problem can be solved using standard eigenvalue routines for
dense systems to obtain all the eigenpairs {¢,,, ®,,}. By setting E,, = ¢, and
computing W, = Q. Py, it follows that if E,, lies inside the con-
tour, it is an eigenvalue solution and its eigenvector is ¥,, (the m' column of
W). The eigenvectors W are also naturally S-orthonormal, if the eigenvectors
of the reduced problem are Sq-orthonormal. Accuracy can be systematically
improved using a new set of initial guess vectors Y = SW iteratively up until
convergence.

The FEAST algorithm offers many important and unique capabilities for
achieving accuracy, robustness, high-performance and scalability on paral-
lel computing architectures. The algorithm holds indeed all the following
intrinsic properties:

e Using a high-order numerical integration scheme such as Gauss-Legendre
quadrature, 8 to 16 contour points suffice for FEAST to consistently
converge in ~2 to 3 iterations to obtain up to thousands of eigenpairs
with very high accuracy.

e FEAST benefits from an exact mathematical derivation and naturally
captures all multiplicities.



e No (explicit) orthogonalization procedure is required.

e FEAST has the ability to re-use the basis of a pre-computed subspace
for fast convergence or as suitable initial guess for solving a series of
eigenvalue problems that are close one another (e.g. for bandstructure
calculations [1], time-dependent propagation [17], etc.).

e FEAST allows the use of iterative methods for solving the inner linear
system, and which are ideally suited for large-sparse problems.

Finally, efficient parallel implementations for FEAST can be addressed
at three different levels [16, [18]: (i) many search intervals can be run in-
dependently (no overlap), (ii) each linear system in (B]) can be solved inde-
pendently along the complex contour C, (e.g. simultaneously on different
compute nodes), (iii) the linear system (H]) can be solved in parallel (the
multiple right sides can be parallelized as well). Consequently, one can show
that if enough parallel computing power is available, the main computational
cost of FEAST for solving the eigenvalue problem can be ultimately reduced
to solving only one linear system (4l). This problem can be in principle ad-
dressed by taking advantage of the many advances in “black-box” direct or
iterative parallel system solvers. However, a domain decomposition strategy
such as muffin-tin described in the next section, is naturally more suited
to address specifically the electronic structure problem within a multi-atom
centered environment.

3. From Linear to non-linear eigenvalue problem using the muffin-
tin strategy

A muffin-tin strategy for the electronic structure problem has been pro-
posed as early as the 1930’s, and in particular, it has been used as a starting
point for the APW method introduced by Slater [2]. A muffin-tin decompo-
sition brings flexibility in the discretization step, reduces the main computa-
tional efforts within the interstitial region alone, and should also guarantee
maximum linear scalability performances using modern parallel computing
architectures. Without any loss of generality, Figure 2] illustrates the essence
of the muffin-tin domain decomposition (here using the particular example of
a real-space mesh discretization for the Benzene molecule). For the particular
case of APW, the atom-centered regions use atomic orbitals basis functions,
while a plane wave expansion scheme is used for the interstitial region. The



derivation that follows, however, is independent of the type of basis function
used within the muffin-tin decomposition.

Figure 2: Using a muffin-tin domain-decomposition method, the whole simulation domain
Q is separated into multiple atom-centered regions ; (j > 0) and one large interstitial
region Qq. Different basis-sets can be used independently to describe the different regions.
The figure on the left represents a 2D view of local finite element discretization using
a coarse mesh for Qo (represented only partially here) connecting all of the atoms of a
Benzene molecule. In contrast, the figures on the right represent a finer mesh for the €);
regions suitable to capture the highly localized core states around the nuclei.

Formally, the solutions {F;, U;} that satisfy the continuum model (),
can also be obtained from a Schrodinger equation in the interstitial region
)y alone, provided that appropriate boundary conditions are imposed at the
interfaces I'; with the atom-centered region €; i.e.

Hy¥(x) = EV¥(x), x€Q (7)

where Hj is the Hamiltonian in €y. A general mathematical form for these
boundary conditions on I'; supplies a relation between the normal derivative
of the solution and their boundary values (Vj):

!

107(x)
2 67’]]

:/ dx Y,(E,x,x) ¥(x), xeTj (8)
1—‘,
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where h = m = 1, n; represents the external normal at I';, and X, is a non-
local and energy dependent operator (i.e. self-energy) which can be derived
from the the atom-centered Green’s function G in €2;. This later is given by
(VJ):

(E—Hj)Gj(E,x,xl):5(X—Xl), x,x €9, 9)

where H; is the Hamiltonian in €2;, and it is important to note that G; can
be constructed with arbitrary boundary conditions at I';. For instance, by
choosing the Green’s function G, to have zero derivative on I'; (i.e. homo-
geneous Neumann boundary conditions), one can obtain from the Green’s
identity a simple expression for ¥; (inverse of the surface Green’s function):

5i(E,x,x) =G (B, x,x), x,x €T (10)

This derivation was originally introduced in [19] as an embedding potential
technique for the Schrodinger equation. Alternatively, another simple expres-
sion for ¥; has been derived in [20] using homogeneous Dirichlet boundary
conditions for G; on I';. After discretization of (7)) using the condition (8]
(and usually performed on the variational form of the problem), the resulting
non-linear eigenvalue problem in €2 takes the general form

(Ho — U 3(E))®o = ESo ¥y, (11)

where Sg is the mass matrix in 2y, Wy contains the unknown components
of the solution in €y, and X;(E) is the self-energy matrix obtained from
the discretization of (I0)) in €2; coupling all the unknowns on I'; (i.e. non-
local term on I';) and formally added here (for clarity) to the interstitial
Hamiltonian.

Alternatively to a continuum treatment of the problem (I), one could
directly replace the unknown components of ¥; belonging to the interior
subdomains €2, from the system matrix (2]) by the following self-energy [21]

3(E) =75 Gj 7, (12)

where 7; describes the interaction between ), and the atom-centered region
2;. In linear algebra, this non-overlapping domain decomposition procedure
gives rise to a reduced non-linear system similar to (II]) which is known as
the Schur complement [22].



As originally noted by Slater [2] for the particular case of APW, this
non-linear eigenvalue problem ([IT]) gives rise to an energy dependent secular
equation which cannot be handled by traditional linear eigenvalue algorithms.
Difficulties would include in particular: absence of orthogonality for ¥q in
o, and a non-linear reduced system (@) if a Rayleigh-Ritz procedure is used.
Although solving explicitly the non-linear eigenvalue problem (III) is not
impossible [23, 24], it remains practically very challenging.

In practice, and as mentioned previously, the muffin-tin decomposition
has always been associated with a new level of approximations for solving
the resulting non-linear eigenvalue problem in the interstitial region. The
mainstream approaches to all-electron electronic structure calculations rely
indeed almost entirely on approximations such as direct linearization tech-
niques (e.g. LAPW, LMTO, etc.) [10,[11,112,[13]. Alternatively, linear eigen-
value problems can also be obtained from pseudopotential techniques |8, [15]
using smooth but non-local potentials in atom-centered regions that elimi-
nate the core states while introducing the notion of pseudo-wavefunctions.

The next section describes how FEAST can be effectively (and generally)
used to bypass these issues.

4. Implicit treatment of the non-linear problem using FEAST

Here, we propose to address implicitly the non-linear eigenvalue problem
(II) by noting that the linear system () arising from FEAST applied in the
entire domain €2, can be directly solved using the same muffin-tin domain
decomposition.

At first, starting from a set of excitations Y (x) in the continuum domain,
the set of responses Q%) can also be obtained by solving the Schrodinger
equation (7)) in €y alone:

(Z — H)QRQY (x) =Y (x), x€Q, (13)

where the boundary condition for Q%) on T'; should formally satisfy () but
augmented by a source term Fj(Z) (x) (to add to the right hand side) which
accounts for the effects of the excitations Y (x) within the atom-centered
regions €2;. For instance, using Neumann boundary conditions for G, the



self-energy X; has been defined in (I0) and one can show that (Vy):

J

FP(x) :/ dx' G (Z,x,x')x

Ly

[ / dx" G;(Z,x,x") Y(x")|, xer; (14)
Q,

J

Once Q¥ is known in €y and hence on all the I'; interfaces, the solutions
in the 2; domains can be independently retrieved Vj by solving the linear
systems

(Z - H)QP(x) =Y (x), xeQ, (15)

with Dirichlet boundary conditions.

After discretization of (I3]) along with the boundary conditions (&), (I0),
and ([I4]), solving (4)) in the entire domain €2 can then be replaced exactly by
the following three stage procedure:

1. For all 5 atoms:

e obtain the self-energy 3;(Z) by computing only selected elements
of the atom-centered Green’s function matrix Gj:

G;(Z) = (ZS; - Hy) ™, (16)
e obtain the discretized form of the local source term Fj given by:
F” = %(2)Gy(2)Y, (17)

2. solve the following linear system for the unknown components of the
solutions Qéz) in

(780 — Ho + [ J5(2)) Q) = Yo + | JF{. (18)
: .

J

where self-energy and source term matrices in the atom-centered re-
gions j have been formally added (for clarity) to the interstitial system
matrix.

3. For all j atoms, solve the sub-problem (I3 to obtain the unknown
components of the solutions Qéz) in the atom-centered regions €2;.
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Thereafter, the subspace Q in (B]) is obtained by integration of the set of
solutions Qéz) and all the Qéz) over the complex contour C. In practice, it
is possible to construct Hy and S, in (Bl directly from the projection of Hy
and Sg for €y and H;j and S; for all 2;.

As a result of (I8) which is solved only for specific complex pivot energies
Z, the non-linearity of the Schrodinger equation (1) in € is then explicitly
removed, and the muffin-tin problem benefits now from an exact numeri-
cal treatment (i.e. no approximations needed). In contrast to linearization
techniques, these pivot energy located in the complex plane are explicitly
provided by FEAST (e.g. Gauss contour point in Figure [I) to guarantee
global convergence of the solutions of the Schrodinger equation in the whole
simulation domain ).

In practice, it is important to mention that the additional computational
costs by pivot energy Z for obtaining F}Z) (in step 1 above) and retrieving

the solution Q}Z) in Q; (in step 3 above), can be made minimal. At first,
the muffin-tin decomposition naturally allows each atom-centered region to
be factorized and solves independently. As a result, the computations for ob-
taining the self-energy 3J;, the source term F;, and retrieving the solution Qj;,
can be fully parallelized Vj. Additionally, most of the efforts that have been
devoted for obtaining ¥;(Z) do not need to be repeated (e.g. factorization
of the matrix (ZS; — H;j), computations of some key elements of Gj).

5. Application: an all-electron real-space mesh implementation

In order to illustrate the efficiency and capability of the proposed FEAST
muffin-tin framework, we propose to comment on our first-principle DF'T/LDA
all-electron simulations obtained on various molecular molecular systems us-
ing a finite element discretization.

5.1. Definition of the muffin-tin finite-element mesh

As illustrated in Figure 2] the 3D finite-element muffin-tin mesh can be
built in two steps: (i) a 3D atom-centered mesh which is highly refined around
the nucleus, and (ii) a much coarser 3D interstitial mesh that connects all
the atom-centered holes (both meshes have been generated using the TetGen
software [25]). For the atom-centered mesh, which has been chosen com-
mon to all atoms, we have used successive layers of polyhedra similar to the
ones proposed in [26]. This discretization provides both tetrahedra of good
quality, an arbitrary level of refinement (i.e. the distance between layers can

11



be arbitrarily refined while approaching the nucleus), and the same number
of surface nodes. Indeed, the outer layer is consistently providing the same
(relatively small) number of connectivity nodes n; with the interstitial mesh
at I'; (i.e. mj = 26, 98, or 218 nodes respectively using linear, quadratic or
cubic FEM). Consequently, the size of linear system (I8)) in the interstitial re-
gion )y would stay independent of the atom-centered regions system matrix
size, and the approach can then ideally deal with full potential (all-electron).
Additionally and as shown in Figure [3| for different molecular configurations,
the interstitial region scales linearly with the number of atoms while the
size of the atom-centered mesh remains constant. In contrast to the (re-
constructed) full mesh, the interstitial mesh exhibits a dramatic decrease in
number of mesh points and a more advantageous linear scaling rate.

5.2. Practical considerations

Atom-centered, interstitial, or full finite element discretization, provide
highly sparse system matrices. As mentioned in Section[2, FEAST can be di-
rectly applied for solving the eigenvalue problem obtained from the full mesh
discretization. In particular, this can be accomplished by using the prede-
fined sparse interfaces from the FEAST software package [16] (which is linked
to the direct system solver PARDISO [27] by default). The software package
also features a reverse communication interface that enables a straightfor-
ward substitution of the inner linear system factorization and solve stages
along the complex contour by the muffin-tin three-step procedure described
in Section @l In particular, once the linear systems (I3]) and (I5) formed,
they can be factorized and solved using the direct system solver PARDISO
(for example). We also note that only n; columns of Gj (L) associated to
the nodes at the boundary I'; are needed to compute both the self-energy

3;(Z) and the source term FEZ) in (I7) and this independently on the total
number of nodes inside €2;. Indeed, after discretization of (@) and (I0), and

assuming a particular ordering of the matrix elements (for clarity), it results

(VJ):

3(E) = ([I,, 0...0] (ES; —H;)™ [L,, 0...0]") ", (19)
where the matrix f)j of size n; contains all the non-zero elements of 3;. The
operation costs for (I9) include solving a linear system with n; right hand
sides and the inversion of a very small matrix of size n;.

Additionally, one can show using a proper reordering of the matrix ele-
ments, that the same matrix factorization applied on (ZS; — Hj) to compute
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)

35(Z), can also be effectively used to compute ng , as well as the solution

ng) (IH) using a single solve stage [28].

5.3. Results and Discussions on Scalability

At first, the results for muffin-tin FEAST framework applied to the Hy-
drogen atom, as well as the H, and H; " molecules [29], are compared to
analytic solutions for verification purposes. For all examples, a cubic box
with edges of 16A was used for the interstitial region, and the radius of
the atom-centered region has been set to 0.35A (the proposed framework
is however applicable independently of the choice of this atom-centered ra-
dius). The different mesh sizes using P3 FEM have been presented in Figure
B, while a representation of the muffin-tin mesh for H,” and H; ™ molecules
is given in Figure [l

The full-mesh and muffin-tin approaches are fundamentally identical,
therefore the obtained numerical results are the same (within machine ac-
curacy). In comparison to analytical results, a very good agreement for the
fundamental energy is obtained with 0.25%, 0.08% and 0.05% respectively
for H, H and H;". Since the system is here bounded by a fixed size sim-
ulation box, by increasing the number of atoms (or atomic weight), one also
increases the locality of the solutions in the molecular region and the overall
accuracy. In a more general situation, accuracy can be systematically in-
creased by refining the atom-centered mesh along with the interstitial mesh
in the molecular region (i.e. increasing the number of nodes or the order of
the FEM).

For the case of the Benzene molecule (see Figure ), all-electron simu-
lations have been performed self-consistently using both a GR-pulay proce-
dure [30], and an alternative approach deriving from a generalization of the
FEAST algorithm for solving directly the full coupled non-linear DFT /Kohn-
Sham problem [31]. While a full three-dimensional discretization using cubic
finite element gives rise to sparse system matrices of size of N = 133,579 in
Q (see Figure ), the muffin-tin decomposition provides, in turn, a series of
subsystems of size N; = 9457 in the atom-centered regions §2; with n; = 218
on I';, and a single system of size Ny = 22,711 in the interstitial region €.
Our total energy found at self-consistent convergence Fypyn = —6261.14 eV,
is also in very good agreement with the accuracy of the all-electron simulation
results presented in [26)].

The muffin-tin decomposition naturally allows each atom-centered region
to be factorized and solved independently; as a result, the computation for
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obtaining the self-energy X;, the source term F;, and retrieving the solution
Q;, can be fully parallelized. Since the scalability of FEAST on parallel
architecture is first and foremost dependent on the scalability of the inner
linear system solver (i.e. third level of parallelism for FEAST), the main
difficulty would come from solving the interstitial system (I8)) in parallel. As
shown in Figure [3] the size of the interstitial system does increase linearly
but at a much lower rate than the full system (i.e. Ny << N for large
number of atoms). For example, while N = 133,579 is used for the full
twelve atoms system of the Benzene molecule, the same size order would
only be reached by the interstitial system (Ny) using 85 atoms. Similarly,
500 atoms would only generate an interstitial system of moderate size Ny =
750,000, while N ~ 5 x 10° would be required for the full system (using
N; ~10000). It is important to note that the muffin-tin approach enables
the use of hybrid basis-set, and a quadratic rather a cubic FEM discretization
could then potentially be used for the interstitial region that exhibits low-
varying potential (and Ny would then decrease significantly). Finally, the size
n; of the non-local blocks in 3; (I9) being relatively very small, the linear
scalability of the linear system (I8]) is then not affected by the presence of the
self-energy matrices. Consequently, in practice the interstitial system can be
efficiently solved using “black-box” parallel sparse system solver that can be
either direct or iterative (using an appropriate preconditioner).

5.4. FEAST all-electron calculations vs pseudopotential

The FEAST framework is independent of any particular form of the po-
tential in the atom-centered regions (such as spherically symmetric potential,
etc.). Since the size of linear system (I8)) in the interstitial region €2y is inde-
pendent of the discretization schemes for the atom-centered regions €2;, the
approach can ideally deal with full potential within self-consistent calcula-
tions (i.e. all-electron calculations).

The development of techniques such as pseudopotential were originally
motivated to ease several numerical difficulties that one can encounter with
all-electron calculations in the atom-centered regions |7, 8, [15]. Let us then
outline how some of these main issues are naturally addressed within the
FEAST all-electron framework:

(i) Since FEAST can act independently on different energy ranges (with
no overlap), the number of states in a search interval can be narrowed as
desired, and the frozen-core approximation does not need to be considered
within self-consistent iterations.
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(ii) In contrast to pseudopotential, it is clear that a much finer level of
discretization for the FEAST all-electron framework is needed to capture
the (true) wave functions in the atom-centered regions €, (i.e. the pseudo-
wavefunctions can be captured within a reduced basis set). The linear eigen-
value system obtained using pseudopotential can either be seen as a much
smaller size system as compared to (), or a linearized version of ([III) where
Y; represents then a fully non-local pseudopotential over the atom-centered
region 2;. Although this pseudopotential system can also ideally be solved
using the FEAST algorithm, the resulting system matrix (@) would end up
(paradoxically) being larger and less scalable than (I8)) (which only requires
the surface terms I'; of the {2; regions).

6. Conclusion

In 1937, Slater originally derived a non-linear electronic structure problem
by introducing the APW method using a muffin-tin domain decomposition;
he then stated [2], “Of course, we cannot solve this exactly, and we must
look for methods of approximations”. These limitations have historically mo-
tivated the development of a wide spectrum of approximation techniques
ranging from direct linearization to pseudopotential methods. Within the
framework of the FEAST algorithm, however, the muffin-tin problem bene-
fits now from an exact numerical treatment (i.e. no approximation needed)
which consists of removing the non-linearity of the Schrodinger equation (ITI)
in the interstitial region €2y, by considering only certain complex pivot ener-
gies Z (I8). In contrast to linear approximations (including LAPW, LMTO,
linearized embedding method [19], etc.), these pivot energies are explicitly
provided by FEAST with guaranteed convergence of the solutions of the
Schrodinger equation in the whole simulation domain. As compared to ab-
initio pseudopotential approaches, in fact, not only the proposed FEAST
framework is more accurate by essence (since all-electron calculations are
performed), it is also capable of higher parallel scalability performances. In
conclusion, the new approach is not tied together with the traditional model-
ing trades-off between robustness/accuracy and performances/scalability in
simulations.

Finally, the FEAST fundamental framework for first-principle electronic
structure calculations can be used independently of the choice for the physical
model (e.g. Density-Functional Theory or Hartree-Fock), the nature of the
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atomistic system (e.g. isolated or Bloch periodic), or the choice for the basis
set (e.g. PW, atomic orbitals, real-space mesh).
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Figure 3: Scalability of the number of nodes N, N;, and Ny, respectively for the full, atom-
centered, and interstitial meshes, with the number of atoms per molecule. The full mesh has
been reconstructed from the muffin-tin atom-centered and interstitial meshes obtained using
a cubic tetrahedra FEM discretization. We note here that the number of surface points at
the boundary I'; of the atoms is here nj = 211§, N; = 9457 and N = Ny + (N; —nj) * Ny
with Ng; the number of atoms.



Figure 4: 2D representation of the 3D finite element discretization used to simulate the H2+
molecule (on the left), and the Hi ™ molecule (on the right). Only the molecular region is
represented since the coarse mesh extend to 8A (from the middle) in each direction. All
atom-centered region meshes are identical, and their radius has been set to 0.35A.
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