研究报告

分类号

水与三甲基硅烷醇羟基的氢同位素交换反应的理论研究

蒋树斌; 王和义; 钟志京; 杨勇; 杜阳; 罗顺忠

中国工程物理研究院 核物理与化学研究所,四川 绵阳621900

收稿日期 修回日期 网络版发布日期:

摘要 以 $(CH_3)_3$ SiOH羟基模拟Li $_4$ SiO $_4$ 陶瓷表面羟基,研究了 H_2 O与 $(CH_3)_3$ SiOH羟基H的氢交换反应机理。采用HF,MP2方法,在3-21G和6-311G++** 水平上优化了 $(CH_3)_3$ SiOH, H_2 O, $(CH_3)_3$ SiOH— H_2 O复合物及氢交换反应过渡态的结构。计算了生成 $(CH_3)_3$ SiOH— H_2 O复合物的反应热,探讨了氢交换反应的路径。结果表明,可以形成2种形式的 $(CH_3)_3$ SiOH— H_2 O复合物,一种是 H_2 O的O原子与 $(CH_3)_3$ SiOH羟基的H原子作用形成的复合物,另一种是 H_2 O的H原子与 $(CH_3)_3$ SiOH羟基的O原子作用形成的复合物。MP2/6-311G++** 水平上,对基组重叠能(BSSE)进行校正后,上述2种复合物的反应热分别为20.046 5 kJ/mol和21.630 7 kJ/mol。有利的氢交换反应路径为: H_2 O的H原子与 $(CH_3)_3$ SiOH羟基的O原子作用形成的复合物,然后 H_2 O提供1个H原子、1个O原子, $(CH_3)_3$ SiOH提供1个O原子、1个Si原子形成由O,H,O,Si 4个原子构成的四元环过渡态,最后 H_2 O的O原子与 $(CH_3)_3$ SiOH的Si同子成键形成新的 $(CH_3)_3$ SiOH,而 $(CH_3)_3$ SiOH的Si—O键断裂,由 $(CH_3)_3$ SiOH的羟基和 H_2 O的1个H原子形成新的 H_2 O分子,MP2/ 6-311G++**水平上,BSSE校正后,此路径的反应活化能为186.898 4 kJ/mol。关键词 三甲基硅烷醇 水 同位素交换 从头算

Ab Initio Study on the Mechanism of Hydrogen Exchang e Reaction Between $\rm H_2O$ and Hydroxyl of $\rm (CH_3)_3SiOH$

JIANG Shu-bin, WANG He-yi, ZHONG Zhi-jing, YANG Yong, DU Yang, LUO Shun-z hong

Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

Abstract The hydrogen exchange reaction mechanism between H2O and —OH of surface of Li $_4$ SiO $_4$ ceramic has been investigated using hydroxyl of $(CH_3)_3$ SiOH as a simple model of hydrox yl of surface of Li $_4$ SiO $_4$ ceramic. The structures of $(CH_3)_3$ SiOH, H_2 O, $(CH_3)_3$ SiOH— H_2 O complexes and transition states of hydrogen exchange reaction have been optimized at HF/3-21 G, HF/6-311G++**, and MP2/6-311G++**levels. The association energies of $(CH_3)_3$ SiOH— H_2 O and the path of hydrogen exchange reaction have also been explored. The results show that two of associate complexes can be formed, the O of H_2 O interact with the H of hydroxyl of $(CH_3)_3$ SiOH to form one complex and the another complex is formed by the interaction between the H of H_2 O and the O of hydroxyl of $(CH_3)_3$ SiOH. At HF/6-311G++** and MP2/6-311G++** levels, the association energies after basis set superposition error correction of two complexes ab ove are 18.016 1, 18.816 6, 20.046 5, 21.630 7 kJ/mol, respectively. The favorable path of hydrogen exchange reaction is as follow: first, the H of H_2 O interactes with the O of hydroxyl of $(CH_3)_3$ SiOH to form associate complex, second, 4-membered ring transition state consisted of O, from H_2 O, H, from H_2 O, O, from $(CH_3)_3$ SiOH, Si, from $(CH_3)_3$ SiOH is formed, third, the formation of new O—Si bond and the break old O—H bond lead the new $(CH_3)_3$ SiOH to be formed, a

扩展功能

本文信息

- ► Supporting info
- ▶ [PDF全文](200KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶文章反馈
- ▶ 浏览反馈信息

相关信息

▶ <u>本刊中 包含"三甲基硅烷醇"的</u> 相关文章

▶本文作者相关文章

- 王和义
 - 钟志京
- ・・・杨勇
- · 杜阳
 - 罗顺忠

t the same time, the new $\rm H_2O$ is formed resulting in the rupture of old O-Si bond and the formatio n of new H-O bond. At HF/6-311G++** and MP2/6-311G++** level, the activation energie s of this path are 232.905 3 kJ/mol and 186.898 4 kJ/mol with counterpoise correction.

通讯作者