Welcome to w

首页 | 简介 | 编委会 | 稿件著作权转让书 | 投稿须知 | 数据库收录 | English

FTIR Spectroelectrochemistry Study on the Reduction of CO₂ at a Gold Electrode Interface

摘要点击: 66 全文下载: 38

查看全文 查看/发表评论 下载PDF阅读器

中文关键词: 002 电化学还原 红外光谱电化学

英文关键词: <u>CO</u>₂ <u>electrochemical reduction</u> <u>FTIR spectroelectrochemistry</u>

基金项目:

作者

 陈 晨
 安徽大学化学化工学院, 合肥 230039

 金葆康
 安徽大学化学化工学院, 合肥 230039

中文摘要:

以碳酸丙烯酯(PrC)为溶剂,高氯酸四丁基胺(TBAP)为电解质,利用电化学及红外光谱电化学开展了金电极上二氧化碳的还原研究。运用现场红外光谱跟踪电化学还原过程反应物及产物的生成和消失。红外光谱电化学循环伏吸法表明,在消耗 CO_2 的同时,金电极上有CO的产生,且伴随有碳酸根的形成。结合电化学和光谱电化学结果,提出了一种电还原机理: 在非水介质中, CO_2 电还原过程中生成了中间体 CO_2 *,随后 CO_2 *一分别以两个途径进行还原,其一是直接被还原成 CO_2 ,其二是与 CO_2 结合生成 CO_2 *一而后歧化成CO以及 CO_3 *2。两个反应同时进行,且第一个反应是可逆过程。

英文摘要:

Electrochemistry and FTIR spectroelectrochemistry methods were used for investigating the reduction of CO_2 on gold surface in propylene carbonate (PrC) including tetrabutyl ammonium perchlorate (TBAP) as electrolyte. By using the infrared spectroelectrochemistry cyclic voltabsorptometry (CVA), it is found that with the decrease of CO_2 , the CO and CO_3^{2-} were produced. Combined with the results obtained from electrochemistry and FTIR spectroelectrochemistry, the electrochemical reduction mechanism of CO_2 in the non-aqueous media is proposed: $\mathrm{CO}_2^{\bullet-}$ was generated firstly, and then $\mathrm{CO}_2^{\bullet-}$ reduced to CO by two pathways. One is electrochemically reduced to CO directly, the other is $\mathrm{CO}_2^{\bullet-}$ radicals reaction with CO_2 to generate $\mathrm{C}_2\mathrm{O}_4^{\bullet-}$, then leading to formation of CO and CO_3^{2-} . Both of them carried out at the same time the former is reversible process.

您是第1114823位访问者

主办单位: 中国化学会 单位地址: 南京大学化学楼

本系统由北京勤云科技发展有限公司设计