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Abstract. In this paper, an explicit formulation for two dimensional multi-

variate truncated power functions is presented, and a simplified explicit for-
mulation for two dimensional vector partition functions is given. Moreover,
Popoviciu’s formulation for restricted integer partition functions is generalized

and the generalized Frobenius problem is also discussed.

1. Introduction

The vector partition function that we are interested in is in the form of

t(b|M) = #{x ∈ Zn
+|Mx = b},

where, Z+ denotes the nonnegative integers, M is a fixed s × n integer matrix
with columns m1, · · · ,mn ∈ Zs and b is a variable vector in Zs. To guarantee that
t(b|M) is finite, we require [{m1, · · · ,mn}] does not contain the origin, where [A]
denotes the convex hull of a given set A. The vector partition function t(b|M),
which is also called a discrete truncated power, has many applications in various
mathematical areas including Algebraic Geometry [26], Representation Theory[29],
Number Theory [23] , Statistics[16] and Randomized Algorithm [32] among others.

When s = 1, an explicit formulation for t(b|M), which counts the integer solu-
tions for the linear Diophantine equation, is presented in [1]. Especially, Popoviciu
gave a beautiful and surprising formulation for t(n|M) ([27]), when M = (a, b)
where a and b are relatively prime.

For the general matrix M , the nature of t(b|M) is investigated and the piecewise
structure of t(b|M) is given in [15] and [31]. Moreover, one is also interested in the
explicit formulation of t(b|M). For the general matrix M , a powerful method for ob-
taining t(b|M) is described in [8, 30]. Another interesting algorithm for computing
t(b|M) as a function of b is also introduced in [3]. When M is unimodular, where
every nonsingular square submatrix has determinant ±1, two algebraic algorithms
for generating the explicit formulation for t(b|M) is presented in [17]. However, all
of these methods depend on complex computation. In [34], based on multivariate
truncated power functions T (x|M), an explicit formulation for t(b|M) is presented.
However, the formulation involves multivariate truncated power functions T (x|M),
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which are not in explicit form, and high-dimensional Fourier-Dedekind sums, so we
have to give an explicit form for T (x|M) and simplify high-dimensional Fourier-
Dedekind sums, in order to predigest the explicit formulation for t(b|M). The goal
of this paper is to generalize Popoviciu’s formulation, and give a simplified explicit
formulation for two dimensional vector partition functions. We believe that the
results in this paper are not only helpful for understanding high dimensional vec-
tor partition functions but also useful for solving two linear Diophantine equations
[18, 35].

The rest of the paper is organized as follows. To help make this paper self-
contained we shall first introduce notations and definitions in Section 2. In Section
3, we recall previous results regarding vector partition functions t(b|M). Section
4 generalizes the Popoviciu’s formulation to two dimension. In Section 5, the gen-
eralized Frobenius problem is investigated. Finally, Section 6 gives an explicit for-
mulation for multivariate truncated powers in the case where s = 2 and show that
a high-dimensional Fourier-Dedekind sum can be converted to a one-dimensional
Fourier-Dedekind sum, which is convenient for computing. A simplified explicit
formulation for two-dimension vector partition functions is then given.

2. Preliminaries

To describe the nature of t(b|M), we introduce several notations and definitions
in which the common terminology of multiset theory is adopted. Intuitively, a
multiset is a set with possible repeated elements; for instance {2, 2, 2, 3, 4, 4}. Let
Y be an s×n matrix and Y can be considered as a multiset of elements of Rs. The
cone spanned by Y, denoted by cone(Y ), is the set

{
∑

y∈Y

ayy : ay ≥ 0 for all y}.

Denote by cone◦(Y ) the relative interior of cone(Y ). Let Y(M) denote the set
consisting of those submultisets Y of M for which M\Y does not span Rs. Let the
set c(M) be the union of all sets span(M \ Y ) as Y runs over Y(M). A connected
component of cone◦(M)\c(M), is called a fundamental M -cone. For a fundamental
M -cone Ω, we set v(Ω|M) := Ω − [[M)). Here, [[M)) := {∑n

j=1 ajmj : 0 ≤ aj <

1,∀j},Ω − [[M)) is the set of all elements of the form a − b, where a ∈ Ω and
b ∈ [[M)).

We shall use the standard multiindex notation. Specifically, an element α ∈ Nm

is called an m−index, and |α| is called the length of α. Define zα := zα1
1 · · · zαm

m for
z = (z1, · · · , zm) ∈ Cm and α = (α1, · · · , αm) ∈ Nm. For y = (y1, · · · , ys) ∈ Rs

and a function f defined on Rs , we denote by Dyf the directional derivative of
f in the direction y,i.e. Dy =

∑s
j=1 yjDj , where, Dj denote the partial derivative

with respect to the jth coordinate. For v := (v1, · · · , vm) ∈ Nm, we let Dv =
Dv1

1 · · ·Dvm
m and v! =

∏
i vi! Moreover, we let e := (1, 1, · · · , 1) ∈ Zs.

Let Sk(M) = {Y ⊆ M : #Y = s + k, span(Y ) = Rs} and B(Y ) = {X ⊆ Y :
#X = s, span(X) = Rs}. If for any Y ∈ Sk(M), gcd{|det(X)|, X ∈ B(Y )} = 1 ,
then M is called a k− prime matrix. In particular, when M is an 1−prime matrix,
M is also called a pairwise relative prime matrix. When s = 1, k−prime matrix
means that no k of the integers m1,m2, · · · ,mn have a common factor, where
mi, i = 1, · · · , n are the elements in M. Moreover, we denote e

2πi
k by Wk.
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The multivariate truncated power T (·|M) associated with M, which was intro-
duced by W.Dahmen [10] firstly, is the distribution given by the rule

(2.1) T (·|M) : φ 7→
∫

Rn
+

φ(Mu)du, φ ∈ D(Rs),

where D(Rs) is the space of test functions on Rs,i.e. the space of all compactly
supported and infinitely differentiable functions on Rs. In fact, T (·|M) agrees with
some homogeneous polynomial of degree n−s on each fundamental M -cone. When
M is an s×s invertible matrix, T (·|M) agrees with the function on Rs which takes
value 1

|det(M)| on cone(M) and 0 elsewhere.
In [22], an efficient method for computing the multivariate truncated power is

presented.

Theorem 2.1. ([22]) Let M be an s × n matrix with columns m1, · · · ,mn ∈
Zs \{0} such that the origin does not contain in conv(M). For any λ1, · · · , λn ∈ R,
and x =

∑n
j=1 λjmj ,

(2.2) T (x|M) =
1

n− s

n∑

j=1

λjT (x|M \mj).

For more detailed information about the function, the reader is referred to
[6],[10].

A multivariate Box spline B(·|M) associated with M was introduced in [5] and
[6], which is the distribution given by the rule

(2.3) B(·|M) : φ 7→
∫

[0,1)n

φ(Mu)du, φ ∈ D(Rs).

By taking φ = exp(−iy·) in (2.3), we obtain the Fourier transform of B(·|M) as

B̂(ζ|M) =
n∏

j=1

1− exp(−iζT mj)
iζT mj

, ζ ∈ Cs.

For more detail information about Box splines,the reader is referred to [7] .

Remark 2.2. Our definition of a fundamental M -cone is slightly different from
that presented in [15]. In [15], a fundamental M -cone is defined as a connected
component of cone◦(M)\ c(M), where c(M) is the union of all sets span(M \Y ) as
Y runs over Y(M). In fact, the fundamental M -cone defined in this paper may be
larger than the one defined in [15]. All the conclusions in [15], however, also hold
for the larger fundamental M -cone. Prof. M. Vergne introduced this new definition
of a fundamental M -cone in a private communication.

3. Vector partition functions

To describe the nature of t(b|M), we let Mθ := {y ∈ M : θy = 1} and let
A(M) := {θ ∈ (C \ {0})s : span(Mθ) = Rs}. Recall e = (1, 1, · · · , 1) ∈ Zs, as for
any y ∈ M, ey = 1, e ∈ A(M).

The following qualitative result about t(·|M) is presented in [15].

Theorem 3.1. ([15]) Let M = {m1, · · · ,mn} be a multiset of integer vectors
in Rs such that M spans Rs and the convex hull of M does not contain the origin.
Then for any fundamental M -cone Ω, there exists a unique element fΩ(α|M) =
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∑
θ∈A(M)

θαpθ,Ω(α) such that fΩ(α|M) agrees with t(α|M) on v(Ω|M), where pθ,Ω(·)
is a polynomial with degree less than #Mθ − s.

An explicit formulation for pe,Ω(α), which is the polynomial part for t(α|M),
is presented in the following theorem.

Theorem 3.2. ([34]) Under the condition for Theorem 3.1, pe,Ω(x) =
∑n−s

k=0 pk,Ω(x),
where pk,Ω(x) is homogeneous polynomial of degree n− s−k, defined inductively by

p0,Ω(x) = T (x|M), pk,Ω(x) = −
k−1∑

j=0

(
∑

|v|=k−j

Dvpj,Ω(x)(−i)|v|DvB̂(0|M)/v!), k ≥ 1,

where, x ∈ Ω.

More generally, an explicit formulation for pθ,Ω is also given as follows.

Theorem 3.3. ([34]) Given θ0 ∈ A(M) \ e, under the condition for Theorem
3.1, pθ0,Ω(x) =

∑n−s−κ
µ=0 pθ0

µ,Ω(x), where κ = #(M \Mθ0), p
θ0
µ,Ω(x) is homogeneous

polynomial of degree n− s− κ− µ, defined inductively by

pθ0
0,Ω(x) = qθ0

0,r(x),

pθ0
µ,Ω(x) = qθ0

µ,r(x)−
µ−1∑

j=0

(
∑

|v|=µ−j

Dvpθ0
µ,Ω(x)(−i)|v|DvB̂(0|M̂r)/v!), µ ≥ 1.

Here, qθ0
µ,r(x) is a polynomial which is determined by the following conditions: when

x ∈ Ω, qθ0
µ,r(x) =

∑
j1+···+jκ=µ

κ∏
i=1

s1+ji
(θ0

−mi )

(ji+1)!
1
rκ Dj1

m1
· · ·Djκ

mκ
T (x|Mθ0), where s0(x) =

x−xr

x−1 , sj(x) = xs′j−1(x), j ∈ Z+.

In particular, when M is a 1-prime matrix, a simple formulation for t(·|M) is
shown in the following theorem.

Theorem 3.4. [34] Under the condition for Theorem 3.1,when M is a 1−prime
matrix,

fΩ(α|M) = pe,Ω(α|M) +
∑

θ∈A(M)\e
θα 1
|det(Mθ)|

∏

w∈M\Mθ

1
1− θ−w

1cone(Mθ)(Ω),

where pe,Ω(α|M) is given in Theorem 3.2.

For the convenience of description, throughout the rest of the paper, we sup-
pose M is a 1-prime matrix without further declaration. According to Theorem 3.4,
to give a simple explicit formulation for t(b|M), we have to present an explicit for-
mulation for T (x|M). Moreover, to calculate the elements in A(M) is a non-trivial
problem, and hence, we have to predigest the non-polynomial part for t(b|M).

4. Generalized Popoviciu’s formulation

In this section, we are interested in t(n|M), where M =
(

x1 x2 x3

y1 y2 y3

)
∈

Z2×3, n = (n1, n2)T ∈ Z2
+. Without loss of generality, we suppose y1

x1
< y2

x2
<

y3
x3

. Obviously, for the matrix M , there exist two fundamental M -cones, i.e.
Ω1 = {(x, y)T |(x, y)T ∈ cone(M), y1

x1
< y

x < y2
x2
} and Ω2 = {(x, y)T |(x, y)T ∈

cone(M), y2
x2

< y
x < y3

x3
} (See Fig. 1).
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Fig. 1.The fundamental M-cones.

To describe conveniently, we let Mij =
(

xi xj

yi yj

)
, and let Yij = det(Mij),

where i < j. To describe the explicit formulation for t(n|M), we need to define
the fractional part function {x} which denotes the fractional part of x, i.e. {x} =
x− bxc.

In this section, our goal is to generalize the following beautiful formula due to
Popoviciu:

Theorem 4.1. [27] If a and b are relatively prime,

t(n|(a, b)) =
n

ab
− {b−1n

a
} − {a−1n

b
}+ 1,

where b−1b ≡ 1 mod a, and a−1a ≡ 1 mod b, n ∈ Z+.

In order to generalize Theorem 4.1, we firstly consider the explicit formulation
for T (x|M).

Lemma 4.2. Suppose the matrix M =
(

x1 x2 x3

y1 y2 y3

)
∈ Z2×3. When x =

(x, y)T ∈ Ω1, T (x|M) = yx1−xy1
(x1y2−y1x2)(x1y3−y1x3)

; when x = (x, y)T ∈ Ω2, T (x|M) =
xy3−yx3

(x2y3−y2x3)(x1y3−y1x3)
.

Proof. Based on Theorem 2.1 and T (x|Mij) = 1
det(Mij)

,x ∈ cone(Mij), i < j,
the Lemma can be proved easily after a brief calculation. ¤

The main theorem in this section is:

Theorem 4.3. Suppose the 1-prime matrix M =
(

x1 x2 x3

y1 y2 y3

)
. When n =

(n1, n2)T ∈ Ω1 ∩ Z2,

t(n|M) =
n2x1 − n1y1

Y12Y13
− { (f12Y13 + g12Y23)−1(n2(f12x1 + g12x2)− n1(f12y1 + g12y2))

Y12
}

− { (f13Y12 + g13Y23)−1(n2(f13x1 + g13x3)− n1(f13y1 + g13y3))
Y13

}+ 1;

when n = (n1, n2)T ∈ Ω2 ∩ Z2,

t(n|M) =
n1y3 − n2y3

Y23Y13
− { (f23Y13 + g23Y12)−1(n1(f23x3 + g23x2)− n2(f23y3 + g23y2))

Y23
}

− { (f13Y12 + g13Y23)−1(n1(f13x1 + g13x3)− n2(f13y1 + g13y3))
Y13

}+ 1,
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where, f12, g12, f13, g13, f23 and g23 ∈ Z satisfy gcd(f12Y13 + g12Y23, Y12) = 1
gcd(f13Y12+g13Y23, Y13) = 1 and gcd(f23Y13+g23Y12, Y23) = 1, moreover, (f12Y13+
g12Y23)−1(f12Y13 + g12Y23) ≡ 1 mod Y12, (f13Y12 + g13Y23)−1(f13Y12 + g13Y23) ≡
1 mod Y13, (f23Y13 + g23Y12)−1(f23Y13 + g23Y12) ≡ 1 mod Y23.

Proof. We only prove the case where (n1, n2)T ∈ Ω1∩Z2. Based on Theorem
3.2, pe,Ω1(x), which is the polynomial part for t(·|M) on Ω1, is in the form of
p0,Ω1(x) + p1,Ω1(x). Here, when x ∈ Ω1, p0,Ω1(x) = T (x|M),
p1,Ω1(x) = −(

∑
|v|=1 Dvp0,Ω1(x)(−i)DvB̂(0|M)). By the explicit formulation for

T (x|M), we have p0,Ω1(x) = y1x−x1y
(x2y1−y2x1)(x1y3−y1x3)

. After a brief calculation, we
have p1,Ω(x) = 1

2 ( 1
Y13

+ 1
Y12

). Hence, the polynomial part for t(n|M) is n2x1−n1y1
Y12Y13

+
1
2 ( 1

Y13
+ 1

Y12
). According to Theorem 3.4, we only need to consider the sum

∑

θ∈A(M)\e

1
|det(Mθ)|

∏

w∈M\Mθ

θn

1− θ−w
1cone(Mθ)(Ω1)

=
1

Y12

∑
θ∈A(M)\e
Mθ=M12

θn

1− θ−(x3,y3)
+

1
Y13

∑
θ∈A(M)\e
Mθ=M13

θn

1− θ−(x2,y2)
.

Recall e
2πi
k is denoted by Wk. As pointed out in [13], the elements in the set

{θ|θ ∈ A(M),Mθ = M12} have the form (Wαj
1

Y12
,W

αj
2

Y12
), where (αj

1, α
j
2) ∈ Z2, 1 ≤

j ≤ Y12 − 1.
Consider firstly

1
Y12

∑
θ∈A(M)\e
Mθ=M12

θn

1− θ−(x3,y3)
=

1
Y12

Y12−1∑

j=1

W
n1αj

1+n2αj
2

Y12

1−W
−(x3αj

1+y3αj
2)

Y12

.(4.1)

We set x3α
j
1 + y3α

j
2 ≡ k mod Y12. Since M is a 1-prime matrix, x3α

j
1 + y3α

j
2 6≡

x3α
m
1 + y3α

m
2 mod Y12 when j 6= m. Hence, k runs over [1, Y12 − 1] ∩ Z.

For θ ∈ {θ|θ ∈ A(M),Mθ = M12}, we have θ(x1,y1) = θ(x2,y2) = 1. Hence,

x1α
j
1 + y1α

j
2 ≡ 0 mod Y12,(4.2)

x2α
j
1 + y2α

j
2 ≡ 0 mod Y12,(4.3)

x3α
j
1 + y3α

j
2 ≡ k mod Y12.(4.4)

By x1 on both sides of (4.4), we have

x1x3α
j
1 + x1y3α

j
2 ≡ x1k mod Y12.(4.5)

According to (4.2), we obtain

x1α
j
1 ≡ −y1α

j
2 mod Y12.(4.6)

Substituting (4.6) into (4.5), we have

(4.7) αj
2Y13 ≡ x1k mod Y12.

By using similar method,

(4.8) αj
2Y23 ≡ x2k mod Y12.
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Since M is a 1-prime matrix, there exist f12, g12 ∈ Z such that gcd(f12Y13 +
g12Y23, Y12) = 1. Combining (4.7) and (4.8), we have

αj
2(f12Y13 + g12Y23) ≡ (f12x1 + g12x2)k mod Y12.

Hence, αj
2 ≡ (f12Y13 + g12Y23)−1(f12x1 + g12x2)k mod Y12.

Similarly, αj
1 ≡ −(f12Y13 + g12Y23)−1(f12y1 + g12y2)k mod Y12. Hence,(4.1) is

reduced to

1
Y12

Y12−1∑

k=1

W
(n2(f12x1+g12x2)−n1(f12y1+g12y2))(f12Y13+g12Y23)

−1k
Y12

1−W−k
Y12

.(4.9)

According to discrete Fourier transforms,

(4.10) −{ t

a
} =

1− a

2a
+

1
a

a−1∑

k=1

W tk
a

1−W−k
a

,

(4.9) can be reduced to

{ (n2(f12x1 + g12x2)− n1(f12y1 + g12y2))(f12Y13 + g12Y23)−1

Y12
}+

1
2
− 1

2Y12
.

Hence
1

Y12

∑
θ∈A(M)
Mθ=Y12

θn

1− θ−(x3,y3)

= −{ (n2(f12x1 + g12x2)− n1(f12y1 + g12y2))(f12Y13 + g12Y23)−1

Y12
}+

1
2
− 1

2Y12
.

By using similar method, we have

1
Y13

∑
θ∈A(M)\e
Mθ=Y13

θn

1− θ−(x2,y2)

= −{ (n2(f13x1 + g13x3)− n1(f13y1 + g13y3))(f13Y12 + g13Y23)−1

Y13
}+

1
2
− 1

2Y13
.

Hence, when (n1, n2)T ∈ v(Ω1|M) ∩ Z2,

t(n|M)

=
n2x1 − n1y1

Y12Y13
− { (f12Y13 + g12Y23)−1(n2(f12x1 + g12x2)− n1(f12y1 + g12y2))

Y12
}

− { (f13Y12 + g13Y23)−1(n2(f13x1 + g13x3)− n1(f13y1 + g13y3))
Y13

}+ 1.

Note that Ω1 ⊂ v(Ω1|M). Hence, when n ∈ Ω1 ∩ Z2, the theorem holds. ¤

Remark 4.4. If f12, g12, f13, g13, f23 and g23 satisfy f12Y23+g12Y13 = gcd(Y23, Y13),
f13Y12 + g13Y23 = gcd(Y12, Y23), f23Y13 + g23Y12 = gcd(Y13, Y12), then gcd(f12Y13 +
g12Y23, Y12) = 1, gcd(f13Y12 + g13Y23, Y13) = 1 and gcd(f23Y13 + g23Y12, Y23) = 1.
Hence,one can determine f12, g12, f13, g13, f23 and g23 by Euclidean algorithm. But
in some special cases, such as Y12, Y13 and Y23 are pairwise relative prime, there
exists a simpler method for obtaining them.
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Corollary 4.5. Suppose Y12, Y13 and Y23 are pairwise relative prime. When
n = (n1, n2)T ∈ Ω1 ∩ Z2,

t(n|M) =
n2x1 − n1y1

Y12Y13
− {Y −1

13 (n2x1 − n1y1)
Y12

} − {Y −1
12 (n2x1 − n1y1)

Y13
}+ 1,

where Y −1
13 Y13 ≡ 1 mod Y12 and Y −1

12 Y12 ≡ 1 mod Y13. When n = (n1, n2)T ∈
Ω2 ∩ Z2,

t(n|M) =
n1y3 − n2x3

Y23Y13
− {Y −1

13 (n1x3 − n2y3)
Y23

} − {Y −1
23 (n1x3 − n2y3)

Y13
}+ 1,

where Y −1
13 Y13 ≡ 1 mod Y23 and Y −1

23 Y23 ≡ 1 mod Y13.

Proof. We firstly consider the case where n ∈ Ω1∩Z2. Since gcd(Y12, Y13) = 1,
M is a 1-prime matrix. In Theorem 4.3, we may set f12 = 1, g12 = 0, f13 = 1, and
g13 = 0. Hence, When n = (n1, n2)T ∈ Ω1 ∩ Z2,

t(n|M) =
n2x1 − n1y1

Y12Y13
− {Y −1

13 (n2x1 − n1y1)
Y12

} − {Y −1
12 (n2x1 − n1y1)

Y13
}+ 1.

Using similar method, when n = (n1, n2)T ∈ Ω2 ∩ Z2,

t(n|M) =
n1y3 − n2x3

Y23Y13
− {Y −1

13 (n1x3 − n2y3)
Y23

} − {Y −1
23 (n1x3 − n2y3)

Y13
}+ 1.

¤

Remark 4.6. An interesting observation is that the formulation presented in
Corollary 6.2 is remarkably similar with Popoviciu’s formulation.

We now turn to consider the special case where y1
x1

= y2
x2

. Without loss of

generality, we suppose M =
(

kx1 lx1 x3

ky1 ly1 y3

)
, where k, l ∈ Z. In this case, there

exists only one fundamental M -cone, which is denoted as Ω. Moreover, since M is
a 1-prime matrix, we have gcd(k, l) = 1, x1y3 − y1x3 = 1. Then we have

Theorem 4.7. Suppose y1
x1

< y3
x3

. When M =
(

kx1 lx1 x3

ky1 ly1 y3

)
, t(n|M) =

x3n2−y3n1
kl − { l−1

k (n1y3 − n2x3)} − {k−1

l (n1y3 − n2x3)}+ 1, where n = (n1, n2)T ∈
Ω ∩ Z2, k−1k ≡ 1 mod l, l−1l ≡ 1 mod k.

Proof. By using the recurrence formulation for T (x|M), we have T (x|M) =
x3y−y3x

kl . Hence, the polynomial part of t(·|M) is x3y−y3x
kl + 1

2 ( 1
k + 1

l ). We now only
need to consider the sums

1
k

∑

θ:Mθ=Yk

θn

1− θ−(lx1,ly1)
,
1
l

∑

θ:Mθ=Yl

θn

1− θ−(kx1,ky1)
.

By the similar method with the one presented in the proof of Theorem 4.3, we
have 1

k

∑
θ∈A(M)\e

Mθ=Yk

θn

1−θ−(lx1,ly1) = −{l−1 n1y3−n2x3
k } + 1

2 − 1
2k , 1

l

∑
θ∈A(M)
Mθ=Yl

θn

1−θ−(kx1,ky1) =

−{k−1 n1y3−n2x3
k } + 1

2 − 1
2l . Note that Ω ⊂ v(Ω|M). According to Theorem 3.4,
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when n = (n1, n2)T ∈ Ω,

t(n|M)

=
x3y − y3x

kl
+

1
2
(
1
k

+
1
l
) +

1
k

∑

θ:Mθ=Yk

θn

1− θ−(lx1,ly1)
+

1
l

∑

θ:Mθ=Yl

θn

1− θ−(kx1,ky1)

=
x3n2 − y3n1

kl
− { l−1

k
(n1y3 − n2x3)} − {k−1

l
(n1y3 − n2x3)}+ 1.

¤

Remark 4.8. When the matrix M is of the form
(

x1 kx2 lx2

y1 ky2 ly2

)
, a similar

result can be obtained using the same method with the one presented in Theorem
4.7.

5. Linear Diophantine problem of Frobenius

Consider the linear Diophantine equation

(5.1) x1a1 + · · ·xnan = N,

where, ai ∈ Z+, gcd(a1, · · · , an) = 1.
It is well known that for all sufficiently large N the equation has solutions. The

Frobenius problems asks us to find the largest integer for which no solution exists.
We call the largest integer the Frobenius number and denote it by f(a1, · · · , an).
For n = 2 the largest N for which no solution exists can be explicitly written as
a1a2 − a1 − a2, i.e. f(a1, a2) = a1a2 − a1 − a2. But,to our knowledge, no such
formula exists for n ≥ 3.

As pointed out in [34], when gcd{|Y | : Y ∈ B(M)} = 1, for all sufficiently large
N the linear Diophantine equations Mx = Nn has solution, where n ∈ cone(M).
Naturally, we hope to find the largest integer N for which no solution exist, which
is denoted as f(M,n). In particular, we are interested in the linear Diophantine

equations M0x = Nn, where M0 =
(

x1 x2 x3

y1 y2 y3

)
∈ Z2×3,n ∈ cone(M0). In fact,

the generalized Frobenius number f(M0,n) is a generalization of f(a1, a2).

Recall Mij =
(

xi xj

yi yj

)
and Yij = det(Mij). In the following theorem, we shall

present an upper boundary for f(M0,n).

Theorem 5.1. Suppose Y12, Y13 and Y23 are pairwise relative prime. For n ∈
Ω1∩Z2, f(M0,n) < Y12Y13−Y12−Y13+1

n2x1−n1y1
. For n ∈ Ω2∩Z2, f(M0,n) < Y23Y13−Y23−Y13+1

n1y3−n2x3
.

Proof. We only prove the case where n ∈ Ω1∩Z2. Note t(Nn|M) = N(n2x1−n1y1)
Y12Y13

−
{ (Y13)

−1(N(n2x1−n1y1))
Y12

}−{ (Y12)
−1(N(n2x1−n1y1))

Y13
}+1 = t(N(n2x1−n1y1)|(Y12, Y13)).

When N(n2x1 − n1y1) ≥ Y12Y13 − Y12 − Y13 + 1, t(N(n2x1 − n1y1)|Y12, Y13) =
t(Nn|M) > 0. Hence, when N ≥ Y12Y13−Y12−Y13+1

(n2x1−n1y1)
, t(Nn|M) > 0. So, f(M,n) <

Y12Y13−Y12−Y13+1
n2x1−n1y1

. ¤

Remark 5.2. Theorem 5.1 only gives an upper boundary for f(M0,n). Accord-
ing to the proof of Theorem 5.1, giving the exact value of f(M0,n) is equivalent
for any given b0 ∈ Z determining the largest integer N for which the Diophantine
equation x1a1 + x2a2 = Nb0 no solution exist.
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6. Two-dimension vector partition functions

We now turn to the general case. We let M =
(

x1 x2 · · · xn

y1 y2 · · · yn

)
be a 2× n

integer matrix and yi−1
xi−1

< yi

xi
, i = 2, · · · , n.

For the matrix M , there exist n − 1 fundamental M -cones. Denote them as
Ωi := {(x, y)T |(x, y)T ∈ cone(M), yi

xi
< y

x < yi+1
xi+1

}, i = 1, · · · , n− 1 respectively. In
this section, we shall discuss the explicit formulation for t(b|M). First, we present
an explicit formulation for T (x|M).

Theorem 6.1. For x = (x, y)T ∈ R2,

T (x|M) =
1

(n− 2)!

n∑

i=1

(yix− xiy)n−2
+∏

j 6=i(yixj − yjxi)
,

where, (yix− xiy)+ =

{
yix− xiy, yix− xiy ≥ 0,

0, otherwise.

Proof. According to the definition of (yix−xiy)+ we only need to prove that
when x ∈ Ωk, T (x|M) = 1

(n−2)!

∑n
i=k+1

(yix−xiy)n−2
Q

j 6=i(yixj−yjxi)
.

We argue by induction on n. Initially, when n = 2, 3 the theorem certainly
holds. In the inductive step, we assume that when n = n0 the theorem holds and
we consider the case when n = n0 + 1.

According to the definition of (yix − xiy)+ we only need to prove that for

x ∈ Ωk, T (x|M) = 1
(n0−1)!

n0+1∑
i=k+1

(yix−xiy)n0−1
Q

j 6=i(yixj−yjxi)
, where M is a 2× (n0 + 1) matrix.

After a brief calculation, it is easy for obtaining x = xyk+1−xk+1y
yk+1xk−ykxk+1

(xk, yk)T +
xyk−xky

yk+1xk−ykxk+1
(xk+1, yk+1)T . Based on the recurrence formulation of T (·|M) , we

have

T (x|M) =
1

n0 − 1
(

xyk+1 − xk+1y

yk+1xk − ykxk+1
T (x|M \ (xk, yk)T ) +

xyk − xky

yk+1xk − ykxk+1
T (x|M \ (xk+1, yk+1)T )).



TWO DIMENSIONAL VECTOR PARTITION FUNCTIONS 11

By the inductive hypothesis, T (x|M \ (xk, yk)T ) = 1
(n0−2)!

n0+1∑
i=k+1

(yix−xiy)n0−2
Q

j 6=i,j 6=k

(yixj−yjxi)
,

T (x|M \ (xk+1, yk+1)T ) = 1
(n0−2)!

n0+1∑
i=k+2

(yix−xiy)n0−2
Q

j 6=i

(yixj−yjxi)
. Then we obtain

T (x|M) =
1

(n0 − 1)!
(

xyk+1 − xk+1y

yk+1xk − ykxk+1

n0+1∑

i=k+1

(yix− xiy)n0−2(xkyi − ykxi)∏
j 6=i

(yixj − yjxi)

+
xyk − xky

yk+1xk − ykxk+1

n0+1∑

i=k+2

(yix− xiy)n0−2(xk+1yi − yk+1xi)∏
j 6=i

(yixj − yjxi)
)

=
1

(n0 − 1)!
(

(yk+1x− xk+1y)n0−1

∏
j 6=k+1

(yk+1xj − yjxk+1)
+

1
yk+1xk − ykxk+1

n0+1∑

i=k+2

(yix− xiy)n0−2

(
(xyk+1 − xk+1y)(xkyi − ykxi)− (xyk − xky)(xk+1yi − yk+1xi)∏

j 6=i

(yixj − yjxi)
))

=
1

(n0 − 1)!

n0+1∑

i=k+1

(yix− xiy)n0−1

∏
j 6=i

(yixj − yjxi)
.

Thus, when n = n0 + 1 the theorem holds also, which completes the inductive step
and the proof. ¤

The following statements follow from Theorem 6.1.

Corollary 6.2.

Dv1,v2T (x|M) =
1

(n− 2− v1 − v2)!

n∑

i=1

(yix− xiy)n−2−v1−v2
+∏

j 6=i

(yixj − yjxi)
yv1

i (−xi)v2 .

We now turn to the non-polynomial part for t(·|M). We firstly recall the defini-
tion of a Fourier-Dedekind sum(see [1]), which is defined as σt(C;n) = 1

n

∑
λn=1 6=λ

λtQ
c∈C(λc−1) ,

where C is an integer multiset and n is an integer. To simplify the non-polynomial
part for t(·|M), we naturally arrived at the sums

(6.1)
1

Yij

∑

θMij =1,θ 6=e

θn
∏

ω∈M\Mij

1
1− θ−ω

,

which is considered as a generalized Fourier-Dedekind sum. Here, θMij = 1 means
θm = 1 for any m ∈ Mij . In fact, it is a non-trivial problem for computing all
complex vectors satisfying θMij = 1. In the following Lemma, we shows the gener-
alized Fourier-Dedekind sums (6.1) can be converted into the 1-dimensional Fourier-
Dedekind sums.

Lemma 6.3. When M is a 1-prime matrix, for any given integer m, 1 ≤ m ≤
n,m 6= i, j,

1
Yij

∑

θ
Mij =1
θ 6=e

θn
∏

ω∈M\Mij

1
1− θ−ω

= σtij
(Cij ;Yij).
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Here, Cij = ∪1≤h≤n,h 6=i,h 6=j{(fYim+gYjm)−1(−(fyi+gyj)xh+(fxi+gxj)yh)}, tij =
(fYim +gYjm)−1(−(fyi +gyj)n1 +(fxi +gxj)n2)+

∑
c∈Cij

c, where f, g ∈ Z satisfy
gcd(fYim + gYjm, Yij) = 1, (fYim + gYjm)−1(fYim + gYjm) ≡ 1 mod Yij .

Proof. As pointed out in [13], the elements in the set {θ|θ ∈ A(M),Mθ =

Mij} have the form (Wαl
1

Yij
,W

αl
2

Y12
), where (αl

1, α
l
2) ∈ Z2, 1 ≤ l ≤ Yij .

Hence,

1

Yij

X

θ
Mij =1
θ 6=e

θn
Y

ω∈M\Mij

1

1− θ−ω
=

1

Yij

Yij−1X

l=1

W
n1αl

1+n2αl
2

Yij

Q
h6=i,h6=j

(1−W
−(xhαl

1+yhαl
2)

Yij
)
.(6.2)

Noting m 6= i,m 6= j, we set xmαl
1 + ymαl

2 ≡ k mod Yij . Since M is a 1-prime
matrix, k runs over [1, Yij − 1] ∩ Z. Using the similar method with the one in the
proof of Theorem 4.3, we have

αl
1 ≡ −(fijYim + gijYjm)−1(fijyi + gijyj)k mod Yij ,

αl
2 ≡ (fijYim + gijYjm)−1(fijxi + gijxj)k mod Yij .

Hence, (6.2) is reduced to

1
Yij

Yij−1∑

k=1

W
(n2(fijxi+gijxj)−n1(fijyi+g12yj))(fijYim+gijYjm)−1k
Yij∏

h6=i,h 6=j

(1−W
−(fijYim+gijYjm)−1(−xh(fijyi+gijyj)+yh(fijxi+gijxj))k
Yij

)

= σtij (Cij ;Yij).

¤

Remark 6.4. When |det(Mij)| = 1, the terms in σtij
(Cij : Yij) disappear,since

{θ : θMij = 1} = {e}.
Combining Theorem 3.2, Theorem 3.4, Theorem 6.1 and Lemma 6.3, we can

present a simplified formulation for t(·|M).

Theorem 6.5. Suppose M =
(

x1 x2 · · · xn

y1 y2 · · · yn

)
is a 2 × n integer 1-prime

matrix and yi

xi
< yi+1

xi+1
. When n = (n1, n2)T ∈ Ωk ∩ Z2,

t(n|M) = pe,Ωk
(n) +

∑

(i,j)∈{(i,j):i≤k<j}
σtij (Cij ;Yij),

where, pe,Ωk
(x) =

∑n−2
j=0 pj,Ωk

(x), p0,Ωk
(x) = 1

n−2

∑n
l=k+1

(ylx−xly)n−2
Q

j 6=l(ylxj−yjxl)
, pj,Ωk

(x) =

−∑j−1
l=0 (

∑
|v|=j−l D

vpl,Ωk
(x)(−i)|v|D

v bB(0|M)
v! ), tij and Cij are defined in Lemma

6.3.

Proof. Based on Theorem 3.4, when n ∈ Ωk ∩ Z2,

t(n|M) = pe,Ωk
(n) +

∑

θ∈A(M)\e
θn 1
|det(Mθ)|

∏

w∈M\Mθ

1
1− θ−w

1cone(Mθ)(Ωk),
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where, the pe,Ωk
can be determined easily. Since M is a 1-prime matrix,

∑

θ∈A(M)\e
θn 1
|det(Mθ)|

∏

w∈M\Mθ

1
1− θ−w

1cone(Mθ)(Ωk)

=
∑

i<j

1
Yij

∑

θ
Mij =1
θ 6=e

θn
∏

ω∈M\Mij

1
1− θ−ω

1cone(Mij)(Ωk).

Based on Lemma 6.3, the above sum becomes as follows:

(6.3)
∑

i<j

σtij
(Cij : Yij)1cone(Mij)(Ωk).

Since when k ≥ j or k < i, cone(Mij) ∩ Ωk = ∅. Hence, (6.3) is converted into

(6.4)
∑

(i,j)∈{(i,j):i≤k<j}
σtij (Cij : Yij).

The theorem holds. ¤

Using Theorem 6.5, we shall present an explicit formulation for an actual ex-
ample, which is the same with the one presented in [3]. By using Theorem 6.5, it is
indeed easier for obtaining the explicit formulation for the actual vector partition
function.

Example 6.6. Let A =
(

1 2 1 0
0 1 1 1

)
. We denote by Aij the square matrix

containing the ith and the jth columns in A.
For the matrix A, there exist three fundamental cones, which are denoted as

Ω1,Ω2 and Ω3 respectively. We shall discuss the explicit formulation for t(n|A).
After a brief calculation, we have

T (x|A) =





y2

2 , x ∈ Ω1,
1
4 (−x2 + 4xy − 2y2), x ∈ Ω2,
x2

4 , x ∈ Ω3.

Hence, p0,Ω1 = y2

2 . According to Theorem 6.1, p1,Ω1 = 3/2y and p2,Ω1 = 1
respectively. Since for any 1 < j ≤ 3, |det(A1j)| = 1, accord to Remark 6.4,the
terms in the Fourier-Dedekind sum shall not appear when n ∈ Ω1 ∩ Z2. Based on
Theorem 6.1, we have when n ∈ Ω1 ∩ Z2, t(n|A) = n2

2
2 + 3n2

2 + 1.

Similarly, p0,Ω2 = 1
4 (−x2+4xy−2y2), p1,Ω2 = x+y

2 , p2,Ω2 = 7
8 . Based on Lemma

6.3, the non-polynomial part is 1
Y23

∑
θA23=1,θ 6=e

θn
∏

ω∈A\Aij

1
1−θ−ω = (−1)n1 . Hence,

when n ∈ Ω2 ∩ Z2, t(n|A) = n1n2 − n2
1
4 − n2

2
2 + n1+n2

2 + 7
8 + (−1)n1

8 .

Using the same method with the above, we obtain p0,Ω3 = x2

4 , p1,Ω3 = x, p2,Ω3 =
7
8 .

Hence, t(n|A) =





n2
2
2 + 3n2

2 + 1, n ∈ Ω1 ∩ Z2

n1n2 − n2
1
4 − n2

2
2 + n1+n2

2 + 7
8 + (−1)n1

8 , n ∈ Ω2 ∩ Z2

n2
1
4 + n1 + 7

8 + (−1)n1

8 , n ∈ Ω3 ∩ Z2.
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Remark 6.7. The explicit formulation presented in Theorem 6.5 contains
DvB̂(0|M). Note

B̂(ζ|M) =
n∏

j=1

1− exp(−iζT mj)
iζT mj

, ζ ∈ Cs.

The following assertion is obvious:

Dv1,v2B̂(0|M) = (−i)v1+v2
∑

k1+···+kn=v1

∑

l1+···+ln=v2

v1!
k1! · · · kn!

v2!
l1! · · · ln!

n∏

j=1

x
kj

j y
lj
j

kj + lj + 1
.

Remark 6.8. In Theorem 6.5, when the case of yi

xi
= yj

xj
happens, the explicit

formulation for T (x|M) can be obtained by taking the limit. Using similar method
with the one in the proof of Theorem 4.7, an explicit formulation for t(n|M) can
be given also.

Remark 6.9. To simplify any-dimensional vector partition functions, we have
to give an explicit formulation for multivariate truncated power functions T (x|M)
and compute the chamber complex consisting of the fundamental M -cones, which
are indeed challenging problems.
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