On Semigroup of Permutation Factor Circulant Boolean Matrices

ZHOU Min-na

(College of Science and Technology, Ningbo University, Ningbo 315211, China)

Abstract: Let $PM_n(B)$ denote the set of all $n \times n$ permutation factor circulant matrices over the Boolean algebra $B = \{0, 1\}$, then $PM_n(B)$ forms a semigroup under the usual matrix product. In this paper, all idempotents in $PM_n(B)$ are characterized, the Euler-Fermat theorem for the semigroup $PM_n(B)$ is also established.

Key words: Boolean algebra; permutation factor circulant Boolean matrix; semigroups; idempotent; Euler-Ferment theorem

CLC number: 0153.1 Document code: A

Article ID: 1001-5132(2011)03-0038-03

1 Introduction and preliminaries

As an important class of special matrices, circulant matrices have a wide range of interesting applications^[1-2]. The circulant matrices have in recent years been extended in many directions^[1-9]. The permutation factor circulant matrices are another natural extension of this well-studied class, and can be found in [8-9]. Let $B = \{0, 1\}$ be the Boolean algebra. We denote by $M_n(B)$ the set of all $n \times n$ matrices over B. Clearly, $M_n(B)$ forms a semigroup under the usual matrix product. We call $M_n(B)$ the Boolean matrix semigroup. Let $A = (a_{ij}), B = (b_{ij}) \in M_n(B)$. Define $A \leq B$ by $a_{ij} \leq b_{ij}$ for all $i, j = 1, 2, \dots, n$.

Let $C = (c_{ij}) \in M_n(B)$ by $c_{1n} = 1 = c_{ii+1}(i \neq n)$ and $c_{ij} = 0$ for all other *i* and *j*. Let

 $C_n(B) = \{A | A = a_0 E + a_1 C + \dots + a_{n-1} C^{n-1} \in M_n(B)\},\$ where *E* is the unit matrix in $M_n(B)$. Then $C_n(B)$ is a commutative subsemigroup of $M_n(B)$. For $A \in C_n(B)$, *A* is called a circulant Boolean matrix. $C_n(B)$ is called the semigroup of circulant Boolean matrices. K-Hang K et al studied the semigroup $C_n(B)$ in [10-11]. Chao C Y et al studied the semigroup of generalized-circulant Boolean matrices in [5-7]. In this paper, we shall study the semigroup of the following permutation factor Boolean matrices.

Definition 1^[9] An $n \times n$ permutation matrix *P* over *B* is called a basic permutation factor circulant Boolean matrix if and only if

$$P^n = E , \qquad (1)$$

n is the smallest positive integer which satisfies the above equation (1).

Definition 2^[9] An $n \times n$ matrix A over B is called a permutation factor circulant Boolean matrix if

$$A = a_0 E + a_1 P + \dots + a_{n-1} P^{n-1}.$$
 (2)

In view of the structure of the powers of the basic permutation factor circulant Boolean matrix *P* in $M_n(B)$ and Definition 1, it is clear that *A* is a permutation factor circulant Boolean matrix in $M_n(B)$ if and only if *A* commutes with *P*, that is, *AP=PA*. Let $Z_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$ be the residue classes additive group module *n*. Write

 $Supp(A) = \{ \overline{i} \mid a_i = 1 \} \subseteq Z_n,$

Then, A can be denoted by

$$A = \sum_{\overline{i} \in Suup(A)} P^{i} .$$
⁽³⁾

The set of all permutation factor circulant

Received date: 2011–03–31. JOURNAL OF NINGBO UNIVERSITY (NSEE): http://3xb.nbu.edu.cn

Author's biography: ZHOU Min-na (1960-), female, Ningbo Zhejiang, associate professor, research domain: algebra. E-mail: cjmclj@mail.nbptt.zj.cn

Boolean matrix in $M_n(B)$ is denoted by $PM_n(B)$. Then, $PM_n(B)$ is also a commutative subsemigroup of $M_n(B)$. If P = C, $PM_n(B) = C_n(B)$. Therefore, the permutation factor circulant Boolean matrix is a generalized of the circulant Boolean matrix.

Definition 3 Let $A \in M_n(B)$. *A* is said to be an idempotent Boolean matrix if $A^2 = A$.

We shall characterize all idempotents in $PM_n(B)$, and also establish the Euler-Fermat theorem for the semigroup $PM_n(B)$. All results in this paper are generalizations of results in [10-11].

2 The idempotents in $PM_n(B)$

Theorem 1 Let $A = \sum_{\overline{i} \in Suup(A)} P^i$. Then A is an idempotent in $PM_n(B)$ if and only if D = Suup(A)is a subgroup of Z_n . Thus, if $A \neq E$, A takes the following form:

$$A = E + P^{d} + \dots + P^{(n/d-1)d},$$
(4)

where d is some positive factor of n.

Proof Necessity. Since
$$A^2 = A$$
 and
 $A^2 = \sum_{\overline{t} \in D} P^i \sum_{\overline{j} \in D} P^j = \sum_{\overline{t}, \overline{j} \in D} P^{i+j} = \sum_{\overline{k} \in D+D} P^k = A = \sum_{\overline{t} \in D} P^i$,

 $D+D=Suup(A^2)=Suup(A)=D$. Therefore, the subset D=Suup(A) of Z_n is a subgroup of the residue classes additive group Z_n .

Sufficiency. Since D = Suup(A) is a subgroup of the residue classes additive group Z_n , D+D=D. Then we have

$$A^{2} = \sum_{\overline{i}, \overline{j} \in D} P^{i+j} = \sum_{\overline{k} \in D+D} P^{k} = \sum_{\overline{k} \in D} P^{k} = A .$$

Therefore, A is an idempotent in $PM_n(B)$.

Also, if $A = \sum_{\overline{i} \in Suup(A)} P^i$ is an idempotent in, D = Suup(A) is a subgroup of Z_n . Thus, if $D \neq 0$, there exist a positive factor d of n such that

$$D = \langle \overline{d} \rangle = \{ \overline{0}, \overline{d}, \cdots, \overline{(n/d-1)d} \}.$$

Then

$$A = E + P^d + \dots + P^{(n/d-1)d}.$$

This proves the theorem.

Theorem 2 The number of idempotent in $PM_n(B)$ is the number of subgroup of the residue classes additive group Z_n , that is, D(n)+1 where D(n)

denotes the number of positive factor of *n*.

Proof By Theorem 1, *A* is an idempotent in $PM_n(B)$ if and only if D=Suup(A) is a subgroup of Z_n . For a subgroup *D* of Z_n , if $D \neq 0$, there exist a positive factor *d* of *n* such that $D = \langle \overline{d} \rangle$.

Conversely, for a positive factor d of n, there exist only subgroup D of Z_n such that $D = \langle \overline{d} \rangle$. Thus, Theorem 2 holds.

3 Euler-Fermat theorem for the semigroup *PM*_{*n*}(*B*)

In [11], Schwarz studied the Euler-Fermat theorem for the semigroup $C_n(B)$ of circulant Boolean matrices, and obtained the following result.

Theorem 3^[11] For any $A \in C_n(B)$, we have $A^{n-1} = A^{2n-1}$. This result is the best possible, i.e., none of the exponents can be replaced by a smaller number.

The purpose of this section is to generalize this result in the semigroup $PM_n(B)$. We need the following lemma.

Lemma 1^[12] Let *n* be a positive integer. Then for any 2n-1 integers, there exist *n* integers such that their sum is a multiple of *n*.

Theorem 4 For any $A \in PM_n(B)$, we have $A^{n-1} = A^{2n-1}$. This result is the best possible, i.e., none of the exponents can be replaced by a smaller number.

Proof Let $A = \sum_{i=0}^{n-1} a_i P^i \in PM_n(B)$ and $A^k = \sum_{i=0}^{n-1} a_i^{(k)} P^i \in PM_n(B)$, where k is any positive integer. Then, for any i, $a_i^{(k)}$ is a sum of terms Q of the form:

 $Q = a_{i_1}a_{i_2}\cdots a_{i_k},$ with k indices i_1, i_2, \cdots, i_k such that $\overline{i_1} + \overline{i_2} + \cdots + \overline{i_k} = \overline{i}$, i.e.,

$$a_i^{(k)} = \sum_{\overline{i_1} + \overline{i_2} + \dots + \overline{i_k} = \overline{i}} a_{i_1} a_{i_2} \cdots a_{i_k} ,$$

Since for any h, $n\overline{h} = \overline{0}$. Therefore, for any i, we have

$$a_i^{(n-1)} = \sum_{\overline{i_1 + i_2} + \dots + \overline{i_{n-1}} = \overline{i}} a_{i_1} a_{i_2} \cdots a_{i_{n-1}} =$$

$$\sum_{\substack{i_1+i_2+\dots+i_{n-1}+n_{i_{n-1}}=i\\i_1+i_2+\dots+i_{n-1}+i_n+\dots+i_{2n-1}=i}} a_{i_1}a_{i_2}\cdots a_{i_{n-1}}a_{i_n}\cdots a_{i_{2n-1}} = a_i^{(2n-1)}$$

$$A^{n-1} \leq A^{2n-1}$$

hence, $A^{n-1} \le A^{2n-1}$.

Conversely, for any term $Q = a_{i_1}a_{i_2}\cdots a_{i_k}a_{i_{k+1}}\cdots a_{i_{2n-1}}$ of $a_i^{(2n-1)}$, by Lemma 1, we can select *n* elements from indices $\overline{i_1}, \overline{i_2}, \cdots, \overline{i_{2n-1}}$ such that their sum is $\overline{0}$. We can assume without loss of generality that the *n* integers are i_n, \cdots, i_{2n-1} . Then

$$a_{i}^{(2n-1)} = \sum_{\overline{i_{1} + \overline{i_{2}} + \dots + \overline{i_{n-1}} + \overline{i_{n}} + \dots + \overline{i_{2n-1}} = i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}} a_{i_{n}} \cdots a_{i_{2n-1}} = \sum_{\overline{i_{1} + \overline{i_{2}} + \dots + \overline{i_{n-1}} - i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}} a_{i_{n}} \cdots a_{i_{2n-1}} \leqslant \sum_{\overline{i_{1} + \overline{i_{2}} + \dots + \overline{i_{n-1}} - i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}} = a_{i}^{(n-1)}.$$

Hence, $A^{2n-1} \le A^{n-1}$, and we have $A^{n-1} = A^{2n-1}$. When P=C, $PM_n(B) = C_n(B)$, by Theorem 3, we can see that this result is the best possible, i.e., none of the exponents can be replaced by a smaller number. This proves the theorem.

References:

- Ruiz-Claeyssen J. Factor block circulant and periodic solutions of undamped matrix differential equations[J]. Math Appl Comput, 1983, 3(1):81-92.
- [2] Claeyssen J C R, Leal L A S. Diagonalization and spectral decomposition of factor block circulant matrices
 [J]. Linear Algebra and its Applications, 1988, 99:41-61.

- [3] Davis P. Circulant matrices[M]. New York: Wiley and Sons, 1979:20-22.
- [4] Jiang Zhaolin, Zhou Zhangxin. Circulant Matrices[M]. Chengdu: Chengdu Technology University Publishing Company, 1999:50-60.
- [5] Chao C Y, Zhang M C. On generalized circulants over a Boolean algebra[J]. Linear Algebra and its Applications, 1984, 62:195-206.
- [6] Cen Jianmiao. On the Sandwich semigroup of group Boolean matrices[J]. SIAM J Matrix Anal Appl, 1998, 19(2):416-428.
- [7] Tan Yijia. The semigroup of primitive generalized circulant Boolean matrices[J]. Semigroup Forum, 2007, 74:77-92.
- [8] Stuart Jefrey L. Diagonally scaled permutations and circulant matrices[J]. Linear Algebra and its Applications, 1994, 212/213:397-411.
- [9] Jiang Zhaolin, Xu Zongben, Gao Shuping. Algorithms for finding the minimal polynomials and inverses of permutation factor circulant matrices[J]. Chinese Journal of Engineering Mathematics, 2006, 23(6):1088-1094.
- [10] K-Hang K, Schwarz S. The semigroup of circulant Boolean matrices[J]. Czech Math J, 1976, 26(4):632-635.
- [11] Schwarz S. The Euler-Fermat theorem for the semigroup of circulant Boolean matrices[J]. Czech Math J, 1980, 30(105):135-141.
- [12] Zun S. On a conjecture of elementary number theory[J]. Advances in Mathematics (in Chinese), 1983, 12(4):299-301.

关于置换因子循环布尔矩阵半群

周敏娜

(宁波大学 科学技术学院,浙江 宁波 315211)

摘要: $PM_n(B)$ 表示布尔代数 $B = \{0, 1\}$ 上的所有 $n \times n$ 置换因子循环矩阵组成的集合. $PM_n(B)$ 对于矩阵乘 法成为一个半群. 刻画了 $PM_n(B)$ 中的幂等元,并给出了半群 $PM_n(B)$ 中的 Euler-Fermat 定理. 关键词: 布尔代数; 置换因子循环矩阵; 半群; 幂等元; Euler-Fermat 定理

(责任编辑 史小丽)