研究简报

Pd(OAc)₂/Cu(OTf)₂在离子液体BMImPF₆中催化苯乙烯二聚反应的研究

彭家建, 厉嘉云, 邱化玉, 蒋剑雄, 蒋可志, 来国桥*

(杭州师范学院有机硅化学及材料技术教育部重点实验室 杭州 310012)

收稿日期 2005-12-22 修回日期 2006-3-20 网络版发布日期 2006-8-10 接受日期 2006-4-26

摘要 在离子液体BMImPF₆中,用不同的钯催化剂和Lewis酸三氟甲磺酸铜Cu(OTf)₂共催化苯乙烯二聚反应,发现用Pd(OAc)₂/Cu(OTf)₂作催化剂,Pd/Cu物质的量之比为 $1\sim$ 4时,可高产率高选择性地获得苯乙烯二聚产物1,3-二苯基-1-丁烯。BMImPF₆对催化剂有较好的溶解性,可固定催化剂体系,使催化剂有效地与产品分离。同时, α -甲基苯乙烯的二聚反应表明,室温下不发生反应,提高温度有利于反应进行。

关键词 苯乙烯二聚 室温离子液体 Pd(OAc)₂/Cu(OTf)₂催化剂

分类号

Study on the Dimerization of Styrene Catalyzed with $Pd(OAc)_2/Cu(OTf)_2$ System in Ionic Liquid BMImPF₆

PENG Jia-Jian, LI Jia-Yun, QIU Hua-Yu, JIANG Jian-Xiong, JIANG Ke-Zhi, LAI Guo-Qiao*
(Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Teachers College, Hangzhou 310012)

Abstract Dimerization of styrene was co-catalyzed with the different palladium complexes and $Cu(OTf)_2$ in ionic liquid BMImPF₆, in which $Pd(OAc)_2/Cu(OTf)_2$ was found the best catalyst system. When molar ratio of $Pd(OAc)_2/Cu(OTf)_2$ was $1/1 \sim 4/1$, both high catalytic activity and selectivity were obtained. The $Pd(OAc)_2/Cu(OTf)_2$ catalyst system has excellent solubility in ionic liquid BMImPF₆, and can be easily separated from the product. The results of dimeri-zation of α -methylstyrene indicate that no products were detected at room temperature and it is bene-ficial to the reaction to raise temperature.

Key words <u>dimerization of styrene</u> <u>room temperature ionic liquid</u> <u>Pd(OAc)₂/Cu(OTf)₂ <u>catalyst</u></u>

DOI:

通讯作者来国桥 gqlai@hztc.edu.cn

扩展功能

本文信息

- ► Supporting info
- ▶ <u>PDF</u>(184KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ► Email Alert
- ▶ 文章反馈
- ▶浏览反馈信息

相关信息

- ▶ <u>本刊中 包含"苯乙烯二聚"的</u> 相关文章
- ▶本文作者相关文章
- 彭家建
- 厉嘉云
- 邱化玉
- 蒋剑雄
- 蒋可志
- 来国桥