研究论文

全氟烷基磺酸酯C—O键断裂的同面 S_N^2 反应

郭丽 1 ,虞忠衡 *1 ,朱士正 2 ,陈庆云 2

(1中国科学院化学研究所分子动态和稳态国家重点实验室 北京 100080)

(²中国科学院上海有机化学研究所 上海 200032)

收稿日期 2004-9-13 修回日期 2005-1-25 网络版发布日期 接受日期

摘要 用密度泛函理论研究了 $CF_3SO_3CF_2CF_3+F^-$ 的碳氧键断裂反应的机理. 首先,用DFT方法优化了反应物、中间体、过渡态、产物的平衡构型,分析了碳氧键断裂反应的势能面变化. 发现在 S_N^2 反应机理中,除了 S_N^2 0 区应外,引起 S_N^2 1 人。理论计算表明,

最终反应的产物是受热力学控制的, S—O键的断裂绝对地优于C—O的断裂. 因此, C—

O断裂的同面机理虽然是可能的,但却难以被实验观察到. 本文还讨论了端基 $-F_3$ 在同面 S_N 2反应中的邻位效应,以及基组对这个效应的影响.

关键词 $\overline{\text{Doduth}}$ $\overline{\text{DFT}}$ $\overline{\text{DFT}$

分类号

Front-Side S_N2 Reaction, CF₃SO₃CF₂CF₃+F⁻, Leading to the C—O Cleavage

 ${\rm GUO\,Li}^I, {\rm YU\,Zhong\text{-}Heng}^{*I}, {\rm ZHU\,Shi\text{-}Zheng}^2, {\rm CHEN\,Qing\text{-}Yun}^2$

(¹ State Key Laboratory for Structural Chemistry of Unstable & Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080)

(² Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032)

Abstract The front-side S_N^2 reaction, $CF_3SO_3CF_2CF_3+F^-$, leading to the C—O cleavage was studied using DFT. The reactant complex, transition state, product complex and products, including their vibration frequencies, were optimized and calculated at B3LYP/6-311G** level. The potential energy surface for the front-side S_N^2 reaction was investigated, showing that the front-side S_N^2 mechanism is possible. However, as shown by computation, the products are thermodynamically controlled, and the S—O cleavage is predominates over the C—O cleavage. As a result, it is difficult for the products resulting from the C—O cleavage to be detected experimentally. Meanwhile, the neighboring effect of the — CF_3 group on the front-side S_N^2 mechanism was found.

Key words reaction mechanism DFT method perfluorosulfonate the front-side S_N2 reaction

DOI:

通讯作者 虞忠衡 yuzh@iccas.ac.cn

扩展功能

本文信息

- ► Supporting info
- ▶ **PDF**(469KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

- ▶ <u>本刊中 包含"反应机理"的</u> 相关文章
- ▶本文作者相关文章
- 郭丽
- 虞忠衡
- · <u>朱</u>士正
- · 陈庆云