研究论文

六钼酸盐有机胺杂化衍生物与SARS-CoV 3CL^{pro}相互作用的分子动力学模拟

邵琛¹, 王建萍¹, 杨国春¹, 苏忠民^{1,2}, 胡冬华¹, 孙家锺²

- 1. 东北师范大学化学学院功能材料化学研究所, 长春 130024;
- 2. 吉林大学理论化学研究所理论化学计算国家重点实验室, 长春 130023

收稿日期 2006-9-6 修回日期 网络版发布日期 2008-1-17 接受日期

摘要 采用分子动力学模拟方法,在分子水平上探讨六钼酸盐有机杂化衍生物潜在的抗SARS病毒活性. 3CL^{pro}主蛋白酶是冠状病毒复制和转录过程中起关键作用的功能蛋白,因此采用SARS-CoV 3CL^{pro}作为靶标进行抗SA RS病毒的药物设计.使用Insight II软件包中的Biopolymer, Discover 3, Profile-3D和Affinity等模块,研究 POMs/3CL^{pro}相互作用的结合位点和作用性质. 研究其能量变化规律,探讨了多酸化合物对SARS病毒可能的抑制机理. 研究结果表明, POMs与3CL^{pro}在酶的催化活性位点处有较强的结合力. 形成的复合物主要以静电相互作用相结合,氢键相互作用对复合物的相对稳定性有一定影响. 对于POMs/3CL^{pro}复合物,有机胺基团取代的POM s所带负电荷比未取代体系的高,比3CL^{pro}的结合能更高,这与POMs的相关量子化学计算结果吻合.

关键词 SARS 3CL^{pro} 多金属氧酸盐 分子动力学 对接

分类号 <u>0641</u>

Interactions of $[Mo_6O_{19}]^{2-}$ and Its Derivatives Substituted with Organic Groups Inhibitor with SARS-CoV 3CL^{pro} by Molecular Modeling

SHAO Chen¹, WANG Jian-Ping¹, YANG Guo-Chun¹, SU Zhong-Min^{1,2}*, HU Dong-H ua¹, SUN Chia-Chung²

- 1. Institute of Functional Material Chemistry, Northeast Normal University, Chang chun 130024, China;
- 2. State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130021, China

Abstract Polyoxometalates (POMs) were proved with the properties of both anti-tumor and ant i-HIV. The potential anti-SARS activities of the polyoxometalates $[Mo_6O_{19}]^{2^-}$ and its derivative s substituted with organic groups were investigated in this paper by molecular modeling meth od. The 3c like(3CL)protease hydrolyze, namely $3CL^{pro}$, is the key protease for virus replication as well as transcription, and thus can be taken as one of the key targets for anti-SARS drug design. InsightII/Dicover 3, affinity, Profile-3D modules were used to explore possible binding locations and properties for POMs/3CL^{pro} interaction. We studied the energy changing tend a nd investigated the possible inhibiting mechanism of POMs' with SARS-CoV. The results show that POMs bind with $3CL^{pro}$ in the active site with a high affinity, mainly via electrostatic interactions and H-bond interactions. For the POMs/3CL^{pro} complex, POMs substituted with organic groups with higher negative charge are prefer to bind with $3CL^{pro}$ than non-substituted ones, and this agrees well with relative quantum chemical calculations. Organic substitutions in ligands have an influence on the stability of complexes by steric hindrance. Our study may provid

扩展功能

本文信息

- ► Supporting info
- ▶ <u>PDF</u>(519KB)
- **▶[HTML全文]**(0KB)
- **▶参考文献**

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶ 文章反馈
- ▶浏览反馈信息

相关信息

▶ 本刊中 包含 "SARS"的 相关文章

▶本文作者相关文章

- 邵琛
- 王建萍
- 杨国春
- · <u>苏忠民</u>
- · 胡冬华
 - 孙家锺

e theoretical reference and illustrations to anti SARS-CoV drug design.

Key words SARS 3CL^{pro} Polyoxometalate Molecular dynamics Docking

DOI:

通讯作者 苏忠民 zmsu@nenu.edu.cn