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Abstract

A direct numerical algorithm for solving the time-nonlocal non-Markovian master equation in

the second Born approximation is introduced and the range of utility of this approximation, and

of the Markov approximation, is analyzed for the traditional dimer system that models excitation

energy transfer in photosynthesis. Specifically, the coupled integro-differential equations for the

reduced density matrix are solved by an efficient auxiliary function method in both the energy and

site representations. In addition to giving exact results to this order, the approach allows us to

computationally assess the range of the reorganization energy and decay rates of the phonon auto-

correlation function for which the Markovian Redfield theory and the second order approximation

is valid. For example, the use of Redfield theory for λ > 10 cm−1 in systems like Fenna-Mathews-

Olson (FMO) type systems is shown to be in error. In addition, analytic inequalities are obtained

for the regime of validity of the Markov approximation in cases of weak and strong resonance

coupling, allowing for a quick determination of the utility of the Markovian dynamics in parameter

regions. Finally, results for the evolution of states in a dimer system, with and without initial

coherence, are compared in order to assess the role of initial coherences.
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I. INTRODUCTION

The quantum mechanics of open systems, i.e. systems interacting with an external en-

vironment, is currently the focus of widespread attention[1–3]. Of particular recent interest

is the issue of the extent to which quantum coherence of the system is maintained in the

presence of the environment. Two significant modern examples may be noted: (a) the need

to maintain coherence in order to implement methods for quantum mechanically controlling

molecular processes[4], and (b) issues of the role of such quantum coherent processes in

natural environments, such as the observed long-lived coherent electronic energy transfer

(EET) in photosynthesis[5].

In either of these cases, and in many other examples as well, dynamical evolution of the

open system provide a significant computational challenge. As such, a variety of approxima-

tions are often invoked to propagate the system, such as the second Born approximation to

master equations and the Markov approximation, both of which are the focus of this paper.

In particular, in this paper we introduce a simple method to solve the second Born quantum

master equation without doing the Markov approximation on the slowly decaying envelope

of the density matrix. In addition to being straightforward, this approach allows, by com-

paring to results using the Markov approximation, a reliable determination of the range of

coupling strengths and decay rates of the bath auto-correlation function, over which one can

use the Markovian theory and the second order approximation. In addition, by examining

the size of the fourth order term, this approach affords an estimate of the range of validity

of the widely used second-order approximation for model photosynthetic systems.

Although the method developed here is applicable to general systems with exponential

bath correlation functions, for computational simplicity we study, as do others, the dimer

system, generally regarded as a simple photosynthesis EET model. In this case our Marko-

vian analysis contrasts with, for example, that in Ref. [6] in which Markovian Redfield

theory is used apriori and its consequences analyzed, as opposed to comparison with exact

results.

The particular challenge arising from these EET types of systems relates to the param-

eter range in which the dynamics occurs. Specifically, quantum dynamics can be readily

analyzed in two limiting cases defined by the relative contributions of the inter- system cou-

pling V responsible for excitation energy transfer (EET), and system-bath coupling constant
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αSB, responsible for decoherence. These parameters define two important time scales: the

excitation transfer time scale τtransfer ≡ h̄/V , and the decoherence time scale τdeco ≡ h̄/αSB.

If the system-bath coupling is very weak and τdeco ≫ τtransfer, the system is almost closed

and the Schrödinger equation can be used to study the dynamics. In the opposite case

τdeco ≪ τtransfer (strong system-bath coupling), the system is open, the decoherence rate

is very fast, the dynamics is almost incoherent and a simple Pauli type master equation

description suffices. These limiting regimes are well understood. Many real systems, such

as a number of harvesting systems [7–18], however, fall between these extremes. Recent

observations [5] of the long-lived EET has reactivated interest in these systems.

The standard approach used to treat this intermediate regime is to use the second Born

quantum master equation [1], a perturbative master equation up to second order in system-

bath interaction with weak system-bath coupling, plus its Markovian approximation (e.g., as

in the Redfield master equation). Recently, two approaches have been studied for arbitrary

coupling regimes. One is based on weakening the system-bath coupling removal of system-

bath interaction and repartitioning the Hamiltonian term using a polaron transformation,

followed by the standard second Born master equation [19]. The second approach is based

on a reduced hierarchy equation of Kubo and Tanimura, starting from the path integral

approach for quantum dissipative systems [20]. Additional methods are also being developed

by the community. Here, as noted above, we introduce and utilize a particularly direct

approach.

In the following section (Section II) we outline the basic model for a dimer. In Section III

we introduce the second Born quantum master equation and phonon correlation function,

diagonalize the Hamiltonian and cast the master equation into both the site and energy

representations. Section IV gives a new auxiliary function method of solving these equations,

and provides an analysis of results in the Markovian approximation. Discussion of the results

and the underlying physical picture is given at the end of Section V. In Section VI we discuss

the regime of validity of the second order approximation in the master equation by estimating

the order of magnitude of the fourth order term.

The vast majority of treatments in the literature utilize coherence-free initial conditions

and study the subsequent dynamics. Results for these initial conditions are compared to

that obtained with model excitation with weak light in Section VII. The last section provides

a brief conclusion.
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II. THE MODEL: DIMER SYSTEM

Consider a model dimer system given by the following standard Frenkel exciton Hamil-

tonian [6]:

Htot = Hel +Hreorg +Hph +Hel−ph (1)

Hel =

2
∑

n=1

ǫ0n|n〉〈n|+ J(|1〉〈2|+ |2〉〈1|) (2)

Hreorg =

2
∑

n=1

λn|n〉〈n|, λn =
∑

i

h̄ωid
2
ni/2 (3)

Hph =
2

∑

n=1

hphn , hphn =
∑

i

h̄ωi(p
2
i + q2i )/2 (4)

Hel−ph =
2

∑

n=1

Vnun, Vn = |n〉〈n|, un = −
∑

i

h̄ωidniqi (5)

Here |n〉 represents the state in which only the nth site is excited and all others are in

the ground state. The quantity ǫ0n is the excited electronic energy of the nth site in the

absence of phonons, and J is the electronic coupling between the sites which is responsible

for EET. The ground state energies of the donor and acceptor are set equal to zero and λj

is the reorganization energy of the jth site that is dissipated in the bath after the electronic

transition occurs. The quantity dji is the dimensionless displacement of the equilibrium

configuration of the ith phonon mode between the ground and the excited electronic state

of the jth site, and qi, pi are the dimensionless coordinates and momenta of the ith phonon

mode of frequency ωi.

III. THE SECOND-BORN QUANTUM MASTER EQUATION

The method of projection operators used to obtain open system master equations is well

known [2]. With the help of projection operators one can obtain the following quantum

master equation for the reduced density matrix of the system in the second Born approxi-

mation, which is valid when system-bath coupling is weak as compared to the characteristic
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energy scale of the system [see, e.g., Ref. [1]].

∂ρI(t)

∂t
= − i

h̄

2
∑

j=1

〈uj〉[V I
j , ρ

I ]− 1

h̄2

2
∑

i,j=1

∫ t

0

dτ

(

Cij(t− τ)[V I
i (t), V

I
j (τ)ρ

I(τ)]− C∗
ij(t− τ)[V I

i (t), ρ
I(τ)V I

j (τ)]
)

(6)

Here, the interaction representation has been used, which is defined for system operators as,

ÔI(t) = U †
S(t)ÔUS(t) (7)

where US(t) = exp(− i
h̄
Ĥst) is the time evolution operator, and Ĥs =

∑2
n=1(ǫ

0
n+λn)|n〉〈n|+

J(|1〉〈2|+ |2〉〈1|) is the system Hamiltonian. Here, the bath is assumed to be a continuum

of harmonic oscillators, and the bath correlation functions are defined as

Cij(t) ≡ 〈ui(t)uj(0)〉 − 〈ui〉〈uj〉 . (8)

Below, the canonical average of the bath operators, 〈uj〉, which involve the averaging over the

product of displacement and bath position co-ordinates is taken to be zero. The above master

equation [Eq. (6)] is also termed the time convolution equation and can be obtained from

the Nakajima-Zwanzig equation with a zeroth order approximation to the time evolution

operator in the kernel [2].

Converting this master equation [Eq. (6)] back to the Schrödinger representation gives

∂ρ(t)

∂t
= − i

h̄
[Hs, ρ(t)]−

1

h̄2

2
∑

i,j=1

∫ t

0

dτ (9)

(

Cij(t− τ)[Vi(t), Us(t− τ)Vjρ(τ)U
†
s (t− τ)]− C∗

ij(t− τ)[Vi, Us(t− τ)ρ(τ)VjU
†
s (t− τ)]

)

.

We consider the case where the characteristics of the bath as seen by both the sites are

the same, and there is no bath correlation between the sites. The bath correlation function

is then of the form Cij(t) = C(t)δij , where

C(t) =

∫ +∞

−∞

dω

2π
C(ω)e−iωt. (10)

C(ω) = 2h̄(1 + n(ω))J(ω), (11)

where n(ω) is the Bose-Einstein distribution function. Assuming the Drude-Lorentz model

for the spectral density J(ω) = 2λ ωγ
ω2+γ2 where λ is the reorganization energy, and assuming
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the high temperature approximation ( h̄ω
kBT

<< 1), as is appropriate for the systems like the

FMO model [see Refs. [6] and [20]], we obtain the correlation function as,

C(t) =
2λ

β
e−γt, β =

1

kBT
(12)

A. Explicit Site Representation of the Non-Markovian Master Equation

For the explicit site representation we need the eigensystem of the Hamiltonian. Assuming

λ1 = λ2 ≡ λ the eigenvalues Ei and eigenvectors |ei〉 for the system Hamiltonian

Hs =
2

∑

n=1

(ǫ0n + λn)|n〉〈n|+ J(|1〉〈2|+ |2〉〈1|) (13)

can be easily obtained as

E1,2 =
1

2
(ǫ01 + ǫ02 + 2λ∓

√

(ǫ01 + ǫ02 + 2λ)2 − 4(ǫ01ǫ
0
2 − J2 + λ(ǫ01 + ǫ02) + λ2))

|e1〉 =
1

√

α2
1 + 1

(

α1

1

)

, |e2〉 =
1

√

α2
2 + 1

(

α2

1

)

α1,2 =
1

2J
(∆∓

√
∆2 + 4J2), ∆ = ǫ01 − ǫ02. (14)

Here the column vectors denote components in the site basis, the eigenkets are normalized

and, since α1α2 = −1, they are orthogonal. With lengthy but straightforward calculations,

Eq. (9) for the reduced density operator can be written explicitly in the site representation,

using Eqs. (10) and (11), and as a set of coupled integro-differential delay equations,

dx(t)

dt
= −2

J

h̄
y2(t)

dy1(t)

dt
=

∆

h̄
y2(t)−

4λ

βh̄2
e−γt

∫ t

0

dτeγτ

[η1 cos(E12(t− τ))y1(τ) + η2 sin(E12(t− τ))y2(τ)]

dy2(t)

dt
= −∆

h̄
y1(t)−

J

h̄
(1− 2x(t))− 4λ

βh̄2
e−γt

∫ t

0

dτeγτ

[−η2 sin(E12(t− τ))y1(τ) + η3 cos(E12(t− τ))y2(τ) + 2Ωy2(τ)] (15)

with η1 = 1, η2 = − ∆√
∆2+4J2 , η3 = ∆2

∆2+4J2 , E12 = (E1 − E2)/h̄ = −
√
∆2+4J2

h̄
, Ω =

2J2

∆2+4J2 . Here x(t) ≡ ρ11(t) ≡ 〈1|ρ̂(t)|1〉 (site), y1(t) ≡ Re[ρ12(t)], and y2(t) ≡ Im[ρ12(t)],

with subscripts denoting the sites.

6



B. Energy Representation of the Non-Markovian Master Equation

The kets |e1,2〉 in Eq. (14) are the eigenstates of the Hamiltonian Hs. The equation for

a general element of the reduced density matrix in energy representation

ρeab(t) ≡ 〈ea|ρ̂(t)|eb〉, (16)

is obtained from Eqs. (9) and (10) as

dρeab(t)

dt
= −iωabρ

e
ab −

1

h̄2

2
∑

i,c,d=1

∫ t

0

dτC(t− τ)

[

V ac
i V cd

i e−iωcb(t−τ)ρedb(τ)− V ac
i V db

i e−iωad(t−τ)ρecd(τ)
]

−C∗(t− τ)
[

V ac
i V db

i e−iωcb(t−τ)ρecd(τ)− V cd
i V db

i e−iωad(t−τ)ρeac(τ)
]

, (17)

with ωab = (Ea − Eb)/h̄ and

V ac
1 =

αaαc
√

α2
a + 1

√

α2
c + 1

, V ac
2 =

1
√

α2
a + 1

√

α2
c + 1

. (18)

Results in the energy representation, using Eq. (12) are discussed below.

IV. METHOD OF SOLUTION: NON-MARKOVIAN

To obtain a solution for the non-Markovian case, we first convert the coupled integro-

differential equations in the site representation [Eq. (15)] to a larger number of coupled

ordinary differential equations, a transformation made possible by the exponential form of

the correlation function. The resultant coupled ordinary differential equations can be numer-

ically solved easily. This transformation is performed as follows. First, for computational

simplicity we put τ ′ = γτ in Eq. (15) and then γt = t′ in the resulting equations, and define

three auxiliary functions fi(t
′):

f1(t
′) ≡

∫ t′

0

dτ ′eτ
′

[

cos[
E12

γ
(t′ − τ ′)]ỹ1(τ

′) + η2 sin[
E12

γ
(t′ − τ ′)]ỹ2(τ

′)

]

,

f2(t
′) ≡

∫ t′

0

eτ
′

ỹ2(τ
′)dτ ′,

f3(t
′) ≡

∫ t′

0

dτ ′eτ
′

[

−η2 sin[
E12

γ
(t′ − τ ′)]ỹ1(τ

′) + η3 cos[
E12

γ
(t′ − τ ′)]ỹ2(τ

′)

]

. (19)
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Here, ỹ1(t
′) ≡ y1(t

′/γ), ỹ2(t
′) ≡ y2(t

′/γ) and we also define x̃(t′) ≡ x(t′/γ). We then obtain

six coupled ordinary differential equations, three from Eq. (15) and three from differentiating

the three auxiliary functions, giving:

˙̃x(t′) = −2J

γh̄
ỹ2(t

′),

˙̃y1(t
′) =

∆

γh̄
ỹ2(t

′)− 4λ

βγ2h̄2
e−t′f1(t

′),

˙̃y2(t
′) = − ∆

γh̄
ỹ1(t

′)− J

γh̄
+ 2

J

γh̄
x̃(t′)− 8λ

βγ2h̄2
Ωe−t′f2(t

′)− 4λ

βγ2h̄2
e−t′f3(t

′),

f̈1(t
′)− et

′ ˙̃y1(t
′) = et

′

ỹ1(t
′) +

E12

γ
et

′

η2ỹ2(t
′)−

(

E12

γ

)2

f1(t
′),

ḟ2(t
′) = ety2(t),

f̈3(t
′)− et

′

η3 ˙̃y2(t
′) = et

′

η3ỹ2(t
′)− E12

γ
η2γe

t′ ỹ1(t
′)−

(

E12

γ

)2

f3(t
′) , (20)

where overdots denote derivatives with respect to t′. These equations can be efficiently

solved numerically.

For comparison with other studies, results are given below for the particular initial con-

ditions: ρ11(0) = x̃(0) = 1, ỹ1(0) = ỹ2(0) = 0, f1(0) = f2(0) = f3(0) = ḟ1(0)ḟ3(0) = 0.

These initial conditions (corresponding to all the population being on site 1, and no coher-

ences), are those which have been used extensively in previous investigations [see Ref.[6]]

but are somewhat unphysical, because they lack initial coherences which become important

in photo-excitation. We treat this problem of initial conditions and state preparation with

a more plausible model in Section VII.

V. ENERGY REPRESENTATION AND MARKOVIAN LIMIT

A. Formalism

To consider the Markov approximation, we note that it is particularly simple to invoke

in the energy representation. Hence, below we first utilize the energy basis and then convert

the result back to the site representation for comparison with the non-Markovian solution.

The Markov approximation can be performed when the time scale on which the envelope

of the density matrix decays is much longer than the decay time of the phonon correlation
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function [1]. Then one can introduce the following approximation:

ρeab(t− τ) ≡ e−iωab(t−τ)ρ̃eab(t− τ) ≃ e−iωab(t−τ)ρ̃eab(t) = eiωabτρeab(t). (21)

As discussed in Ref. [6], the non-Markovian regime is marked by slow dissipation of the

reorganization energy (i.e., the slow decay of the phonon correlation function as compared

to relaxation dynamics time scale, the decay of the envelope part of the density matrix).

Transitions occur in accord with the vertical Franck-Condon principle. In the Markovian

regime phonon relaxation is very fast (e.g., large γ) as compared to the decay of the envelope

of the density matrix. Thus, phonons remain effectively in equilibrium during the EET

process in the Markovian regime [6].

To obtain the equations in the Markov approximation, Eq. (17) is first converted to

dimensionless form with τ ′ = γτ and t′ = γt. Putting t− τ = τ ′ in the resulting equation in

the energy representation and then implementing the above approximation on the density

matrix elements allows the time integration to be performed easily for the case of exponential

phonon correlation function [Eq. (11)]. The result is the set of Markovian equations;

˙̃ρeab(t
′) = −iω̄abρ̃

e
ab(t

′)

− 2λ

βh̄2γ2

∑

i,c,d

(

V ac
i V cd

i

1− iω̄dc
ρ̃edb(t

′)− V ac
i V db

i

1 + iω̄db
ρ̃ecd(t

′)

)

+
2λ

βh̄2γ2

∑

i,c,d

(

V ac
i V db

i

1− iω̄ca
ρ̃ecd(t

′)− V cd
i V db

i

1 + iω̄cd
ρ̃eac(t

′)

)

. (22)

Here ρeab(t
′/γ) ≡ ρ̃eab(t

′), ω̄ab ≡ ωab

γ
. Equation (22) constitutes a system of coupled ordinary

differential equations that can be solved with given initial conditions.

The results can then be transformed back to the site representation using the transfor-

mation

ρij(t) = 〈i|ρ(t)|j〉 =
∑

a,b

〈i|ea〉ρeab〈eb|j〉. (23)

where ρij is in site representation, ρeab is in energy representation, and i, j, a, b ∈ {1, 2}.
Equation (23) constitutes four linear equations that provides the relationship between the

representations.
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B. Limiting Cases: Analytical Results

1. Strong Coupling Case: J ≫ ∆

For J ≫ ∆, we have [from Eq. (14)] α1 ≃ 1, α2 ≃ −1, and V ij
1 ≃ 1/2 for i = j and

≃ −1/2 for i 6= j ({i, j} = 1, 2) and V i,j
2 ≃ 1/2 for all i, j. One can then analytically solve

Eqs. (22) to obtain the simple expression

ρ̃e11(t
′) =

1

2
(e

− 4λ
β(4J2+h̄2γ2)

t′
+ 1), (24)

for the traditional initial conditions ρ̃e11(t
′ = 0) = 1, ρ̃e12(t

′ = 0) = ρ̃e21(t
′ = 0) = 0. The

Markov approximation can be performed when the time scale on which the envelope of the

density matrix decays is much longer than the decay time of the phonon auto-correlation

function. Hence, 4λ
β(4J2+h̄2γ2)

≪ 1 must hold for the Markov approximation to be valid in

the J ≫ ∆ domain. (Note that the decay time constant for the phonon auto-correlation

function is unity, since we defined t′ = γt.)

2. Weak Coupling Case: J ≪ ∆

For J ≪ ∆, we have [from Eq. (14)], α1,2 = 1
2J
(∆ ∓

√
∆2 + 4J2) ≃ ∆

2J
(1 ∓ 1). Hence,

in this domain α1 ≃ 0, and α2 ≃ ∆/J . This leads to V 11
1 = V 12

1 = V 21
1 ≃ 0, V 22

1 ≃ 1.

V 11
2 ≃ 1, V 12

2 = V 21
2 ≃ J/∆, and V 22

2 = ( J
∆
)2. From Eq. (22) we then have

˙̃ρe11(t
′) =

2/λ

h̄2βγ2

(

2(J/∆)2(Γ + Γ∗)− 4(J/∆)2(Γ + Γ∗)ρ̃e11(t
′) + 2(J/∆)(ρ̃e12(t

′) + ρ̃e21(t
′))

)

, (25)

˙̃ρe12(t
′) =

i∆

h̄γ
ρ̃e12(t

′) +

+
4λ

h̄2βγ2

(

(J/∆)Γ∗(2ρ̃e11(t
′)− 1)− (1 + 2Γ(J/∆)2)ρ̃e12(t

′) + 2(J/∆)2Γ∗ρ̃e21(t
′)
)

. (26)

where Γ = 1
1+i ∆

h̄γ

.

The reduction from a large number (33) of terms in Eq. (22) to the smaller number

of terms [in Eq. (26)] is made possible by neglecting small terms of the order of (J/∆)3.
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However, even in this approximation the above equations do not admit a simple analytic

solution, and no simple analytic expression can be given for the range of validity of the

Markov approximation. Hence, we invoke a further approximation, neglecting second order

terms (J/∆)2 as compared to first order J/∆. By separating real and imaginary parts as

ρ̃e12(t
′) = x(t′) + iy(t′) and writing ρ̃e11(t

′) = r(t′), Eqs. (25) and (26) become

ṙ(t′) = (
J

∆
)

4λ

h̄2βγ2
x(t′),

ẋ(t′) = − ∆

h̄γ
y(t′)− 4λ

h̄2βγ2
x(t′),

ẏ(t′) =
∆

h̄γ
x(t′)− 4λ

h̄2βγ2
y(t′). (27)

These coupled ordinary differential equations have the straightforward solution:

r(t′) =
1

η2 + ξ2
(η2 + ξ2 + [aξ − bη]ǫξ

[bη − aξ]ǫξ cos(ηt′)e−ξt′ + [aη + bξ]ǫξ sin(ηt′)e−ξt′),

x(t′) = e−ξt′(a cos(ηt′)− b sin(ηt′)),

y(t′) = e−ξt′(a sin(ηt′) + b cos(ηt′)). (28)

with initial conditions r(t′ = 0) = 1, x(t′ = 0) = a, y(t′ = 0) = b. Here ξ = 4λ
h̄2βγ2 , η = ∆

h̄γ
,

and ǫ = J
∆
. Interestingly, for a = b = 0 the density matrix elements do not change with

time. This is due to our approximations of only retaining terms first order in J/∆. Thus, for

the condition of Markov approximation to hold requires ξ = 4λ
βh̄2γ2 ≪ 1 (again noting that

the decay time constant for the phonon auto-correlation function is unity since t′ = γt).

These analytic results are summarized in Table I, and these inequalities have been nu-

merically verified (e.g., see Fig. 1). Note that the J ≫ ∆ result goes over to the J ≪ ∆

result as J gets smaller.

C. Computational Results

In other parameter regimes, the validity of the Markov approximation [Eq. (22)] must

be determined by numerical comparisons with the exact result [Eq. (20)]. Figure 2 com-

pares the solution for the Markovian master equation to the non-Markovian results for the
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TABLE I: Regimes of validity of the Markov approximation

Case Approx. matrix elements Markovian approximation

J >> ∆ V ij
k ≃ (−1)k(i+j) 1

2 , i, j, k = 1, 2 4λ
β(4J2+h̄2γ2)

<< 1

J << ∆ V ij
k ≃ δk1δi2δj2 + δk2(δi1δj1 + ( J

∆)2δi2δj2 +
J
∆(δi1δj2 + δi2δj1))

4λ
h̄2βγ2 << 1

5 10 15 20
t ¢

0.2

0.4

0.6

0.8

1.0
Ρ11

J = 100 cm-1 >> D = 1 cm-1

J 4 Λ

Β H 4 J ^ 2 + hbar ^ 2 Γ ^ 2L << 1N
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FIG. 1: Verification of the analytic inequalities (Table I). Time evolution of population on site

1: blue (solid) curve is the non-Markovian solution and red (dotted) curve is the Markovian

approximation. Upper row (case J >> ∆): 4λ
β(4J2+h̄2γ2)

= 0.04 << 1, λ = 2 (upper left graph),

and 4λ
β(4J2+h̄2γ2)

= 0.9 ∼ 1, λ = 50(upper right graph). Lower row (case J << ∆): 4λ
βh̄2γ2 =

0.02 << 1, λ = 2 (lower left graph), and 4λ
βh̄2γ2 ∼ 3, λ = 10 (lower right graph). Clearly, graphs

are in accord with Table I. Time t′ is the dimensionless time, 10 units on this scale are equivalent

to one ps.

standard electronic coupling parameter values in photosynthetic EET: γ−1 = 100 fs, J =

50 cm−1, ∆ = 100 cm−1, T = 300 K , a regime in which the estimates in Table I do not

apply. The initial excitation is assumed to be on site one. The Markovian approximation

is seen to be very good for λ = 1 cm−1, fair for λ = 2 cm−1 and invalid for reorganization
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FIG. 2: Time evolution of population on site 1 [ρ11(t)] and the coherences [ρ12(t)] [blue (solid)

curve is the non-Markovian solution and red (dotted) curve is the Markovian approximation], for

various values of λ (in cm−1). Other parameter are: ∆ = 100cm−1, J = 50cm−1, γ = 1013sec−1.

The breakdown of the Markov approximation at λ = 10 cm−1 is clearly visible. The time t′ is

dimensionless, with 10 units on this scale being equivalent to one ps.

energies λ ≥ 10 cm−1.

To explore regimes of validity of the Markovian approximation for other values of the

physical constants, we present sample results in Figs. 3 and 4, obtained by varying (J, λ)

and (γ−1, λ), keeping ∆ = 100 cm−1. The results show for these cases that the Markovian

approximation is poor for large λ and “small’ J and for large γ−1 and small λ. Other

parameter values can be readily examined computationally using this approach.
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FIG. 3: Time evolution of population on site 1: blue (solid) curve is the non-Markovian solution

and red (dotted) curve is the Markovian approximation) for various values of the reorganization

energy λ and inter-site coupling J . The level separation ∆ = 100 cm−1 and γ−1 = 100 fs. It is

clear that Markovian approximation is poor for large λ and small J . Time t′ is the dimensionless

time, 10 units on this scale are equivalent to one ps.

VI. REGIME OF VALIDITY OF THE SECOND-ORDER APPROXIMATION

We have considered the master equation up to the second order in system-bath interac-

tion. The aim of this section is to determine the system-bath interaction energy range (as

represented by the reorganization energy λ) over which the second order master equation [or

coupled system of equations (Eq. (20)] can be used. To do so we compare estimates of the

second order and the fourth order terms. This can be done analytically for the parameter

regime where J ∼ ∆. To do so we note that up to the second order, with the master equa-

tion written in dimensionless time form [Eq. (20)], the magnitude of the second order term

is of the order of λ
βh̄2γ2 for the case J ∼ ∆. This arises by noting that |HSR|2 ∼ λ, and the

integral
∫ t′

0
dτ ′eτ

′−t′
[

cos[E12

γ
(t′ − τ ′)]ỹ1(τ

′) + η2 sin[
E12

γ
(t′ − τ ′)]ỹ2(τ

′)
]

∼ 1, for the standard

set of parameters (γ−1 = 100 fs, J = 20 cm−1, ∆ = 100 cm−1, T = 300 K).

Similarly, we can estimate the parameter dependence of the fourth order term. To esti-

14



20 40 60 80 100
t ¢

0.6

0.7

0.8

0.9

1.0
Ρ11

Γ
-1
=1000 femtosec, Λ=2 cm-1

20 40 60 80 100
t ¢

0.6

0.7

0.8

0.9

1.0
Ρ11

Γ
-1
=200 femtosec, Λ=2 cm-1

100 200 300 400 500
t ¢

0.6

0.7

0.8

0.9

1.0
Ρ11

Γ
-1
=10 femtosec, Λ=2 cm-1

2 4 6 8 10
t ¢

0.6

0.7

0.8

0.9

1.0
Ρ11

Γ
-1
=1000 femtosec, Λ=10 cm-1

5 10 15 20
t ¢

0.6

0.7

0.8

0.9

1.0
Ρ11

Γ
-1
=200 femtosec, Λ=10 cm-1

100 200 300 400 500
t ¢

0.6

0.7

0.8

0.9

1.0
Ρ11

Γ
-1
=10 femtosec, Λ=10 cm-1

FIG. 4: Time evolution of population on site 1 [blue (solid) curve is the non-Markovian solution

and red (dotted) curve is the Markovian approximation] for various values of the reorganization

energy λ and phonon relaxation time γ−1. The level separation ∆ = 100 cm−1 and J = 50 cm−1.

It is clear that Markovian approximation is poor for large relaxation times γ−1 and small λ, and

it better for small γ−1. t′ is the scaled time, as in the figure above.

mate this we recall the Nakajima-Zwanzig master equation (valid to all orders)

∂ρ̂I(t)

∂t
= −

∫ t

0

dτtrR

(

LI
SRS(t, τ)QLI

SR(τ)R̂eq

)

ρ̂I(τ). (29)

where the time evolution operator is

S(t, τ) ≡ T → exp[−i
∫ t

τ

dτ ′QLI
SR(τ

′)]

= 1− i

∫ t

τ

dτ ′QLI
SR(τ

′)−
∫ t

τ

dτ2

∫ τ2

τ

dτ1QLI
SR(τ2)QLI

SR(τ1) + ... (30)

Here, Q = I−P is the well know projection operator and LI
SR is the system-bath Liouvillian

(− i
h̄
[HI

SR, .]). The time ordering operator T → orders time dependent operators from left to

right with decreasing time arguments, to take into account the non-commutation of operators

at different times.

The zeroth order approximation to the time evolution operator S(t, τ) gives the second

order quantum master equation, the first order approximation to the time evolution operator

gives the third order contribution which vanishes as the bath average of odd bath operators
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vanish (see Ref. [2]), and the second order approximation to S gives the fourth order

contribution. In order to estimate the magnitude of the latter term we write the fourth

order term A4 from Nakajima-Zwanzig equation as

A4 =
1

h̄4

∫ t

0

dτ

∫ t

τ

dτ2

∫ τ2

τ

dτ1trR
{

[HI
SR(t),Q[HI

SR(τ2),Q[HI
SR(τ1),Q[HI

SR(τ), Reqρ̂(τ)]]]]
}

.

(31)

We start from the interior commutator (1 − P)[HI
SR(τ), Reqρ̂(τ)] and recall that PÔ =

ReqtrRÔ and HI
SR = V I

i u
I
i (where the summation convection is used). The bath average

of single bath operators vanish [trR(uj(τ)Req) = 0] so that Q times the interior commu-

tator gives [V I
i (τ)ui(τ), Reqρ̂(τ)]. Similarly, writing Q = 1 − P for the second from the

interior commutator, and simplifying, the bath trace operation gives us the two time bath

correlation functions 〈ui(τ)ui(τ1)〉R. Repeating the same operations for the remaining com-

mutators, noting that the bath averaging for the odd bath operators vanish and using the

Wick theorem 〈uiujukul〉R = 〈uiuj〉R〈ukul〉R + 〈uiuk〉R〈ujul〉R + 〈uiul〉R〈ujuk〉R, we obtain

that the fourth order term includes the product of two time bath correlation functions i.e.,

〈ui(τ)ui(τ1)〉R〈uj(τ1)uj(τ2)〉R. On converting the equation into dimensionless time form as

described in Section IV, and using the high temperature approximation for the correlation

function, we conclude that the order-of-magnitude of the fourth order term is;

A4 ∼
λ2

γ4β2h̄4
. (32)

The ratio R42 of the fourth-order term to the second-order term is therefore R42 =
λ

γ2βh̄2 ,

which is of the order of 0.074 for λ = 1 cm−1, and ∼ 0.74 for λ = 10 cm−1. This suggests that

the second order approximation for the master equation is good for λ ∼ 1 for the standard

set of parameters (γ−1 = 100 fs, J = 20 cm−1, ∆ = 100 cm−1, T = 300 K). However,

for large λ ∼ 10 the fourth order term cannot be neglected. Interestingly, the domain of

applicability of the second-order approximation in this J ∼ ∆ regime has a dependence on

the same collection of parameters, (λ/γ2βh̄2 small), as does the Markov approximation in

the J ≪ ∆.
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FIG. 5: Two harmonic oscillators excited by an ultra-short laser pulse.

VII. INITIAL STATE PREPARATION BY AN ULTRA-SHORT LASER PULSE

A. Formulation

To understand the effect of initial coherences on the subsequent quantum dynamics, we

consider a model of two 1-D harmonic oscillators separated by a distance a that are excited

by an ultra short laser pulse (Fig. 5). The results of this excitation are used below as

sample coherent initial conditions for dimer propagation. Note that we restrict attention, as

do most treatments of excitation of light-harvesting systems, to the “one-exciton manifold”,

i.e. single excitations on each site. This model is useful to examine the dynamics, but should

be augmented by excitation of states with bi-excitons of examining issues like entanglement,

where the contributions from higher exciton states, no matter how small in magnitude, affect

the entanglement measure.

In the system (Fig. 5) the wave vector of the laser pulse along the propagation direction

makes an angle θ with the line perpendicular that joining the oscillators. The laser field

is treated semiclassically with the field sufficiently weak to allow first order perturbation

theory for the light-oscillator interaction [22]. The total Hamiltonian in the coordinate
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representation is then

HT = Hsys +Hint

Hsys = − h̄2

2m

∂2

∂y21
+

1

2
k1y

2
1 −

h̄2

2m

∂2

∂y22
+

1

2
k2y

2
2

Hint =
ieh̄

2mc
A.∇

A.∇ = A1(y1, θ, t)ǫ̂.ĵ
∂

∂y1
+ A2(y2, θ, a, t)ǫ̂.ĵ

∂

∂y2
, (33)

with the vector potentialA(y, θ, t) =
∑

k
ǫ̂k(Ake

i(ky sin θ−ωt)+A∗
ke

−i(ky sin θ−ωt)). For a coherent

laser pulse, ǫ̂k = ǫ̂. If A∗(−ω
c
) = A(ω

c
), where c is the speed of light, then changing the

summation to integration assuming continuous distribution of modes, we have

A(y, θ, t) = ǫ̂

∫ ∞

−∞
dωA(ω/c) exp[iω(y sin(θ)/c− t)]. (34)

For a Gaussian pulse A(ω/c) = A0 exp[−η(ω − ω0)
2], where ω0 is the central pulse fre-

quency and η defines the pulse width. The vector potentials take the form

A1(y1, θ, t) = A0

√

π

η
exp

[

iω0

(

y1 sin θ

c
− t

)]

exp

[

− 1

4η

(

y1 sin θ

c
− t

)2
]

A2(y1, θ, a, t) = A0

√

π

η
exp

[

iω0

(

y2 sin θ

c
− a

c
sin(θ)− t

)]

exp

[

− 1

4η

(

y2 sin θ

c
− a

c
sin(θ)− t

)2
]

(35)

The laser frequency is assumed tuned so as to excite the first excited state, with both

oscillators initially (at t = −∞) in their ground states.

The eigensystems of oscillators 1 and 2 are

E(1)
n = h̄ωc1(n+ 1/2), u

(1)
0 =

√
α1

π1/4
exp[−1

2
α2
1y

2
1], u

(1)
1 =

√
2

π1/4
α
3/2
1 y1 exp[−

1

2
α2
1x

2
1]

E(2)
n = h̄ωc2(n+ 1/2), u

(2)
0 =

√
α2

π1/4
exp[−1

2
α2
2y

2
2], u

(2)
1 =

√
2

π1/4
α
3/2
2 y2 exp[−

1

2
α2
2y

2
2].(36)

with ωci =
√

ki/m and α4
i = mki/h̄

2, i = 1, 2. The total wavefunction of the system is

Ψ(y1, y2, t) =
∑

m,n

amn(t)u
(1)
n (y1)u

(2)
m (y2) exp[−

i

h̄
(E(1)

n + E(2)
m )t], amn(t = −∞) = δn0δm0.

(37)
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Standard first-order perturbation theory gives the coefficients as

anm(t) =
e cos θ

2mc

∫ t

−∞
dt′

∫ +∞

−∞
dx1

∫ +∞

−∞
dx2u

(1)
n (x1)u

(2)
m (x2)

×
(

A1(x1, θ, t
′)(

∂

∂x1
) + A2(x2, θ, a, t

′)(
∂

∂x2
)

)

u
(1)
0 (x1)u

(2)
0 (x2) exp[−iωnmt

′] (38)

Using the dipole approximation, the spatial integrals for both a01 and a10 can be done

exactly. The remaining time integral is treated as follows: the laser pulse is assumed to be

ultrashort compared to the subsequent quantum dynamics. For times much greater than

t/
√
η, the exponential e−(t2/4η) in time integration will be small, and the upper limit of the

time integration can be extended to +∞. The integration can then be performed exactly,

giving

a10 = −ζ√µ cos θe−ηω2
0(1+ν10)2 ,

a01 = −ζ cos θ√
µ
e−ηω2

0(1+ν01)2 . (39)

Here µ = α1/α2 = (k1/k2)
1/4, ζ = πA0e

√
α1α2/

√
2mc, ν01 = ω01/ω0, ν10 = ω10/ω0, with

ωmn = (E
(1)
0 + E

(2)
0 − E

(1)
m − E

(2)
n )/h̄.

The first excited states of the both oscillators (E
(1)
1 , E

(2)
1 ) constitute our relevant system

(they are separated by about 100 cm−1 in typical systems like FMO), and quantum dynamics

takes place between them. The superposition of the excited states is written as

|ψ〉 = a10|10〉+ a01|01〉, (40)

where |10〉 indicates that the first oscillator is excited and the second is in the ground state.

The density matrix at the initial time is

ρ0 = |ψ〉〈ψ| = |a10|2|10〉〈10|+ |a01|2|01〉〈01|+ a10a
∗
01|10〉〈01|+ a01a

∗
10|01〉〈10|. (41)

This initial density matrix corresponds to a particular orientation angle θ. For excitation

of an ensemble we average over theta,

〈ρ0〉θ ≡
1

2π

∫ 2π

0

ρ0dθ, (42)

with the normalization

ρ11 + ρ22 ≡ 〈|a10|2〉θ + 〈|a01|2〉θ = 1. (43)
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FIG. 6: (a) Population of angle averaged energy state |10〉〈10|, and (b) Coherence ρ12 as a function

of µ = k1
k2
. Solid line, laser frequency ω0 = 1014Hz, dashed line 5 × 1014 Hz (Orange), dotted line

1015 Hz. Note that Imρ12 = 0.

Thus,

ρ11 =
〈|a10|2〉θ

〈|a10|2〉θ + 〈|a01|2〉θ

ρ22 =
〈|a01|2〉θ

〈|a10|2〉θ + 〈|a01|2〉θ
ρ12 = ρ∗21 =

〈a10a∗01〉θ
〈|a10|2〉θ + 〈|a01|2〉θ

. (44)

with

〈|a10|2〉θ =
1

2
ζ2µe−2ηω2

0(1+ν10)2 , 〈|a01|2〉θ =
1

2
ζ2

1

µ
e−2ηω2

0(1+ν01)2

〈a10a∗01〉θ =
c

aω01
ζ2J1(

aω01

c
)e−ηω2

0 [(1+ν10)2+(1+ν01)2]. (45)

Here J1(.) is the Bessel function of first kind and of order 1. This constitutes the initial

density matrix for the relevant system.

B. Numerical Results

Let η = 10−4 ps2, the separation between the two oscillators a = 2 nm, ω01 = −ωc2 =

−1014 Hz, and ω10 =
√
µω01. Figure 6 shows the density matrix elements [i.e. the initial

state given by Eqs. (44) and (45)] as a function of the ratio of oscillator for constants k1/k2

for various values of the excitation laser frequency.

This initial state can then be used as a model for the initial conditions for the numerical

solution of the non-Markovian equations [Eq. (15)] for the dimer. Figure 7 (in the site

representation) compares the time evolution of ρ11(t) for an initial “no-coherence” state
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FIG. 7: The effect of initial coherence on the of relaxation dynamics. Long time behavior for

various values of k1/k2. Here λ = 1 cm−1 and ω0 = 1014. The blue (solid) curve is for “no-

coherence” initial condition , and red (dotted) curve is for the “initial coherence” condition, i.e.,

initial value of the density matrix elements for the model photo-excitation studied above. The

second and third row shows the dynamics of the off-diagonal elements.

(only populations) and the model generated state with “initial coherence”, for various values

of k1/k2.

One may identify two time scales associated with the electronic energy transfer, the time

scale over which the site occupation ρ11 becomes relatively constant, and the rate at which

this occurs. From the plots of ρ11 in Fig. 7, it appears that the presence of initial coherence

( at t = 0) effects both of these time scales, but has little effect on the overall damping-out

of the coherence, i.e. the overall decay of oscillations in both the real and imaginary parts of

ρ1,2. By contrast, the fall-off rate for the decay of ρ11 is far faster for the case with initially
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no-coherence than it is for the case where there initially is coherence. In cases other than

k1/k2 = 1.0 the time at which the system reaches the equilibrium value of 1/2 seems similar

in both the cases where there is coherence initially and where there is not.

VIII. CONCLUSION

A straightforward approach to solving the second order Born master equation, with and

without the Markov approximation, has been introduced. In addition to obtaining numer-

ical results showing the range of validity of these approximations, a number of analytical

estimates, shown in Table I, of parameter ranges over which these approximations can be

used has been obtained. For the case of the traditional dimer model for electronic energy

transfer in photosynthesis, surprisingly small reorganization energies (a few cm−1) are re-

quired for the validity of the Markovian approximation. In addition, we note that for dimer

coupling strengths on the order of the energy difference between site energies, higher order

terms than second order in the system-bath coupling are required if 4λ/(h̄2βγ2) << 1 is not

satisfied, where λ is the reorganization energy, and γ defines the exponential falloff rate of

the bath correlation function. Once again, the limitation to small reorganization energies,

not well appreciated in the past, is made explicit.

We have also provided an example of the role of initial coherences in the subsequent

evolution of the dimer dynamics for typical parameters associated with model photosynthetic

light harvesting systems.
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