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Decoherence is one of the most important obstacles that must be overcome in quantum information
processing. It depends on the qubit-environment coupling strength, but also on the spectral composition
of the noise generated by the environment. If the spectral density is known, fighting the effect of de-
coherence can be made more effective. Applying sequences of inversion pulses to the qubit system, we
generate effective filter functions that probe the environmental spectral density. Comparing different pulse
sequences, we recover the complete spectral density function and distinguish different contributions to the
overall decoherence.
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Introduction.— Quantum information processing relies
on the robust control of quantum systems. A quantum sys-
tem is always influenced by external degrees of freedom,
the environment, that disturb the quantum information by
a process called decoherence [1]. Many strategies were
developed to fight this degradation of information. These
methods are based on correction of errors [2, 3] and decou-
pling the environment [4–7]. Fighting decoherence suc-
cessfully requires knowledge of the noise spectral density
to design suitable quantum processes [8–11].

One simple decoupling strategy is called dynamical de-
coupling (DD) [7, 12]. It is based on the application of
a sequence of control pulses to the system to effectively
isolate it from the environment. Different DD sequences
were developed [7, 12–14] and tested experimentally [15–
20]. Different sources modify the performance of DD se-
quences. Once pulse errors are small [17, 18, 20], the
spectral density of the system-environment (SE) interac-
tion becomes the main factor [8, 14, 15, 19, 21–24]. Con-
sequently a DD sequence has to be judiciously designed
according to the particular noise spectral density to be de-
coupled [14, 15, 21–24]. The indefinite number of possi-
bilities for designing DD sequences leads to the imposi-
bility of a “brute force” exploration and therefore the de-
velopment of noise spectroscopy methodogies is required
[10, 11, 25, 26].

In this paper, we present a method to determine the spec-
tral density of the SE interaction. The method is based on
previous results that the decay rate of a qubit during DD
is given by the overlap of the bath spectral density func-
tion and a filter function generated by the DD sequence
[14, 15, 19, 21–24]. The filter function is given by the
Fourier transform of the SE interaction modified by the
control pulses: each π-pulse changes the sign of the SE
coupling. When many DD cycles are applied to the system,
the filter functions become a sum of δ−functions [19] and
the decoherence time is given by a discrete sum of spec-
tral densities. A judicious choice of the DD sequence thus
allows one to probe the environmental spectral density at
selected frequencies. Combining several measurements, it
is possible to obtain a detailed picture of the noise spec-

tral distribution. In the following, we describe an exact and
simple method for obtaining general spectral density func-
tions that extends recent approximate solutions that can be
used only for specific cases [10, 25].

A qubit as the noise probe.— We consider a single qubit
Ŝ as the probe. It is coupled to the bath to be studied
with a purely dephasing interaction. In a resonantly ro-
tating frame of reference [6], the free evolution Hamilto-
nian is Ĥf = ĤSE + ĤE , where ĤE is the environment
Hamiltonian and ĤSE = bSEŜzÊ is a general pure de-
phasing interaction between system and environment. Ê is
some operator of the environment and bSE the SE coupling
strength. This type of interaction is encountered in a wide
range of solid-state spin systems, as for example nuclear
spin systems in NMR [4, 5, 17, 19], electron spins in dia-
monds [18], electron spins in quantum dots [27], donors in
silicon [28], etc.

We consider the application of a sequence of short,
strong pulses that invert the probe qubit [4, 5, 7, 12]. We
assume N instantaneous pulses at times ti, with delays
τi = ti − ti−1 between the pulses for i = 2, .., N + 1
and τ1 = t1 − t0, where t0 = 0 and tN+1 = τc.

While such a sequence can refocus a static system-
environment interaction completely, any time-dependence
reduces its efficiency. We calculate the remaining de-
cay rate for the case where the environment can be well
described by a stochastic noise. This results are also
valid for a quantum second order approximation of the
time-dependent SE interaction [6]. We now eliminate the
environment-Hamiltonian ĤE by using an interaction rep-
resentation with respect to the evolution of the isolated en-
vironment. The system-environment Hamiltonian then be-
comes Ĥ(E)

SE (t) = bSEŜze
−iĤEtÊeiĤEt. Since ĤE does

not commute with ĤSE , the effective system-environment
interaction Ĥ(E)

SE is time-dependent and the system experi-
ences a fluctuating coupling with the environment. Trac-
ing over the bath variables replaces bSEe−iĤEtÊeiĤEt by
the stochastic function bSEE(t). For simplicity we assume
that this random field has a Gaussian distribution with zero
average, 〈E(t)〉 = 0. The auto-correlation function is
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〈E(t)E(t+ τ)〉 = g (τ) and the spectral density S(ω)
of the system-bath interaction is the Fourier transform of
b2
SEg (τ).

The free evolution operator for a given realization of
the random noise is exp

{
−iφ(t)Ŝz

}
, where φ(t) =

bSE
∫ t

0
dt1E(t1) is the phase accumulated by the probe

spin during the evolution. Considering now the effect
of the pulses, they generate reversals of ĤSE(t). If the
pulses are applied during the interval τc as described above,
the accumulated phase φ(Mτc) after M cycles becomes
φ(Mτc) = bSE

∫Mτc
0

dt′fN(t′,Mτc)E(t′), where the
modulating function fN(τ ′,Mτc) switches between±1 at
the position of every pulse [21]. If the initial state of the
probe spin is ρ̂0 = Ŝx,y, its normalized magnetization un-
der the effects of DD taking the average over the random
fluctuations is 〈sx,y(t)〉 = e−

1
2〈φ2(t)〉, and its decay can be

quantified by the exponential’s argument

1
2

〈
φ2(t)

〉
= R(t) t =

√
π
2

∫ ∞
−∞

dωS(ω) |FN(ω,Mτc)|2 ,
(1)

where FN(ω,Mτc) is the Fourier transform of
fN(t′,Mτc) [21]. The decay function R(t) t is thus
equal to the product of the spectral density S(ω) of
the system-environment coupling and the filter transfer
function FN(ω,Mτc). We have recently shown that
considering the infinite extension of the modulating
function, fN(t′,∞), by a convolution this provides a
FN(ω,Mτc) that is a sum of sinc functions centered at
the harmonic frequencies kω0 = 2πk/τc of the Fourier
series of fN(t′,∞) [19]. Hence for t = Mτc � τB ,
the noise correlation time, the filter function |FN(ω, τM)|
becomes an almost discrete spectrum given by the Fourier
transform of fN(t′,∞), i.e. F (ω, t) is represented by
a series of δ-functions centered at kω0 neglecting the
contributions from the secondary maxima. Thus, in the
limit of many cycles, the decay is exponential and R(t)
becomes a constant

R(t) = R =
∞∑
k=1

A2
kS (kω0) , (2)

with A2
k =

√
2π
τ2
c
|FN (kω0, τc)|2, where for a CPMG se-

quence [4, 5] with τ2 = 2τ1 = 2τ3 = τ , Ak ∝ 1/k for
odd k and 0 otherwise. This is the basis for the DD noise
spectroscopy methodology presented in this letter. Exam-
ples of the probe spin signal decay are shown in the inset
of Fig. 1.

Noise spectroscopy.— Assuming for the moment that the
sum in Eq. (2) collapses to the k = 1 term, we can clearly
trace out the bath spectral density by varying the delay be-
tween the pulses as in Ref. [10, 25]. However, for real
DD sequences, we always have an infinite series, where
all harmonics contribute to the decay rate with the weight
Ak. Determining the spectral density function therefore re-
quires the inversion of Eq. (2) and thus the consideration

of only the k = 1 term is a rough approximation. The
main difficulty here is that a single measurement depends
on an infinite number of unknown spectral density values.
We solve this problem by a two-step procedure: in the first
step, we combinemmeasurements with different pulse de-
lays, which we choose such that they probe the spectral
density function at a discrete set of harmonic frequencies
with different sensitivity amplitudes Ak. In this step, we
neglect contributions from the tail of S(ω > mωmin).
This yields a square matrix that we can invert to obtain the
values of S(jωmin), j = 1..m. From the resulting spec-
tral density function, we estimate a functional form for the
tail of the distribution and correct the data for the contri-
butions from the tail. Inverting the matrix again, with the
corrected values, gives the final spectral density distribu-
tion.

A natural choice for the probing sequence is the CPMG
or equidistant sequence, which has harmonics at frequen-
cies ω0 = π/τ . To simplify inverting equation (2), we
choose the pulse delays in the different measurements such
that all relevant frequencies, including all harmonics, are
multiples of a minimal frequency ωmin. We therefore start
with a maximum delay τmax = π/ωmin, which deter-
mines the frequency resolution with which we probe the
spectral density function. If the maximum frequency at
which we want to probe the spectral density function di-
rectly is mωmin, then we need to apply sequences with
delays τn = τmax/n = τminm/n. If we neglect the con-
tribution from frequencies > mωmin, the relaxation rates
Rn for the different experiments are given by a system of
m linear equations

Rn =

[m/n]∑
k=1

A2
kS(nkωmin) =

m∑
j=1

UnjSj, (3)

where [m/n] denotes the integer part ofm/n and j = nk.
The elements A2

k form an upper triangular matrix Unj =∑[m/n]
k=1 A2

kδj,nk, and Sj = S(jωmin) represent the un-
known spectral density values, which can formally be cal-
culated as Sj =

∑m
n=1 (U−1)jnRn

We now correct for the omitted contributions from the
high-frequency tail of the infinite sum by approximating it
with a suitable functional form, which depends on the sys-
tem being studied. Typical examples include a power law
decay, lorentzian or gaussian decay, or a sudden cut off like
in an ohmic bath. In the system that we used as an exam-
ple (see below), the experimental data can be approximated
very well by a power law dependence, as shown in Fig. 1
(squares).

If the tail satisfies a power law Sj = C
jα

for j > np, then

Rn>np =
∞∑
k=1

A2
kC

(nk)
α =

C

nα

∞∑
k=1

A2
k

kα
=
CΛα

nα
. (4)

This relation is represented by the black solid line in Fig. 1.
We can now modify Eq. (3) by adding the neglected terms
and then the relaxation rates satisfy
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Figure 1: (Color online) Experimental relaxation times of the
probe spin under the application of CPMG (squares) and KDD
(circles) sequences. The black solid line represents a power law
fitting to the CPMG data and the green dotted line the asymptotic
free evolution decay rate. The black dashed line is a fitting to the
KDD data with an expression (R13C + C′τα)−1. Inset: Experi-
mental signal decays of the probe spin as a function of the evolu-
tion time under CPMG dynamical decoupling. Different curves
correspond to different pulse delays. The straight lines represent
exponential fits.

Rn =
m∑
j=1

UnjSj +

(
ΛαC

nα
−

m∑
j=1

Unj
C

jα

)
, (5)

where
(

ΛαC
nα
−
∑m

j=1 Unj
C
jα

)
= C

nα

∑
k>m−n+1

A2
k

kα
rep-

resents the effective spectral density summing the con-
tribution from all harmonics k > m − n + 1.
The spectral density is now determined from Sj =∑m

n=1 (U−1)jn
(
Rn − ΛαC

nα

)
+ C
jα

. Eq. (4) shows that for a
power law dependence, the relaxation rate and the spectral
density are proportional and thus for a qualitative descrip-
tion of S(ω) considering only the k = 1 term is enough
validating the results of Ref. [10, 25].

Experimental determination of S(ω).— For an experi-
mental demonstration of this method, we chose 13C nuclear
spins (S = 1/2) as probe qubits. We used polycrystalline
adamantane where the carbon nuclear spins are coupled to
an environment of 1H nuclear spins (I = 1/2) that act as
a spin-bath. The natural abundance of the 13C nuclei is
about 1%, and to a good approximation each 13C nuclear
spin is surrounded by about 150 1H nuclear spins. The
interaction with the environment is thus dominated by the
13C-1H magnetic dipole coupling [6]. To determine the
bath spectral density we applied the equidistant sequences
CPMG and KDD [20] to the probe spin for different de-
lays between pulses τn = τmax/n, with n = 1..40 and
τmax = 2ms. Delays are measured between the center of
the pulses. For CPMG, we chose an initial state longitu-
dinal to the rf field of the refocusing pulses because then
pulse error effects can be neglected [5, 17]. The inset of

Fig. 1 shows examples of the 13C signal decays. The lines
in the inset show the fitted exponential decays, which agree
very well with the data points in this range. This demon-
strates that we are in the regime where the filter functions
are discrete. KDD was shown to be robust against pulse
errors, independent of the initial condition (please see Ref.
[20] for details). For ideal pulses, both sequences have the
same filter function. As shown in Fig. 1 (squares) the ob-
served relaxation times for this system depend on the pulse
spacing like ∝ τ−3.59 for the CPMG sequence over the
range τ =[50µs, 110µs]. We only used the data points
for τ > 50µs to determine the parameters C and α, since
Fig. 1 indicates that other processes contribute to the relax-
ation at shorter delays. From the fitting process, we found
α = 3.59± 0.08 and Λα ≈ 1.002. Here, the contribution
of the infinite series of 2 ·10−3 is almost negligible. Figure
1 also shows that the dependence of the decoherence rates
changes at τ & 100µs. This agrees with the value that we
determined earlier for the correlation time of the bath τB
[17].

We observe in the KDD case that the relaxation time sat-
urates for τ shorter than 50µs and in general is lower than
the CPMG cases (Fig. 1, circles). This difference can be at-
tributed to the effect of 13C-13C couplings. Because in the
CPMG sequence all pulses generate the same rotation, the
overall effect of the pulse cycle is to first order equivalent
to a constant effective field, which stabilizes the observable
magnetization against the effect of 13C-13C couplings [29].
In the KDD case, the state is not longitudinal to the pulses
and no spin-lock effect is observed. The saturation of the
relaxation time for the CPMG case for τ < 50µs can be
attributed to the finite rf field strength or, equivalently, to
the finite duration of the pulses. Pulse errors may also con-
tribute in this regime.

In the KDD case, the 13C-13C interaction eclipses the
spectral density of the proton bath. To verify this, we as-
sumed a 13C-13C relaxation rate independent of the pulse
delays and fitted the expression (R13C + C ′τα)−1 over
the range [50µs, 110µs] where the CPMG data follow a
power law (dashed line in Fig. 1). We obtained R13C =
(75± 1) s−1 for the 13C-13C relaxation rate and α =
3.7± 0.3, which perfectly matches with the CPMG result.
If we subtract theR13C contribution, we obtain the spectral
density represented by the empty circles in Fig. 2, which
are almost identical to the result obtained with the CPMG
sequence (solid squares).

We demonstrate with Eq. (4) that the qualitative be-
haviour of the power law tail can be well obtained by the
first harmonic approximation (k = 1) that is proportional
to the exact solution derived from (5). For lower frequen-
cies, the corrections from our exact method can be relevant
(squares vs. rombuses in Fig. 2). However, because S(ω)
decays rapidly, the difference is small in this case.

This is not always true, as we now show with a spe-
cific example: We modulate the system-environment inter-
action by applying a resonant radio-frequency field to the
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Figure 2: (Color online) Experimentally determined noise spec-
tral density. The inset shows in a linear scale the low frequency
regime. The green dotted line represents the free evolution decay
rate of the probe spin, i.e. S(0).

proton spins, which periodically inverts them. Using the
same measurement procedure, we obtained the data shown
in Fig. 3.

The approximate solution S(nωmin) = Rn/A
2
1, where

only the first harmonic (k = 1) is considered, shows a
main peak at the modulation frequency Ω and some satel-
lite peaks at at lower frequencies that are integer fractions
of Ω. These satellite peaks are artefacts of the data analy-
sis that neglects contributions from higher harmonics of the
filter function of Eq. (2). Using our method, we obtain an
improved solution where the satellite peaks are eliminated.
The spectral density distribution for this case is qualita-
tively different from that of the unmodulated case. In par-
ticular, the value at zero frequency is reduced, but a max-
imum has appeared at the modulation frequency. This has
important consequences for implementing dynamical de-
coupling: A good decoupling performance when Ω = 7.69
kHz is expected for τ ∼ 0.12 ms, where the first harmonic
is at the spectral density minimum near 4 kHz. Increas-
ing the decoupling rate then would drastically reduce the
decoupling performance, in stark contrast to the usual ex-
pectation that it should increase with the decoupling rate.

Conclusions.— We have developed a method to deter-
mine the noise spectral density generated by a bath. It is
based on modulating the system-environment interaction
by applying sequences of inversion pulses to the system. If
the sequence consists of many repetitions of a basic cy-
cle, the resulting decays are exponentials and the decay
rates are given by the spectral density at discrete frequen-
cies. This allows one to build a linear system of equations
that can be inverted to obtain the unknown spectral den-
sity function. We applied the method to obtain the spectral
density of the 13C- 1H interaction in adamantane. Apply-
ing this method to other systems will help fighting deco-
herence, e.g. by optimizing DD sequences by reducing the
overlap of their filter functions with the noise spectral den-
sity [14, 15, 21–24]. Our method also complements stan-
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Figure 3: (Color online) Experimentally determined noise spec-
tral density for a modulated system-environment interaction. The
empty symbols were obtained when only the first harmonic is
considered, the full symbols show the results from the exact
method.

dard NMR techniques that use CPMG sequences to distin-
guish between difference sources of inhomogenities [30]
or measuring diffusion rates [31–33] as well as protein dy-
namics rates [34] in liquid state NMR. Those methods de-
termine correlation times but assume specific spectral den-
sity functions, while our technique is suitable for the deter-
mination of unknown spectral densities.
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