研究论文

Nb⁺离子活化甲烷脱氢反应机理密度泛函(DFT)研究

李建辉, 夏文生, 万惠霖

厦门大学化学化工学院化学系, 固体表面物理化学国家重点实验室, 厦门 361005

收稿日期 2006-1-4 修回日期 网络版发布日期 2006-12-3 接受日期

摘要 通过DFT-UB3LYP方法, 计算了五重、三重和单重自旋态下的气相Nb*离子活化甲烷脱氢反应的能量变化 并对其直接式和插入式反应机理进行了比较, 考察了自旋翻转对反应的影响. 结果表明, 插入式脱氢较直接式有利, CH4上的H转移到Nb⁺上形成的中间体HNbCH⁺₂中,多重度由五重降为三重,反应活化能垒显著降低;

HNbCH⁺3可经四中心过渡态转化为(H₂)NbCH⁺2,最后生成三重态的NbCH⁺2+H₂.速控步骤为(H₂)NbCH⁺2 的脱氢. 此外, 通过对V+, Nb+, Ta+活化甲烷的比较研究了三者活化甲烷的反应活性.

关键词 密度泛函理论(DFT) 甲烷 脱氢 铌

分类号 O641

DOI:

DFT Studies on Dehydrogenation Mechanism of Methane Activated by Gas-phase **Niobium Cations**

LI Jian-Hui, XIA Wen-Sheng, WAN Hui-Lin

State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemsitry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China · 万惠霖 Received 2006-1-4 Revised Online 2006-12-3 Accepted

Abstract Density functional calculations were employed to investigate the quintet, triplet and singlet energies of methane direct- or inserted- dehydrogenation by gas-phase Nb⁺ as well as the influence of spin-inversion on the reaction mechanism. The results indicate that the inserted-dehydrogenation mechanism is more favorable than the direct-dehydrogenation. The minimum energy reaction path is thought to be related to the spin flip from 2S+1=5 to 3, which decreases the activation barrier of methane-dehydrogenation significantly. The formed intermediate HNbCH⁺₃ is transformed into(H₂)NbCH⁺₂ via a four-centered transition state, and the final product is the triplet NbCH⁺₂+H₂. The rate determined step of reaction is the dehydrogenation of (H₂)NbCH⁺₂. In addition, the reactivities of gas-phase group V cations (V⁺, Nb⁺ and Ta⁺) towards the dehydrogenation of methane were also discussed.

Key words DFT; Methane; Dehydrogenation; Nb

通讯作者:

夏文生 wsxia@xmu.edu.cn

作者个人主页: 李建辉; 夏文生; 万惠霖

扩展功能

本文信息

- ▶ Supporting info
- ▶ <u>PDF</u>(569KB)
- ▶ [HTML全文](OKB)
- ▶参考文献

服务与反馈

- ▶ 把本文推荐给朋友
- 加入我的书架
- ▶加入引用管理器
- 引用本文
- ▶ Email Alert
- ▶ 文章反馈
- 浏览反馈信息

相关信息

- ▶ 本刊中 包含"密度泛函理论 (DFT)"的 相关文章
- ▶本文作者相关文章
- · 李建辉
- · 夏文生