On Semigroup of Permutation Factor Circulant Boolean Matrices

ZHOU Min－na
（ College of Science and Technology，Ningbo University，Ningbo 315211，China ）

Abstract

Let $P M_{n}(B)$ denote the set of all $n \times n$ permutation factor circulant matrices over the Boolean algebra $B=\{0,1\}$ ，then $P M_{n}(B)$ forms a semigroup under the usual matrix product．In this paper，all idempotents in $P M_{n}(B)$ are characterized，the Euler－Fermat theorem for the semigroup $P M_{n}(B)$ is also established．

Key words：Boolean algebra；permutation factor circulant Boolean matrix；semigroups；idempotent； Euler－Ferment theorem
CLC number：O153．1
Document code：A
Article ID：1001－5132（2011）03－0038－03

1 Introduction and preliminaries

As an important class of special matrices，circulant matrices have a wide range of interesting applica－ tions ${ }^{[1-2]}$ ．The circulant matrices have in recent years been extended in many directions ${ }^{[1-9]}$ ．The permutation factor circulant matrices are another natural extension of this well－studied class，and can be found in［8－9］．Let $B=\{0,1\}$ be the Boolean algebra．We denote by $M_{n}(B)$ the set of all $n \times n$ matrices over B ．Clearly， $M_{n}(B)$ forms a semigroup under the usual matrix product．We call $M_{n}(B)$ the Boolean matrix semigroup． Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in M_{n}(B)$ ．Define $A \leqslant B$ by $a_{i j} \leqslant$ $b_{i j}$ for all $i, j=1,2, \cdots, n$ ．

Let $C=\left(c_{i j}\right) \in M_{n}(B)$ by $c_{1 n}=1=c_{i i+1}(i \neq n)$ and $c_{i j}=0$ for all other i and j ．Let

$$
C_{n}(B)=\left\{A \mid A=a_{0} E+a_{1} C+\cdots+a_{n-1} C^{n-1} \in M_{n}(B)\right\},
$$ where E is the unit matrix in $M_{n}(B)$ ．Then $C_{n}(B)$ is a commutative subsemigroup of $M_{n}(B)$ ．For $A \in C_{n}(B)$ ， A is called a circulant Boolean matrix．$C_{n}(B)$ is called the semigroup of circulant Boolean matrices．K－Hang K et al studied the semigroup $C_{n}(B)$ in［10－11］．Chao C Y et al studied the semigroup of generalized－circulant

Boolean matrices in［5－7］．In this paper，we shall study the semigroup of the following permutation factor Boolean matrices．

Definition $1^{[9]}$ An $n \times n$ permutation matrix P over B is called a basic permutation factor circulant Boolean matrix if and only if

$$
\begin{equation*}
P^{n}=E, \tag{1}
\end{equation*}
$$

n is the smallest positive integer which satisfies the above equation（1）．

Definition $2^{[9]} \quad$ An $n \times n$ matrix A over B is called a permutation factor circulant Boolean matrix if

$$
\begin{equation*}
A=a_{0} E+a_{1} P+\cdots+a_{n-1} P^{n-1} . \tag{2}
\end{equation*}
$$

In view of the structure of the powers of the basic permutation factor circulant Boolean matrix P in $M_{n}(B)$ and Definition 1，it is clear that A is a per－ mutation factor circulant Boolean matrix in $M_{n}(B)$ if and only if A commutes with P ，that is，$A P=P A$ ．Let $Z_{n}=\{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$ be the residue classes additive group module n ．Write

$$
\operatorname{Supp}(A)=\left\{\bar{i} \mid a_{i}=1\right\} \subseteq Z_{n},
$$

Then，A can be denoted by

$$
\begin{equation*}
A=\sum_{\bar{i} \in S u p p(A)} P^{i} . \tag{3}
\end{equation*}
$$

The set of all permutation factor circulant

Boolean matrix in $M_{n}(B)$ is denoted by $P M_{n}(B)$. Then, $P M_{n}(B)$ is also a commutative subsemigroup of $M_{n}(B)$. If $P=C, P M_{n}(B)=C_{n}(B)$. Therefore, the permutation factor circulant Boolean matrix is a generalized of the circulant Boolean matrix.

Definition 3 Let $A \in M_{n}(B)$. A is said to be an idempotent Boolean matrix if $A^{2}=A$.

We shall characterize all idempotents in $P M_{n}(B)$, and also establish the Euler-Fermat theorem for the semigroup $P M_{n}(B)$. All results in this paper are generalizations of results in [10-11].

2 The idempotents in $P M_{n}(B)$

Theorem 1 Let $A=\sum_{\bar{i} \in \operatorname{Sump}(A)} P^{i}$. Then A is an idempotent in $P M_{n}(B)$ if and only if $D=\operatorname{Suup}(A)$ is a subgroup of Z_{n}. Thus, if $A \neq E, A$ takes the following form:

$$
\begin{equation*}
A=E+P^{d}+\cdots+P^{(n / d-1) d}, \tag{4}
\end{equation*}
$$

where d is some positive factor of n.
Proof Necessity. Since $A^{2}=A$ and
$A^{2}=\sum_{\bar{i} \in D} P^{i} \sum_{\bar{j} \in D} P^{j}=\sum_{\bar{i}, \bar{j} \in D} P^{i+j}=\sum_{\bar{k} \in D+D} P^{k}=A=\sum_{i \in D} P^{i}$,
$D+D=\operatorname{Suup}\left(A^{2}\right)=\operatorname{Suup}(A)=D$. Therefore, the subset $D=\operatorname{Suup}(A)$ of Z_{n} is a subgroup of the residue classes additive group Z_{n}.

Sufficiency. Since $D=\operatorname{Suup}(A)$ is a subgroup of the residue classes additive group $Z_{n}, D+D=D$. Then we have
$A^{2}=\sum_{\bar{i}, \bar{j} \in D} P^{i+j}=\sum_{\bar{k} \in D+D} P^{k}=\sum_{\bar{k} \in D} P^{k}=A$.
Therefore, A is an idempotent in $P M_{n}(B)$.
Also, if $A=\sum_{\bar{i} \in \operatorname{Supp}(A)} P^{i}$ is an idempotent in, $D=\operatorname{Suup}(A)$ is a subgroup of Z_{n}. Thus, if $D \neq 0$, there exist a positive factor d of n such that

$$
D=\langle\bar{d}>=\{\overline{0}, \bar{d}, \cdots, \overline{(n / d-1) d}\} .
$$

Then
$A=E+P^{d}+\cdots+P^{(n / d-1) d}$.
This proves the theorem.
Theorem 2 The number of idempotent in $P M_{n}(B)$ is the number of subgroup of the residue classes additive group Z_{n}, that is, $D(n)+1$ where $D(n)$
denotes the number of positive factor of n.
Proof By Theorem 1, A is an idempotent in $P M_{n}(B)$ if and only if $D=\operatorname{Suup}(A)$ is a subgroup of Z_{n}. For a subgroup D of Z_{n}, if $D \neq 0$, there exist a positive factor d of n such that $D=\langle\bar{d}>$.

Conversely, for a positive factor d of n, there exist only subgroup D of Z_{n} such that $D=\langle\bar{d}\rangle$. Thus, Theorem 2 holds.

3 Euler-Fermat theorem for the semigroup $P M_{n}(B)$

In [11], Schwarz studied the Euler-Fermat theorem for the semigroup $C_{n}(B)$ of circulant Boolean matrices, and obtained the following result.

Theorem $3^{[11]}$ For any $A \in C_{n}(B)$, we have $A^{n-1}=A^{2 n-1}$. This result is the best possible, i.e., none of the exponents can be replaced by a smaller number.

The purpose of this section is to generalize this result in the semigroup $P M_{n}(B)$. We need the following lemma.

Lemma $1^{[12]}$ Let n be a positive integer. Then for any $2 n-1$ integers, there exist n integers such that their sum is a multiple of n.

Theorem 4 For any $A \in P M_{n}(B)$, we have $A^{n-1}=A^{2 n-1}$. This result is the best possible, i.e., none of the exponents can be replaced by a smaller number.

Proof Let $A=\sum_{i=0}^{n-1} a_{i} P^{i} \in P M_{n}(B)$ and $A^{k}=$ $\sum_{i=0}^{n-1} a_{i}^{(k)} P^{i} \in P M_{n}(B)$, where k is any positive integer. Then, for any $i, a_{i}^{(k)}$ is a sum of terms Q of the form:

$$
Q=a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}},
$$

with k indices $i_{1}, i_{2}, \cdots, i_{k}$ such that $\overline{i_{1}}+\overline{i_{2}}+\cdots+\overline{i_{k}}=\bar{i}$, i.e.,

$$
a_{i}^{(k)}=\sum_{\bar{i}_{1}+\bar{i}_{2}+\cdots+\bar{i}_{k}=\bar{i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}},
$$

Since for any h, $n \bar{h}=\overline{0}$. Therefore, for any i, we have

$$
a_{i}^{(n-1)}=\sum_{\bar{i}_{1}+\bar{i}_{2}+\cdots+\bar{i}_{n_{-1}}=\bar{i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}}=
$$

$$
\begin{aligned}
& \sum_{\overline{i_{1}}+\overline{i_{2}}+\cdots+\overline{i_{n-1}}+\overline{i_{n-1}}=\bar{i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n_{12}}}\left(a_{i_{n-1}}\right)^{n} \leqslant \\
& \bar{i}_{i_{1}+\overline{i_{2}}+\cdots+\overline{i_{n-1}}+\overline{i_{n}}+\cdots+\overline{i_{n-1}}=\bar{i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}} a_{i_{n}} \cdots a_{i_{2 n-1}}=a_{i}^{(2 n-1)},
\end{aligned}
$$ hence，$A^{n-1} \leqslant A^{2 n-1}$ ．

Conversely，for any term $Q=a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}} a_{i_{k+1}} \cdots$ $a_{i_{n n-1}}$ of $a_{i}^{(2 n-1)}$ ，by Lemma 1，we can select n elements from indices $\overline{i_{1}}, \overline{i_{2}}, \cdots, \overline{i_{2 n-1}}$ such that their sum is $\overline{0}$ ． We can assume without loss of generality that the n integers are $i_{n}, \cdots, i_{2 n-1}$ ．Then

$$
\begin{gathered}
a_{i}^{(2 n-1)}=\sum_{i_{i_{1}+\overline{i_{2}}+\cdots+i_{n-1}+\bar{i}_{n}+\cdots+\overline{i_{n-1}}}=\bar{i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}} a_{i_{n}} \cdots a_{i_{2 n-1}}= \\
\quad \sum_{\overline{i_{1}+i_{2}+\cdots+\overline{i_{n-1}}}=\bar{i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}} a_{i_{n}} \cdots a_{i_{2 n-1}} \leqslant \\
\quad \sum_{\overline{i_{1}+i_{2}}+\cdots+\overline{i_{n-1}}=\bar{i}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}}=a_{i}^{(n-1)} .
\end{gathered}
$$

Hence，$A^{2 n-1} \leqslant A^{n-1}$ ，and we have $A^{n-1}=A^{2 n-1}$ ． When $P=C, \quad P M_{n}(B)=C_{n}(B)$ ，by Theorem 3，we can see that this result is the best possible，i．e．，none of the exponents can be replaced by a smaller number． This proves the theorem．

References：

［1］Ruiz－Claeyssen J．Factor block circulant and periodic solutions of undamped matrix differential equations［J］． Math Appl Comput，1983，3（1）：81－92．
［2］Claeyssen J C R，Leal L A S．Diagonalization and spectral decomposition of factor block circulant matrices ［J］．Linear Algebra and its Applications，1988，99：41－61．
［3］Davis P．Circulant matrices［M］．New York：Wiley and Sons，1979：20－22．
［4］Jiang Zhaolin，Zhou Zhangxin．Circulant Matrices［M］． Chengdu：Chengdu Technology University Publishing Company，1999：50－60．
［5］Chao C Y，Zhang M C．On generalized circulants over a Boolean algebra［J］．Linear Algebra and its Applications， 1984，62：195－206．
［6］Cen Jianmiao．On the Sandwich semigroup of group Boolean matrices［J］．SIAM J Matrix Anal Appl，1998， 19（2）：416－428．
［7］Tan Yijia．The semigroup of primitive generalized circulant Boolean matrices［J］．Semigroup Forum，2007， 74：77－92．
［8］Stuart Jefrey L．Diagonally scaled permutations and circulant matrices［J］．Linear Algebra and its Applications， 1994，212／213：397－411．
［9］Jiang Zhaolin，Xu Zongben，Gao Shuping．Algorithms for finding the minimal polynomials and inverses of per－ mutation factor circulant matrices［J］．Chinese Journal of Engineering Mathematics，2006，23（6）：1088－1094．
［10］K－Hang K，Schwarz S．The semigroup of circulant Boolean matrices［J］．Czech Math J，1976，26（4）：632－ 635.
［11］Schwarz S．The Euler－Fermat theorem for the semigroup of circulant Boolean matrices［J］．Czech Math J，1980， 30（105）：135－141．
［12］Zun S．On a conjecture of elementary number theory［J］． Advances in Mathematics（in Chinese），1983，12（4）：299－ 301.

关于置换因子循环布尔矩阵半群

周敏娜

（宁波大学 科学技术学院，浙江 宁波 315211）
摘要：$P M_{n}(B)$ 表示布尔代数 $B=\{0,1\}$ 上的所有 $n \times n$ 置换因子循环矩阵组成的集合．$P M_{n}(B)$ 对于矩阵乘法成为一个半群。刻画了 $P M_{n}(B)$ 中的幂等元，并给出了半群 $P M_{n}(B)$ 中的 Euler－Fermat 定理。
关键词：布尔代数；置换因子循环矩阵；半群；幂等元；Euler－Fermat 定理

