研究论文

氟取代三(8-羟基喹啉)铝衍生物电子结构、电子光谱的量子化学研究: 实现蓝色发光的途径

刘晓冬 1,2 , 任爱民 1 , 封继康 1,2 , 杨丽 1 , 许海 2,3 , 施敏敏 4 , 孙家锺 1

- 1. 吉林大学理论化学研究所, 理论化学计算国家重点实验室,
- 2. 化学学院,
- 3. 超分子结构与材料教育部重点实验室, 长春 130023;
- 4. 浙江大学高分子科学与工程学系, 硅材料国家重点实验室, 杭州 310027

收稿日期 2006-1-9 修回日期 网络版发布日期 2006-11-7 接受日期

摘要 采用Gaussian 03程序包和密度泛函理论(DFT)B3LYP/6-31G方法,研究了三(8-羟基喹啉)铝(Alq₃)的 3种氟代衍生物的电子结构与电子光谱,讨论了氟原子在不同位置取代对Alq₃的前线轨道、HOMO-LUMO能隙以及电子光谱的影响,发现氟取代使Alq₃的前线轨道能级降低,在6位碳上氟代的Alq₃的HOMO-LUMO能隙变大,吸收和发射光谱发生蓝移,而在5和7位碳上氟代的Alq₃能隙变小,吸收和发射光谱发生红移.理论模拟结果与实验事实基本吻合,证明在Alq₃分子的合适位置进行化学修饰可实现蓝色发光.

关键词 =(8-羟基喹啉)铝 =(8-羟基喹啉)铝 =(8-2)

Quantum Chemical Investigation for Electronic Structure and Spectrum of F-substituted Alq₃ Derivatives: An Approach to Blue Luminescence of Alq₃ Derivatives

LIU Xiao-Dong^{1,2}, REN Ai-Min¹, FENG Ji-Kang^{1,2}, YANG Li¹, XU Hai^{2,3}, SHI Min-Min⁴, SUN Chia-Chung¹

- 1. State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry,
- 2. College of Chemistry,
- 3. Key Laboratory for Supramolecular Structure and Material of Ministry of Educa tion, Jilin University, Changchun 130023, China;
- 4. State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract The ground state and electronic spectra in F-substituted Alq_3 derivatives [q=8-hydrox yquinoline], an important electroluminescent material, are studied by using density functional theory(DFT) B3LYP/6-31G in programme Gaussian 03. The effect of substituted position in Alq_3 on their energies, HOMO-LUMO gap and the electronic spectrum are discussed. It is found that F-substitutions in Alq_3 resulted in the decrease of both HOMO and LUMO energies, and the degree of such decrease in energy of HOMO and LUMO levels is dependent on the F-substitute d position. Significantly, the HOMO-LUMO bandgap of 6-FAlq $_3$ is found to be increased, as a result, its absorption and emission spectra are greatly blue-shifted. The results obtained from t

扩展功能

本文信息

- ▶ Supporting info
- ▶ **PDF**(351KB)
- **▶[HTML全文]**(0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

▶ <u>本刊中 包含"三(8-羟基喹啉)铝"</u> 的 相关文章

▶本文作者相关文章

- 刘晓冬
- 任爱民
- 封继康
 - 杨丽
- · <u>许海</u>
- 施敏敏
- 孙家锺

he theoretical investigation was in agreement with the experimental ones, providing an approach to obtain the important blue luminescence Alq_3 derivatives.

Key wordsAlq_3_Effect of F-substitutionGround state configurationMolecular orbital analysisEnergy controlElectronic spectra

DOI:

通讯作者 封继康 jikangf@yahoo.com