研究论文

高岭土/二甲亚砜插层复合物脱嵌反应热动力学

秦芳芳 1 , 何明中 1 , 崔景伟 2 , 陈强 3

- 1. 中国地质大学材料科学与化学工程学院,
- 2. 地质过程与矿产资源国家重点实验室, 武汉 430074;
- 3. 南方航空动力机械公司, 株洲 412001

收稿日期 2007-7-9 修回日期 网络版发布日期 2007-12-3 接受日期

采用TG和XRD研究了高岭土/二甲亚砜插层复合物的脱嵌反应过程,提出了一种新的动力学计算方法.首 先用迭代的等转化率法求得反应的活化能 E_a ,然后用Malek法拟合得到最可能的机理函数 $G(\alpha)$ 和 $f(\alpha)$,最后用多升温 速率-等温法求得了指前因子A. 研究结果表明, 高岭土/二甲亚砜的插层物脱嵌反应的活化能E₃=86.65 kJ/mol, 指前因 ▶ 本刊中 包含"高岭土/二甲亚砜" 子A位于1.6050×10⁸~3.6151×10⁸ s⁻¹之间. 其反应机理为n级的化学反应, 机理函数是 $G(\alpha)$ =[1-(1- α)¹⁻ⁿ]/(1-n), $f(\alpha)$ =(1- α) n . n值和升温速率有一定的关系, 当升温速率较大(30 $^{\circ}$ C/min)或较小(5 $^{\circ}$ C/min)时, n=1.5, 当升温速率为7~25 $^{\circ}$ C/min时, n=1.6.

关键词 高岭土/二甲亚砜 迭代法 Malek法 多升温速率-等温法 热分析动力学

分类号 0643.12

Thermokinetics Study on the Deintercalation Reaction of Intercalating Com posite Kaolinite/Dimethyl Sulphoxide

QIN Fang-Fang¹, HE Ming-Zhong^{1*}, CUI Jing-Wei², CHEN Qiang³

1. Faculty of Material Science and Chemical Engineering,

s equal to 1.5, but when heating rate is between 7 and 25 $^{\circ}$ C/min, n is equal to 1.6.

- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosci ences, Wuhan 430074, China;
- 3. China National South Aeroengine Company, Zhuzhou 412001, China

Abstract

The de-intercalation processes occurring in the solid state Kaolinite/Dimethyl sulphoxide were stu-died by using TG and X RD techniques, and a new method of how to calculate the kinetic triplet was proposed on the thermokinetics study: Firstl y, the activation energy E_a is calculated by interative procedure; secondly, the optimized methanism and the corresponding function $G(\alpha)$, $f(\alpha)$ is derived from the regression of Malek method; lastly, the pre-exponential factor A is estimated by mul tiple rates-isotemperature method. The apparent activation energy E_a of the decomposition of Kaolinite/Dimethyl sulphoxi de is about 86.65 kJ/mol, and the pre-exponential factor A is $1.6050 \times 10^8 - 3.6151 \times 10^8 \text{ s}^{-1}$, the optimized methanism is nt h-order chemical reaction, the corresponding functions are $G(\alpha)=[1-(1-\alpha)^{1-n}]/(1-n)$ and $f(\alpha)=(1-\alpha)^n$. But the value of n has a r elationship with the heating rate to a certain extent: when heating rate is rather quick(30 $^{\circ}$ C/min)or rather slow(5 $^{\circ}$ C/min), n i

Key words Kaolinite/dimethyl sulphoxide Interative procedure Malek method Multiple rates-isotemp erature method Thermokinetics

扩展功能

本文信息

- ▶ Supporting info
- ▶ PDF(497KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

的 相关文章

▶本文作者相关文章

- 秦芳芳
- 何明中
- 崔景伟
- 陈强

通讯作者 何明中 hmzhong@126.com