

物理所室温钠离子储能电池零应变负极材料研究取得进展

章来源: 物理研究所

室温钠离子电池与锂离子电池具有相似的储能机制,但钠的资源丰富,原料成本低廉,对于可再生能源的大规 模储能和智能电网来说室温钠离子电池表现出极大潜力。目前已经研究的钠离子电池的负极材料主要有碳类材料、 过渡金属氧化物、合金类材料以及磷酸盐(参见综述文章H. L. Pan, Y.-S. Hu, L. Q. Chen, *Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy & Environ. Sci.* 2013, 6, 2338-2360)。无定形硬碳是目前报道的综合性能最好的材料,但是其储钠电位接近0V,容易造成金属钠沉积, 带来安全隐患。而在氧化物材料中Na₂Ti₃07虽然容量比较高但是其储钠电位比较低,首周效率低,且循环不稳定; Li₄Ti₅012</sub>作为钠离子电池负极材料,材料中仍然含有大量的锂。

最近,中科院物理研究所/北京凝聚态物理国家实验室(筹)的清洁能源重点实验室固体离子学研究组博士生王 跃生、胡勇胜研究员等在对尖晶石结构的Li₄Ti₅O₁₂嵌钠机理的认识基础上,设计了一种新型钠离子电池具有层状结 构的零应变负极材料P2-Na_{0.66}[Li_{0.22}Ti_{0.78}]O₂,肖睿娟副研究员通过第一性原理计算预测该材料能够稳定存在并且 发现钠在嵌入脱出过程中体积形变只有0.21%,而且锂的引入有助于钠离子的传输,进一步降低了钠离子扩散活化能 (如图1和图2所示)。

实验结果分析表明,该材料为P2层状氧化物,空间群为P63/mmc,Li\Ti占过渡金属位,钠占碱金属层间的两个 位置(2b,2d),与上下氧形成三棱柱结构;材料的颗粒尺寸在10-15微米之间(如图3所示);图4a可以看出该材 料在C/10倍率下显示116 mAh/g左右的可逆容量,对应0.34个Na的嵌入和脱出,200周循环后容量保持率为88%;平均 储钠电压为0.75V,远高于金属钠的沉积电位;充放电曲线为斜坡状,可能为单相反应,与常见层状P2相氧化物多相 反应机制不同;同时该材料在2C的倍率下循环1200周后容量保持率为75%(图4c),显示极其稳定的循环性能;当该 负极材料与磷酸钒钠/碳复合正极组装成全电池时,其平均工作电压为2.5V,显示较好的循环和倍率性能(图4d)。 该材料室温下Na⁺离子表观扩散系数约为1×10⁻¹⁰cm²/s,与计算结果符合比较好,并和Li⁺离子嵌入石墨的扩散系数 相当(图8)。

与美国Brookhaven国家实验室杨晓青研究员和禹习谦博士等合作,采用同步辐射原位XRD技术对嵌/脱过程中材 料结构的演化进行了深入研究。与传统P2层状材料在嵌/脱钠反应过程中出现多个相变的反应机理不同,研究人员发 现锂掺杂过渡金属层的P2层状材料在嵌/脱钠过程中表现出近似单相行为(图5为充放电过程中的原位XRD图谱)。对 材料放电态(完全嵌钠状态)的结构进行精确确定,进一步证明材料仍然保持P2层状结构,嵌钠前后体积变化仅为 0.77%(见表1),近似零应变,这也说明了该材料为什么显示了极其稳定的循环性能。为了避免电化学非原位测试 制备过程中样品可能暴露空气从而导致Ti³⁺氧化,同时也采用化学钠化原位XRD技术,结果同样表明钠在嵌入过程中 材料保持P2层状结构,这为钠的嵌入\脱出材料结构的变化提供了有力的证据,具体结果如图6和7所示。

相关研究结果发表在近期Nature Communications (4, 2365, doi: 10.1038/ncomms3365 2013)上。

上述工作得到了科技部储能材料研究创新团队、科学院知识创新工程能源项目群方向性项目、科学院"百人计 划"和国家自然科学基金委的大力支持。

文章链接

图1 计算模型: (a) P2-Na[Li_{0.33}Ti_{0.67}]0₂, (b) P2-NaTiO₂, (c) O3-NaTiO₂。橙色、紫色、绿色和红色分别代 表钠、锂、钛和氧

图2 Na⁺离子扩散活化能和扩散路径: (a, e) P2-Na[Li_{0.33}Ti_{0.67}]0₂, (b, f) P2-NaTiO₂, (c, g) O3-NaTiO₂

图3 P2-Na0.66 [Li0.22 Ti0.78] 02 材料的形貌及结构图: (a) XRD图谱及形貌, (b) 样品的结构图

图4 P2-Na_{0.66}[Li_{0.22}Ti_{0.78}]0₂材料的电化学性能: (a) C/10倍率下循环200周的充放电曲线, (b) 倍率性能, (c) 2C倍率下的长循环性能, (d) Na₃V₂(PO₄)₃/C//Na_{0.66}[Li_{0.22}Ti_{0.78}]0₂全电池电化学性能

图5 电化学嵌/脱钠过程中P2-Na0.66 [Li0.22Ti0.78] 02材料的结构变化: 同步辐射原位XRD图谱

图6 P2-Na_{0.66}[Li_{0.22}Ti_{0.78}]02材料放电到0.4 V非原位XRD图谱精修(a)和化学钠化XRD图谱精修(b)

图7. 化学钠化过程中P2-Na_{0.66}[Li_{0.22}Ti_{0.78}]02材料的结构变化: 同步辐射原位XRD图谱

图8 Na⁺离子表观扩散系数测量: (a)不同扫描速度的CV曲线, (b)氧化峰电流与扫描速度(v^{1/2})的关系

Table 1 Structura	al parameters.								
Nax[Li0.22Ti0.78]O2	a=b (Å)			c (Å)			V (Å ³)		
	Exp. phase1	Exp. phase2	Cal.	Exp. phase1	Exp. phase2	Cal.	Exp. phase1	Exp. phase2	Cal.
x = 0.66	2.9643 (1)		2.99	11.1351 (4)		11.16	84.74		86.52
x=1	2.9932 (0)	3.0066 (1)	3.03	10.9538 (3)	10.9087 (5)	10.93	84.99	85.4	86.70
Change	0.97%	1.43%	1.33%	1.63%	2.03%	2.06%	0.30%	0.77%	0.21%
Cal., calculation; DFT, densit Structural parameters for P2	ty functional theory; 8 2-type Na _{0.66} [Li _{0.22} Ti	ixp., experiment 	l _{o.78})O ₂ obtai	ned from experiments	and DFT calculations				

表1 P2-Na_{0.66} [Li_{0.22}Ti_{0.78}] 02材料嵌钠前后的体积变化

◎ 1996 - 2013 中国科学院 版权所有 京ICP备05002857号 京公网安备110402500047号 🥝 可信网站身份验证 联系我们 地址:北京市三里河路52号 邮编: 100864