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Abstract 

Mössbauer spectroscopy and neutron scattering measurements on proteins embedded in solvents 

including water and aqueous mixtures have emphasized the observation of the distinctive temperature 

dependence of the atomic mean square displacements, u
2

, commonly referred to as the dynamic 

transition at some temperature Td. At low temperatures, u
2

 increases slowly, but it assumes stronger 

temperature dependence after crossing Td, which depends on the time/frequency resolution of the 

spectrometer. Various authors have made connection of the dynamics of solvated proteins including 

the dynamic transition to that of glass-forming substances. Notwithstanding, no connection is made to 

the similar change of temperature dependence of u
2

 obtained by quasielastic neutron scattering 

when crossing the glass transition temperature Tg, generally observed in inorganic, organic and 

polymeric glass-formers. Evidences are presented here to show that such change of the temperature 

dependence of u
2

 from neutron scattering at Tg is present in hydrated or solvated proteins, as well as 

in the solvent used, unsurprisingly since the latter is just another organic glass-former. If unaware of 

the existence of such crossover of u
2

 at Tg, and if present, it can be mistaken as the dynamic 

transition at Td with the ill consequences of underestimating Td by the lower value Tg, and confusing 

the identification of the origin of the dynamic transition. The u
2

 obtained by neutron scattering at 

not so low temperatures has contributions from the dissipation of molecules while caged by the 

anharmonic intermolecular potential at times before dissolution of cages by the onset of the Johari-

Goldstein -relaxation or of the merged α-β relaxation. The universal change of u
2

 at Tg of glass-

formers, independent of the spectrometer resolution, had been rationalized by sensitivity to change in 

volume and entropy of the dissipation of the caged molecules and its contribution to u
2

. The same 

rationalization applies to hydrated and solvated proteins for the observed change of u
2

 at Tg.       
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1. Introduction 

Relaxation and diffusion originating from molecular motions in solvated or simply hydrated 

proteins naturally and ultimately are responsible for the dynamics that give rise to biological 

functions. In one way or the other, various approaches to understand the dynamics of proteins 

have been based on exploiting the similarity of the properties observed experimentally to the 

dynamics of glass-forming systems [1, 2, 3, 4, 5, 6, 7]. In fact, the very basic glass transition 

was observed in solvated proteins by calorimetry [7, 8, 9, 10, 11, 12], thermal expansion 

measurements [13], and Brillouin scattering [14], with the glass transition temperature Tg 

decreasing on increasing the hydration level and generally falls within the range of 160 K to 

200 K, and can be higher if water is totally absent in the solvent such as pure glycerol or the 

solvent is 20 wt% of water in the disaccaride, sucrose [12, 13]. Besides the relation to glass 

transition, another general phenomenon exhibited by solvated proteins which has occupied 

much attention is the so-called dynamic transition (i.e., the anharmonic onset of molecular 

displacements given by the mean square displacement u
2

 at temperature Td) observed for 

instance by either Mössbauer spectroscopy [15, 16] or by neutron scattering [7, 17, 18, 19, 20, 

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. The protein dynamic transition 

temperature Td depends on the time scale or energy resolution of the spectrometer used. In the 

140 ns long time limit of Mössbauer spectroscopy  the Td measured in deoxy-myoglobin 

crystals is at slightly below 200 K [15]. Neutron scattering measurements with time scale 

ranging from about 1 ns to 15 ps show the dynamic transition occurring at higher Td than that 

from Mössbauer spectroscopy. For fully hydrated myoglobin and lysozyme, Td from neutron 

scattering increase from about 210 K at time scale of 1 ns to 250-260 at 15 ps. The 

explanations of the origin of the dynamic transition vary from one research group to another 

[6, 7, 28, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. A recent experiment on dry and 

hydrated lysozyme [46] confirmed, by means of different neutron scattering experiments with 

different instrumental energy resolutions, that the dynamic transition observed at Td appears 

when the characteristic system relaxation time intersects resolution time and so it is 

instrument dependent. The glass transition and the dynamic transition are therefore two 

different processes in the same solvated or hydrated protein, and Td is higher than Tg, in 

general. 

 In ordinary glassformers, the fast dynamics measured as a function of temperature from 

below to above Tg and expressed in terms of u
2
(T)  exhibit a universal behaviour. As 

measured by the same neutron scattering technique and spectrometers including IN6, IN13 

and IN16 as for dynamic transition in solvated proteins, u
2
(T)  of ordinary glassformers has 

a weak and approximately linear temperature dependence for T<Tg but it assumes a stronger 

T-dependence after crossing Tg [47]. The sensitivity of the fast process manifesting in the ps 

to ns range to glass transition is remarkable because glass transition is affected by the 

structural -relaxation when, on cooling, its relaxation time becomes too long compared with 

the experimental time typically of the order of 10
3
 s, and the liquid can no longer maintain 

equilibrium. The result is vitrification and the transformation into the glassy state. This 

general property found in inorganic, organic and polymeric glassformers was touted as one of 

the important aspects in the dynamics of glass transition [47, 48, 49, 50, 51, 52, 53]. At 

temperatures below and slightly above Tg, the fast process observed at times shorter than 1 ns 
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by neutron scattering  comes from motion of molecules mutually caged by anharmonic 

potential. Unlike genuine relaxation process, the loss part of the susceptibility, , from the 

molecules while caged has no characteristic time and hence its dependence on frequency  is 

a power law,  
-c

, where c is a small positive number. Dielectric relaxation spectroscopy 

also has observed this characteristic frequency dependence of the dielectric loss 
-c

, which 

is generally referred to as the nearly constant loss (NCL) since c<<1 [54, 55]. When cages 

decay with the onset of the intermolecular secondary relaxation or the so-called Johari-

Goldstein (JG) -relaxation, the regime of caged dynamics and the associated NCL are 

terminated. It has been well established by experiments that the temperature dependence of 

both the dielectric strength and the relaxation time of the JG -relaxation changes when 

crossing Tg [56, 57, 58, 59] in conventional glassformers, in aqueous mixtures [60, 61], and in 

hydrated proteins [41, 43, 60]. Thus, this property of the JG -relaxation is transferred to the 

NCL, and is currently the only explanation that has been offered for the change of T-

dependence of u
2
(T)  at Tg observed by neutron scattering, dynamics light scattering, and 

dielectric relaxation  [62, 52, 53].  

 From the similarity of solvated protein dynamics to glass transition, it is natural to inquire 

whether the change in T-dependence of u
2
(T)  on crossing Tg found in ordinary glassformers 

has been observed or not in solvated or hydrated proteins. This question has not been 

addressed before, at least correctly for the experimental data of solvated and hydrated 

proteins, by anyone as far as we know. If indeed the change of T-dependence of u
2
(T)  at Tg 

has been observed in different solvated proteins, then it should be considered as another 

remarkable property challenging an explanation in addition to the dynamic transition. Since 

Tg and Td in some cases are not far apart, if it has been observed, could it be mistaken before 

as the dynamic transition at Td? We are mindful of the contribution of methyl group rotation 

to u
2
(T)  at temperatures higher than about  100 K in typical high-energy resolution neutron 

investigations [3, 63, 34,  31, 64, 65, 66]. The methyl group contribution makes it more 

difficult to identify the crossover of u
2
(T)  at Tg in cases where Tg is not much higher than 

150 K. Notwithstanding, the purpose of this paper is to answer the questions posed above by 

re-examining published experimental data of solvated and hydrated proteins. An assist is 

given by the neutron scattering data of the solvents themselves by showing the presence of the 

change of T-dependence of u
2
(T)  at Tg and at a higher temperature Td, in exact analogy to 

that observed in protein solvated by the same solvent. 

 

2. Re-examination of Published Experimental Data 

In the following sections we will re-examine some already published results, coming from 

neutron scattering experiments done on several spectrometers and concerning proteins in 

different solvents  or the solvent alone. We will also present a new set of data for the samples 

of lysozyme:glycerol and lysozyme:glucose (both at 50:50 relative weight) in an extended 

temperature range, which will be the starting point to propose a coherent interpretation of the 

experimental results. The main experimental and sample characteristics are summarized in 

Table 1. 
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Reviewed Systems Instrument ΔE(μeV)  Ref. 

Lysozyme+glycerol(D)+variable D2O IN13 9 19 

Lysozyme+glycerol(D) HFBS 1 20 

Glycerol (part. Deuter.) IN13 9 67 

Glycerol IN10-IN16 

TOF- Stockholm 

1, 

200 

68, 

81 

Glycerol+H2O (0.15 g water/g Glyc) NEAT 10÷1000 44 

Lysozyme+D2O 0.4h IN16 1 24 

Lysozyme+D2O (variable h) HFBS 1 19 

Lysozyme+D2O 0.4h IN13 9 69 

Lysozyme+Glucose (D)+variable D2O IN13 9 69, 70 

Glucose+variable D2O IN13 9 71, 72 

Disaccharides+variable D2O IN13 9 73, 74, 75 

PM (select. Deut.) +variable D2O IN16, IN10 1 76, 77, 78 

Myoglobin+D2O 0.35h IN6 90 28 

C-PC+D2O 0.3h SPHERES 0.62 28 

 

 

Table 1. Experimental data sets reviewed in this paper, in order of appearance. The energy resolution ΔE 

(Full width at half maximum FWHM) is approximately linked to the longest measurable characteristic time τres 

by the relationship τres(ps)  ~1316/ΔE(μeV)  

 

 

 

2.1 Lysozyme solvated in glycerol at different contents of water 

 

These solvated lysozyme systems have been studied by two different groups [19, 20]. Tsai et 

al. made elastic neutron scattering measurements on dry D-exchanged lysozyme:glycerol 

(80:20) and (50:50), as well as lysozyme:D2O (70:30), using the neutron high flux 

backscattering instrument of the National Institute of Standards and Technology. The incident 

wavelength is at 6.271 Å with an energy resolution of 1 eV (FWHM) picking up motions 

faster than about 1 ns. Paciaroni et al. performed elastic neutron scattering studies of 

lysozyme solvated in glycerol by using the backscattering spectrometer IN13, at the Institut 

Laue-Langevin, having an energy resolution 9 eV (FWHM), which makes accessible only 

motions faster than about 150 ps in a spatial region smaller than 5 Å. The samples studied 

include the lysozyme:glycerol (50:50) as Tsai et al., and this lysozyme:glycerol mixture 

hydrated to the levels of 0.1h, 0.2h, 0.35h, 0.42h, and 0.83h, where h stands for grams of 

water/grams of lysozyme. There are neutron scattering data on the solvents alone without 

lysozyme. Since it has been established by experiments by several groups that the dynamics 

of solvated proteins are coupled to the solvent, naturally the data of neat glycerol obtained by 

means of IN13 by Wuttke et al. [67] and by means of IN10 and IN16 by K. Niss et al. [68], 

and the data of glycerol-15% water by Mezei et al. [44] on the NEAT time-of-flight 
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spectrometer are helpful for interpretation of the data of the solvated lysozyme as can be seen 

from the discussion after the data have been presented. 

In Figure 1 we reproduce the data of the total u
2
(T)  of lysozyme in fully deuterated 

glycerol (50:50) with 0h [20] together with the mean square displacements of partially 

deuterated bulk glycerol C3H5(OD)3, also measured on the spectrometer IN13 of Wuttke et al. 

[67]. Here, u
2
(T) tot is the total mean square displacements obtained from the intensity of 

elastically scattered neutrons S(Q, E 0) as explained in Ref.[20]. The u
2
(T)  of lysozyme-

glycerol (50:50) and pure glycerol are strikingly similar. At lower temperatures, u
2
(T)  has 

nearly linear T-dependence but on increasing temperature past Tg 190 K of pure glycerol, it 

changes to a stronger T-dependence after crossing 200-210 K. As shown before in Ref.[47], 

this change of T-dependence of u
2
(T)  above Tg is an universal property of glassformers, and 

thus Fig.1 suggests that the same property is found in lysozyme-glycerol (50:50). The inset of 

Fig.1 and its relation to the main part of the figure will be discussed at the end of this 

subsection. 
 

 

 
Figure 1. <u

2
>tot of lysozyme solvated by only glycerol taken from Ref.[20] with additional data at higher 

temperatures included to compare with the mean square displacements of pure glycerol taken from Ref.[67]. 

Continuous lines are guides for eyes. In the inset are Kohlrausch-Williams-Watts -relaxation time, KWW, the 

JG -relaxation times obtained from a fitting procedure, , and the primitive relaxation times, 0, obtained from 

dielectric relaxation measurements from Ref.[79, 80]. The green, red, blue and black horizontals lines indicate 

the time-scales predicted for a relaxation process originating the dynamic transition as seen by Mössbauer 

spectroscopy, IN16, IN13, IN6 spectrometers, respectively. The green, red and blue vertical lines indicate the 

reciprocal temperatures 1000/(234 K), 1000/(250 K), and (1000/276 K) where a dynamic transition has been 

found in pure glycerol by means of  by Mössbauer spectroscopy [82], IN16 [68], IN13 [67], respectively. 
 

Furthermore, the similarity of u
2
(T)  shows that the protein dynamics in lysozyme-

glycerol (50:50) is strongly coupled to that of the solvent glycerol, in accord with the same 
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conclusion from investigations in other solvated proteins such as hydrated maltose binding 

protein by Wood et al. [25]. The coupling naturally implies the possibility that the dynamic 

transition of lysozyme-glycerol (50:50) also can be found in bulk glycerol and at the same 

temperature. To look for this possibility, we need to find the common dynamic transition 

temperature Td where lysozyme-glycerol (50:50) undergoes the dynamic transition, and a 

similar „transition‟ of pure glycerol. Help in answering this question can be drawn by 

examining the data of lysozyme-glycerol (50:50) in conjunction with those of pure glycerol 

obtained on IN13 spectrometer [67] reproduced separately for clarity in Fig.2, where there are 

shown the practically identical u
2
(T)  of the partially deuterated bulk glycerol C3H5(OD)3 

and C3D5(OH)3. Dynamic transition of lysozyme without glycerol, hydrated at  the level of 

0.4 g D2O g
-1

, has been found by IN16 to be 220 K [24]. Since the dynamics of lysozyme 

solvated by glycerol is slower than hydrated lysozyme, and the fact that IN16 accesses 

motions longer than IN13, we can expect that Td of lysozyme-glycerol (50:50) as estimated on 

the latter spectrometer will be significantly higher than 220 K. In fact, a plausible location of 

Td of lysozyme-glycerol (50:50) is suggested by the arrow pointing at 276 K in Fig.1. The 

lines drawn do not carry any meaning other than used to suggest a change of T-dependence of 

u
2
(T)  occurring at 276 K. Moreover, the possibility that there is change of T-dependence of 

u
2
(T)  of pure glycerol occurring 270 K is suggested by the blue arrow in Fig.2. The line in 

the range of higher temperatures is just a guide to indicate a stronger T-dependence, and has 

no meaning because the u
2
(T) slope is continuously increasing. Summarizing, IN13 data of 

u
2
(T)  for glycerol in Fig.2 show two changes of T-dependence, one around Tg and another 

at higher temperature.  
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Figure 2. <u
2
> versus temperature for partially deuterated glycerol (solid (d3) and open (d5) square 

symbols) obtained by using IN13 [67] and for glycerol (gray triangles) by using IN10-IN16 [68]. Dashed line is 

the harmonic fit for the glassy behavior of IN13 data provided in ref.[67]. The solid lines are guides for eye. The 

green and blue arrows indicate Td 250 K and 270 K, respectively. Inset plot compares IN13 data for glycerol-d5 
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(same symbols, lines and arrows as in main figure) with those (solid stars) obtained by means of the TOF 

Stockholm spectrometer [81]. Orange arrow is at Td 330 K. 
 

 

It is interesting to note that u
2
(T) of glycerol measured with another neutron 

spectrometer (IN10-IN16 [68]), sensitive to motions at longer  time scales, show a similar 

scenario with two transitions: that at lowest temperature, occurring again around 200 K, and 

the other at highest temperature at Td 250 K (indicated by the green arrow). On the other 

hand, the inset of Fig.2 shows the comparison of IN13 data of glycerol with data obtained on 

a shorter time scale (by means of the TOF Stockholm, ΔE 200 μeV [81]). Again a transition 

can be noted around 200 K, but after that data continue with a linear behaviour until Td  330 

K, where a new regime begins. 

The purported dynamic transition of lysozyme-glycerol (50:50) measured by IN13 at 

Td=276 K (Fig.1) has support also from the result of Tsai et al. [19] obtained in lysozyme-

glycerol (50:50). Using a spectrometer with accessible time range longer than IN13, Tsai et 

al. found Td=265 K [84], consistent with the slightly higher Td=276 K suggested in Fig.1, and 

very similar to Td 250 K found by Niss et al. [68] that used a spectrometer with a comparable 

resolution (shown in Fig.2). The current estimate of 276 K for Td of lysozyme-glycerol 

(50:50) in Fig.1 contrasts with the much lower estimated value of Td=238 K obtained in the 

past [20] as the intercept between the low-T curve and the straight line approximating 

u
2
(T) tot at higher temperature shown again in Fig.3. However, based on the data in an 

extended temperature range also from IN13 presented here in Fig. 1, we have already clearly 

shown the presence of the transition at about 276 K. Previously this discrepancy in the values 

of Td of lysozyme-glycerol (50:50) obtained by the two groups was rationalized by the use of 

spectrometers with different dynamic ranges and different methods of analyses of data. This 

rationalization is no longer needed by rediscovering that Td is 276 K from IN13 in Fig.1 as 

compared with 265 K from Tsai et al. [19]. 

Figure 3 shows the previous practice [20] of obtaining Td as the intercept between the low-

T solid curve and the straight line approximating u
2
(T) tot at higher temperature not only for 

dehydrated lysozyme-glycerol (50:50) but also hydrated to different levels of h. All the 

samples were prepared with fully deuterated glycerol and heavy water so that the neutron 

scattering comes mainly from nonexchangeable protein hydrogen atoms. The solid curve 

represents the fit of the temperature dependence of u
2
(T) tot by a set of quantized harmonic 

oscillators as in an Einstein solid [20]. The values of Td determined in this manner are 211, 

207, 202 and 160 K for h = 0.2, 0.35, 0.42 and 0.80 respectively. They are lower than Td=220 

K for lysozyme hydrated to the level of 0.4 g D2O g
-1

 and without glycerol found by IN16 

[24]. This cannot be true, because we expect that at least for hydration degrees less than or 

comparable to 0.4h the presence of glycerol should make the protein dynamics slower than 

that of lysozyme powders hydrated at 0.4h, with a consistent Td higher than 220 K. This 

reasoning is also strengthened by the fact that IN16 can access longer relaxation times than 

IN13. On the other hand, the arrows, except the one labeled 238 K, indicate Tg of mixtures of 

glycerol and water for h = 0.0, 0.2, and 0.42 (from right to left) [20, 83]. Interestingly, for 

each hydrated lysozyme-glycerol (50:50) at level h ranging from 0.2 to 0.80, u
2
(T)  starts to 

rise above the solid line at temperature near Tg of the mixture of glycerol with water having 

the exactly the same value of h. By this observation and assuming that the dynamics of 

hydrated lysozyme-glycerol (50:50) is strongly coupled to the solvent as in the anhydrous 

case shown in Fig.1 and also by other experiments [25], we can conclude that the change of 
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T-dependence of u
2
(T)  at Tg has also been found in each of the hydrated lysozyme-glycerol 

(50:50). Taking this event of u
2
(T)  at Tg into consideration, the dynamic transition occurs at 

a temperature Td higher than Tg. 

 

 

 
 

Figure 3.  u
2
(T) tot versus T, for all lysozyme:glycerol (50:50) hydrated at the measured water contents 

of: h = 0.0 g D2O/g Lys ( ); h = 0.1 g D2O/g Lys (); h =0.2 g D2O/g Lys []; h = 0.35 g D2O/g Lys (O); h = 

0.42 g D2O/g Lys ( ); h = 0.83 g D2O/g Lys (▲). (The solid black line represent the fit of the temperature 

dependence of u
2
(T) tot by a set of quantized harmonic oscillators as in an Einstein solid. The dashed black 

lines are linear fits to the high-temperature data. The intercept of the two lines for h = 0.0 g D2O/g Lys ( ) is at 

238 K, previously considered as the dynamic transition temperature Td in Ref.[20]. The thick red and broken line 

through some data points of sample with h=0.20 is drawn to suggest Td is about 240 K, when considered together 

with the black dashed straight line at higher temperatures. The inset shows the Tg of mixtures of glycerol and 

water as a function of h. In the main figure, the arrows from right to left indicate Tg of mixtures of glycerol and 

water are for h = 0.0 (light blue), 0.2 (red), and 0.42 (purple).   Readapted from ref. [20] by permission. 

 

We have suggested that the IN 13 u
2
(T)  data of pure glycerol [67] in Fig.2 show not 

only the change of T-dependence above Tg but also another one at a higher temperature Tc 

near 270 K close to the dynamic transition temperature Td 270 K found for the lysozyme 

solvated by glycerol (50:50) [20]. Does this near coincidence of Tc of the solvent with Td of 

the solvated lysozyme also hold in the case of hydrated lysozyme:glycerol (50:50)? Answer to 

this question can be given for the solvent, glycerol with 15 wt% of water, which has been 

studied by quasielastic neutron scattering, and u
2
(T)  determined at 100 ps time scale 

comparable to that of IN13 [44]. The data are reproduced in Fig.4. The blue arrow therein 

indicates the location of Tg determined for glycerol with 15 wt% of water (corresponding to 

h=0.18) from the dependence of Tg on water content given by Ref.[83]. The broken blue line 
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connecting the few black data points suggests there is a change of T-dependence of u
2
(T)  

near Tg. The black arrow indicates the higher temperature Tc  240 K at which u
2
(T)  

exercises another change in T-dependence. Is Tc near Td of the u
2
(T)  of hydrated 

lysozyme:glycerol (50:50) at the same h? The possibility that this is indeed the case is 

suggested by the intercept of the two lines fitting the data of the sample with h=0.20 at 

temperatures above and below 240 K in Fig.3.            

 

 

 
 

Figure 4.  Temperature dependence of the mean square displacement in the mixture, glycerol-15 % water, as 

determined for different averaging times from TOF neutron scattering data by Mezei et al. [44]. The long straight 

line is guide to the eye. The value of Tg is indicated by the blue arrow. The dashed blue and black lines are drawn 

to suggest change of T-dependence of u
2
(T)  at Tg and at Tc. The location of Tc indicated by the black arrow is 

only suggestive because the few data points available do not allow determination with accuracy. Reproduced by 

permission from Ref [44]. 
 

 

 Let us return to the inset of Fig.1 where we extract the dielectric relaxation times,  

(labeled as KWW in the figure) and  of the - and -relaxations in the shorter time regime of 

pure glycerol from Ref.[79, 80]. As an equivalent estimate of -relaxation times we can also 

consider the primitive relaxation times 0 predicted by Coupling Model [53, 54], that are not 

affected by deconvolution fitting procedures. The three vertical lines indicate locations of 

1000/T for T 276 K (blue), 250 K (red), and 234 K (green), corresponding respectively to Td 

of lysozyme:glycerol (50:50) in Fig.1, Tc of pure glycerol from IN10-IN16 spectrometer in 

Fig.2, and the value for crossover temperature obtained from Mössbauer spectroscopy [82], 

that, by the way, is close to Td 238 K obtained by the intercept of the black dashed and 
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continuous lines in Fig.3 for lysozyme:glycerol (50:50) in ref.[20].By interpolation,  we can 

estimate the values of  or  at T 276 K, 250 K, and 234 K to be around 800 ps, 6 ns and 

5 10
-8

 s. According to recent studies [34], the change of T-dependence of u
2
(T)  at Td is 

originated when the time scale of a relaxation process becomes shorter than the longest time 

scale detectable by the neutron spectrometer (for neutron scattering τres is defined in caption 

of Table 1, for Mössbauer spectroscopy is 140 ns). More precisely, if the relaxation process 

has a Lorentzian shape, the onset of the transition at Td occurs when τres 0.2τmax [34], where 

τmax is the most probable time of the relaxation process (that could be -, -, or their 

merging). The horizontal black, blue, red, and green lines in Inset of Fig.1 indicate when the 

above predicted relation should occurs for different experimental apparatuses as IN6, IN13, 

IN16 spectrometers and by means of Mössbauer spectroscopy, respectively. By inspection,  

or  falls very close to the expected predictions. Hence these can explain the dynamic 

transition at Td =276 K for solvated lysozyme and at Tc =270 K for pure glycerol, both by 

IN13 with time window of the order of hundreds of ps, by the -relaxation entering the 

window of the spectrometer on raising temperature to cross Td and Tc. In the same way, it 

could explain the Tc =250 K seen by Niss et al. [68] for glycerol using IN10 (Fig.2) and the 

very high value for transition (>330 K) seen by Larrson using a spectrometer with a very 

limited resolution (see Inset Fig.2). This explanation of the dynamic transition follows the 

same way the phenomenon was explained in hydrated proteins, namely the water-specific or 

the Johari-Goldstein -relaxation of the hydration water given before in Ref.[41, 85, 42, 43, 

60]. There, it has been shown that on increasing temperature, the Johari-Goldstein -

relaxation of the hydration water starts entering the time window of spectrometer, near Td, 

leading to stronger increase of u
2
(T)  with temperature and the dynamic transition. On the 

other hand,  at T 238 K is 5 10
-8

 s, which is  more than a factor 70 longer than the time 

window of IN13 and hence -relaxation of glycerol cannot cause the dynamic transition in 

anhydrous lysozyme:glycerol (50:50) at 238 K [20]. This is another reason for not accepting 

238 K as the temperature of the occurrence of the dynamic transition.       

As for the universal changes of T-dependence of the fast process at Tg measured in terms 

of u
2
(T)  by neutron scattering [62], susceptibility ( ) by light scattering [50, 86], and 

dielectric loss ( ) by dielectric spectroscopy [55], the first question to ask is the identity of 

the fast process, and the second question to follow is why it is sensitive to glass-liquid 

transition at Tg. Answers to these questions have been given before in Refs.[47, 62, 55], and 

will be discussed further in section 2.5.    

 

 

2.2 Hydrated Lysozyme 

Sometimes the task of finding the change of T-dependence of u
2
(T)  at Tg in hydrated 

myoglobin and lysozyme is hampered by the contribution from the rotation of the methyl 

group present. The relaxation time of methyl group rotation has an Arrhenius temperature 

dependence with an average activation energy of 10.5 kJ/mol [34, 63, 66, 69, 87, 88]. Some 

of these neutron scattering studies have found the onset of anharmonicity in samples at all 

hydration level in increasing temperature starting at T 100-150 K and continuing to higher 

temperatures. Since at higher levels of hydration of the solvent, the Tg of the pure solvent as 

well as the corresponding solvated proteins can reach temperatures not much above 150 K,  

[7, 89, 9, 10, 11, 12, 13, 14] existence of the change of T-dependence of u
2
(T)  at Tg in these 

samples can no longer be ascertained. An example of this situation is presented in Fig.5 for 
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lysozyme hydrated at 0.4h. taken from the published data of the total mean square 

displacement in Ref.[69]. In the back-scattering time window of IN 13, the methyl group 

rotation contribution is significant, which makes it difficult to discriminate this process from 

the feature we are looking for near Tg. Certainly part of the increase in T-dependence of 

u
2
(T) tot above 100 K is due to methyl group rotation. By using neutron scattering with 

energy resolution of 1 eV, Roh et al. have demonstrated the onset of anharmonicity due to 

methyl group rotation in dry and hydrated lysozyme is at 100 K independent of hydration 

level [66]. Although the methyl group rotation continues to contribute to u
2
(T) tot at higher 

temperatures past the onset at 100 K, its contribution is expected to be smooth, and cannot 

account for the presence of the break in the temperature dependence of u
2
(T) tot near 173 K  

(see Fig.5). Therefore, we can be certain that this break, which has been determined also by 

Brillouin scattering [14], is due to crossing the glass transition temperature of lysozyme at 

0.4h. Another increase in T-dependence of u
2
(T) tot above 230 K can be identified with the 

dynamic transition with Td 230 K measured by IN13. Roh et al. also found this dynamic 

transition in the range 200-220 K with spectrometer that has time resolution of about 1 ns, ten 

times better than that of IN13. 
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Figure 5. Total mean square displacements versus T for lysozyme at 0.4h (star), lysozyme in glycerol at 0.4w 

(empty square) and lysozyme in glucose 0.4w (full square) measured by IN 13. Data are from Ref.[69]. The red 

arrow indicates 173 K, which can be taken within uncertainty as the glass transition temperature of lysozyme at 

0.4h. The lines drawn merely are used to suggest change of T-dependence of u
2
(T) tot near 173 K, and near 230 
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K. The green arrow indicates Tg 200 5 K of lysozyme in glucose 0.4h as well as the pure solvent glucose 0.4w 

itself.  

   

 

 

2.3 Lysozyme solvated by glucose-water and hydrated glucose  

The mean-square displacements of the hydrogen atoms of lysozyme solvated by deuterated 

glucose-water mixtures at various water contents  h (=g D2O/g glucose), ranging from the dry 

sample with 0w, hydrated sample with 0.15h, 0.40h, 0.60h, and 0.70h, had been measured by 

elastic neutron scattering using IN13, and partially reproduced here in Fig.6 [69, 70]. The 

lysozyme and deuterated glucose have equal weight in the samples. The dry sample, 0h, as 

well as the hydrated samples shows an onset of anharmonicity at 100 K and continues to 

higher temperatures, which is attributed to the activation of methyl group reorientations 

intrinsic to the protein. The contributions to u
2
(T) tot from the methyl group rotation plague 

the task of looking for the change of T-dependence at Tg in all the hydrated samples except 

the case at 0.15h. This is because the Tg of the sample with 0.40h is 200 K and lower for 

0.6h and 0.7h, and methyl contribution dominates u
2
(T) tot at these low temperatures. On the 

other hand, one clear case that is not plagued by the methyl group rotation is the sample with 

0.15h which has a much higher Tg 242 K [9, 89], and the measured u
2
(T) tot rises above that 

of the dry sample at temperatures above 250 K (see Fig.6), and hence the data at higher 

temperatures cannot come from the methyl group. Part of this rise was considered before as 

the signature of the dynamic transition at Td 260 K [70]. However, dielectric relaxation 

measurements of glucose with water content close to 0.15w have been made recently [90]. 

The fastest relaxation observed is from the water component in the mixture, but at 260 K its 

relaxation time  is several orders of magnitude longer than 1 ns or 100 ps at 260 K. Thus no 

relaxation process of the solvent can enter the time window of IN 13 at 260 K. An estimate of 

the temperature at which  reaches 1 ns is 310 K, and hence Td must be 310 K or higher, 

which is outside the temperature range of measurements shown in Fig.6. After eliminating 

both the dynamic transition and the methyl rotation as the cause of the change of T-

dependence of u
2
(T) tot near 240-250 K, the natural choice remaining is the general property 

of the change of T-dependence of u
2
(T) tot near Tg of the sample with 0.15w.  

The dynamic transition temperature Td of the lysozyme in glucose at 0.4h was determined 

from the data of u
2
(T) tot in Fig.6 to be 220 K [70]. This value of Td is lower than that of 

hydrated lysozyme without glucose by IN13 (230-240 K, see Fig.5) This is unreasonable 

considering that the presence of glucose in the 0.4h sample will slow down the dynamic and 

hence Td of the lysozyme in glucose at 0.4h has to be significantly higher than 230-240 K of 

hydrated lysozyme with 0.4h. Dielectric data [90] of glucose with water content close to 0.4h 

also show  is about 10
-6

 s at 220 K, and hence the dynamic transition of the 0.4h sample is 

not at 220 K but has to be higher than 280 K, a figure obtained by extrapolating dielectric data 

to shorter time. By the same reasoning as given before for the 0.15w sample, it seems that the 

change of T-dependence of u
2
(T) tot near Tg 200 5 K of the sample with 0.4h from 

dielectric relaxation  [90] also exists in the data (closed triangles) of Fig.6. The reader can 

find in Fig.5 an unobstructed view of the same data and the change in T-dependence of 

u
2
(T) tot near Tg 200 5 K.                     
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Figure 6. Total mean square displacement of lysozyme in deuterated glucose at 0h (O), 0.15h ( ),  0.4h (▲), 

0.6h (), and 0.7h ( ). The arrow indicates Tg= 242 K, the glass transition temperature of the sample with 0.15h. 

The lines serve no purpose except to bring out the change of T-dependence of u
2
(T) tot at some temperature 

near Tg. Data from Ref.[70] 
 

 Measurements of u
2
(T) tot of lysozyme in deuterated glucose at 0h shown in Fig.6 had 

been extended to higher temperatures also by IN 13. These previously unpublished data are 

presented in Fig.7. Over the expanded temperature range, u
2
(T) tot exhibits two breaks in its 

T-dependence. The one at lower temperature nearly coincides with Tg=307.6 K of pure 

glucose [91]. This is the manifestation of the change of u
2
(T) tot at Tg of lysozyme solvated 

by deuterated glucose can be identified. Here we have assumed that the Tg of lysozyme in 

deuterated glucose is nearly the same as Tg of deuterated glucose, which is supported by the 

findings of dielectric experiments [90]. The next break in T-dependence of u
2
(T) tot can be 

identified with the dynamic transition which occurs at Td near or above 370 K. Dielectric 

relaxation data of Kaminski et al. [91] obtained up to near 1 GHz show the secondary 

relaxation time of glucose is about 1 ns at 370 K. The relaxation time of this secondary 

relaxation is one decade longer than the IN13 time window of 100 ps. However, considering 

the fact that the frequency dispersion of the secondary relaxation is very broad, it is plausible 

that the dynamic transition is caused by the secondary relaxation entering the time window of 

IN13 starting from 370 K. The advantage of acquiring data of u
2
(T) tot at higher temperature 

for positive identification of the dynamic transition is clearly demonstrated by the example of 

lysozyme solvated by glucose. Had this not been done, the dynamic transition at about 370 K 

would be missed or mistakenly identified with the break at the lower temperature near 307 K 

which turns out to be the crossover at Tg. In the inset of Fig.7, the higher temperature data of 
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u
2
(T) tot of lysozyme solvated by deuterated glycerol  help to positively identify the 

dynamics transition and accurately determine the value of Td at 270 K. Although not many 

data points were obtained at lower temperatures, the data suggest an onset near 100 K which 

can be due to the methyl group rotation as found by Roh et al.         

 

 
 

Figure 7.  Total mean square displacements of lysozyme in deuterated glucose at 0h ( ) measured up to high 

temperatures help to clearly identify the crossover at Tg and the dynamic transition at Td. The inset shows the 

same for lysozyme solvated by deuerated glycerol.  
 

 

 Di Bari et al. [71, 72] reported IN13 elastic neutron scattering data on the monosaccharide, 

glucose, and its polymeric forms, amylose and amylopectin, over the hydration range h from 

the dry state to about 0.6 (h=g water/g dry saccharide). Their data of glucose with h=0, 0.25, 

and 0.50 are reproduced in Fig.8. The locations of Tg for h=0.25 and 0.50 are marked by 

arrows. Again, from dielectric relaxation measurements [90, 92, 93, 94, 95] of aqueous 

mixtures of glucose with h close to 0.25 extrapolated to higher temperatures, it is estimated 

that temperature higher than 300 K is needed to for  to reach 1 ns, which is ten times longer 

than the time window of IN 13. Hence, the dynamic transition in the sample with h=0.25 has 

not been seen in Fig.8, and the data therein actually reflect the change of T-dependence of 

u
2
(T)  near Tg=220 K. This interpretation of the data draws a distinction from the dynamic 

transition of Di Bari et al.[ 71]. In their interpretation, the temperature of activation of the 

hydration dependent anharmonic behavior, Ta, is basically an estimate of the dynamic 

transition temperature Td. The value of Ta is  178 K for h=0.25, remarkably much lower than 

Td 230-240 K by IN13 of hydrated lysozyme or myoglobin at h=0.40 [7, 14] and higher at 

h=0.25, without the presence of glucose. This unreasonably low value of Ta invalidates the 

interpretation of dynamic transition in the sample with h=0.25, and also in the sample with 

h=0.50 having Ta 150 K. 
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 At values of h comparable to those of the hydrated glucose discussed in the above, the Td 

of the hydrated polymeric amylose and amylopectin should be even higher, and lies outside 

the temperature range where u
2
(T)  data were taken, whose upper limit was nearly 340 K. 

Hence, the low values of Ta in the range from 210 K to 150 K of amylase and amylopectin 

with h ranging from 0.15 to 0.60 cannot be related to dynamic transition. 

  

 

 
 

Figure 8. Total mean square fluctuation differences reproduced from Ref.[71] by permission. The continuous 

lines are fits to a harmonic Debye model for the dry sample, and to the double-well potential model for the 

hydrated ones. The data refer to glucose samples at hydrations h = 0 ( ), 0.25 (O), 0.50 (). The data above 250 

K for the highest hydration reported (open triangles) are obtained from the initial slope of the elastic temperature 

scans.  
 

 

2.4 Dynamic transition observed at Td and/or Tg in hydrated disaccharides 

Elastic neutron scattering at IN13 has been used to study the dynamic properties of the 

aqueous mixtures of disaccharides, trehalose, maltose and sucrose, and their mixtures in water 

[73, 74, 75]. The hydrated disaccharide samples have two different molar contents of water, 

designated by the authors as disaccharide+6H2O and disaccharide+19H2O, corresponding to 

0.32h and 1h respectively. The u
2
(T)  data of all three disaccharides are similar in all 

respects including temperature dependence, and the representative one for trehalose+6H2O 

and trehalose+19H2O are reproduced in Fig.9.      

In Refs.[73, 74] the authors gave the values, 238, 235 and 233 K, for Tg of trehalose+19H2O, 

maltose+19H2O, and sucrose+19H2O respectively, and identified the onset of the rapid rise of 

u
2
(T)  above the harmonic response at lower temperatures to occur at Tg (see Fig.9 for 

example) rather than at a higher temperature Td, which is usually the case for dynamic 
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transition in solvated proteins or the solvents, such as in all the examples discussed before in 

the present paper. One of us (KLN) [53] cited Refs.[73, 74] for evidence of change of T-

dependence of u
2
(T)  at Tg, considering 238 K as the true Tg of trehalose+19H2O, and 

similar values for the other disaccharide+19H2O. Actually, after checking the values of Tg of 

the disaccharide+19H2O in the publications by Green and Angell [9] and by Bellavia et al. 

[12], it becomes clear that these values quoted in Refs. [73, 74, 75] are far above the actual 

values of Tg, as obtained from calorimetric measurements. Reading off from Figs.5a-5c of the 

paper by Bellavia et al. [12], the correct Tg are about 170-172 K for all three 

disaccharide+19H2O. So, how to explain this apparent conundrum, i.e. the appearance of the 

onset of rise of trehalose+19H2O, maltose+19H2O, and sucrose+19H2O at 238, 235 and 233 

K respectively, occurring about 65 degrees above Tg? One could invoke the presence of two 

distinctive Tg in this samples, one for the hydration water (lower) and the other for the 

disaccharides, but this is at odds with the accurate calorimetric measurements [12] and not 

common for hydrogen bonded mixtures, unless to invoke a phase separation. Actually, the 

simplest and more reasonable identification for these onset temperatures is that they are likely 

the dynamics transition temperatures of the disaccharides with 19H2O because from dielectric 

relaxation data [90] of trehalose+6H2O  the  has already reached 10
-7

 s at 238, and increase 

to 19H2O will easily take it to the time scale of 100 ps to 1 ns for detection by IN13. Recently, 

Gabel and Bellissent-Funel [26] have found the dynamic transition of hydrated C-

phycocyanin in trehalose+26H2O (equivalent to 1.36h) by incoherent elastic neutron 

scattering using IN 13 and IN 16. In the temperature range from 20 to 230 K, the measured 

u
2
(T)  from both spectrometers were identical and increased with temperature nearly 

linearly. Then, at 240-250 K the rapid increase of u
2
(T)  indicates the dynamical transition. 

On the other hand, the dynamical transition observed on IN16 was shifted to a slightly lower 

temperature than the one observed on IN13, due to the longer time window of the former. 

Notwithstanding the temperature values given in [73, 74, 75] for the disaccharide+19H2O 

are to be ascribed to Td and not to Tg, the values for the disaccharide+6H2O (corresponding to 

25 wt%) are, on the contrary, almost exactly the same as the values of Tg accurately 

determined from calorimetry data [9, 12]. Reading off from the chart of Bellavia et al., Tg of 

trehalose+6H2O is  230 K, which is nearly the same temperature at which the measured 

u
2
(T)  exhibit a rapid rise from the harmonic fit shown in the inset of Fig.9. Therefore, the 

change of T-dependence of u
2
(T)  at Tg is indeed observed in trehalose+6H2O. By the way, 

in mixtures of trehalose with 25 wt% of water, close to composition of trehalose+6H2O, the 

 from dielectric data [90] is about 10
-6

 s, which is more than 3 orders of magnitude longer 

than the time window of IN13 and hence cannot give rise to dynamic transition. An 

extrapolation of the dielectric  to higher temperature suggests that it will reach the time 

window of IN13 at temperatures higher than about 300 K, outside the temperature range of 

measurements shown in the inset of Fig.9. In this case the higher onset temperature Td cannot 

be observed as it is outside the experimentally investigated temperature range. In the case of 

trehalose+19H2O (main figure in Fig.9) the sharp rise is to be ascribed to Td and probably 

overwhelms the milder change at Tg, occurring at lower temperatures. 
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Figure 9. Figure reproduced from Ref. [73] show the dependence of u
2
(T)  on temperature for 

trehalose+19H2O in the main figure, and trehalose+6H2O in the inset.  The solid lines are the harmonic fits. For 

trehalose+19H2O, the change of T-dependence at Td 238 K (>Tg 170 K) is the dynamic transition. On the other 

hand, for trehalose+6H2O, the change of T-dependence is at Tg 230 K. Reproduced and adapted from Refs.[73] 

and [75] by permission. 

 

 

2.5 Origin of the change of u
2
(T)  at Tg in neutron scattering experiments    

The main theme of the present paper is on the presentation of evidence for the change of T-

dependence of u
2
(T)  at Tg, preceding the dynamic transition of u

2
(T)  at a higher 

temperature Td. Nevertheless, it is worthwhile to briefly mention here the origin of the change 

of T-dependence of u
2
(T)  at Tg. Despite this is a universal phenomenon found in many 

different classes of glass-formers [47, 48, 49, 51, 54], so far there is only one attempt to 

elucidate its origin [52, 53, 55, 62] as far as we know. The u
2

 obtained by neutron 

scattering at not so low temperatures has contributions from the dissipation of excursion of 

molecules while caged by the anharmonic intermolecular potential at times before the cages 

are dissolved by the onset of -relaxation [54] or by the merged -relaxation. In the present 

case of hydrated protein, the -relaxation is the JG - or water-specific relaxation of water in 

the hydration layer [41, 42, 43, 60], while in solvated protein without water is the JG -

relaxation of the solvent itself like glycerol in Fig.1. Unlike genuine relaxation process, the 

dissipation of caged molecules has no characteristic relaxation time, and hence it appears as a 

“nearly constant loss (NCL)” well approximated in the susceptibility spectrum ( ) or the 
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dielectric loss function ( ) by a power law, A
-c

, where c is small and positive. 

Correspondingly, the mean square displacement, u
2
(t) , as a function of time has the power 

law dependence, Bt
c
, with c<<1.  

This feature is commonly seen in conventional glass-formers, and it has been seen also in 

maltose binding protein (MBP) hydrated to about one hydration layer per MBP molecule by 

molecular dynamics simulation, as it is shown in the main part of Fig.10 reproduced from 

Fig.2b of Wood et al. [25]. Presented are the time evolutions of mean-square displacements of 

water O atoms over a range of temperature from 150 to 300 K. The authors reported that 240 

K is the temperature Td of the dynamic transition in the simulations for times up to 100 ps. 

These times are comparable with the time window of the IN13 spectrometer, using which 

Td=240 K is often observed on fully hydrated proteins. The temperature dependence of the 

mean square displacements of the O atoms of the water molecules at 100 ps is presented in 

the inset of Fig.10. In addition to the dynamic transition at Td=240 K, the mean square 

displacements show a change of T-dependence at about 200 K in the simulation, which 

corresponds to the 4
th

 curve from the bottom in the main figure marked by an arrow. We take 

this finding by simulations as another clear evidence of the presence of the change of T-

dependence of u
2
(T)  at Tg. 

 
Figure 10. Time evolution of mean-square displacements of water O atoms in hydrated MBP over a range of 

temperature from 150 to 300 K (bottom to top: 150, 180, 190, 200, 210, 220, 230, 240, 250, 270, 300 K; the 

curve at 240 K, the temperature of the dynamical transition in the simulations, is indicated by a heavy line). 
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(Inset) Temperature dependence of the water MSDs at 100 ps. In addition to the dynamic transition at Td=240 K, 

the MSDs show a change of T-dependence at about 200 K in the simulation, which corresponds to the 4
th

 curve 

from the bottom in the main figure and is marked by the arrow . Reproduced from Ref.[25] by permission 

 

 

The identification of change of T-dependence of u
2
(T)  of the hydration water at Tg in 

purple membrane (PM) can resolve a conundrum resulting from the recent study by neutron 

scattering and diffraction experiments on hydrated stacks of purple membranes by Wood et al. 

[76, 77]. In this study, they examined the dynamical coupling between the PM and the 

hydration water by a combination of elastic incoherent neutron scattering, specific 

deuteration, and molecular dynamics simulations. The dynamics of hydration water were 

isolated by measurements on completely deuterated PM and hydrated in H2O, while the PM 

dynamics were obtained from the study of natural abundance PM in D2O. The temperature-

dependence of u
2
(T)  shows changes at 120 K and 260 K for the PM, and at 200 K and 260 

K for the hydration water. An outstanding difference in the dynamics of PM and hydration 

water is brought out by the presence of change of T-dependence of u
2
(T)  of hydration water 

at 200 K, in contrast to the absence in the T-dependence of u
2
(T)  of PM at the same or 

nearly the same temperature. This observation in membrane differs from soluble proteins 

where the dynamic transition can be observed by the change of T-dependence of u
2
(T)  of 

either the hydration water or the protein at the same temperature. The findings in hydrated PM 

have casted doubt on the current view that the dynamics of protein are coupled to the 

hydration water and the two exhibit dynamical changes at the same temperature [25, 96]. The 

words, dynamic transition, in a few lines above are underlined to underscore the fact that the 

dynamical change of soluble proteins intended by Wood et al. is apparently the change of T-

dependence of u
2
(T)  at Td, and not at Tg. If the change of T-dependence of u

2
(T)  of water 

in hydrated PM at 200 K is indeed at Tg which we profess to be general, then there is no 

contradiction to the current view that that macromolecular motions respond to dynamical 

changes in the hydration water as far as the dynamic transition at Td is concerned and if 

Td=260 K. This is because both water and membrane show change of T-dependence of 

u
2
(T)  at 260 K. Corroborating evidence of this can be found from earlier elastic incoherent 

neutron scattering study of dry hydrogenated PM and D2O-hydrated hydrogenated PM using 

IN10 by Réat et al. [78] with energy resolution E=1 eV and the <u
2
(T)> values 

corresponding to motions occurring in a time shorter than 2 ns. The D2O-hydrated 

hydrogenated PM shows the change in T-dependence of <u
2
(T)> or the dynamic transition at 

Td near 270 K, labelled as „solvent effect‟ by Réat et al. On the other hand, no such dynamic 

transition was found in dry hydrogenated PM. The fully deuterated PM and hydrated by D2O 

studied by Réat et al. also show the dynamic transition at Td in the range of 260-270 K. All 

the present and previous studies of PM support that the observed change in T-dependence of 

<u
2
(T)> near 260 K is indeed the dynamic transition of the coupled protein-hydration water 

and the two exhibit dynamical changes at the same temperature Td.       

Actually there is experimental evidence that Tg of the hydrated PM studied by Wood et al. is 

about 200 K. Berntsen et al. [97] had studied PM hydrated to h=0.4 and 0.2g H2O/g of PM by 

dielectric spectroscopy and differential scanning calorimetry between 120 and 300 K. They 

found by calorimetry a pronounced endothermic process at 190-200 K, which can be 

identified as Tg of the hydrated PM. By dielectric spectroscopy they found the JG -relaxation 

of the hydration water with relaxation time  showing Arrhenius T-dependence at low 

temperatures with activation energy of about 54 kJ/mol typical of this kind of relaxation, and 
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changing to a stronger T-dependence at high temperatures after crossing 190–200 K. This 

behavior is another indication that Tg is within the range of 190-200 K because change of T-

dependence of  at Tg is a universal feature found in all glassformers including aqueous 

mixtures and hydrated proteins [43, 60, 58]. Since the sample studied by Wood et al. is 

hydrated to the level of approximately h=0.3 g of water per g of PM, in between 0.4 and 0.2g 

H2O/g of PM in the samples of Berntsen et al., we can conclude that its Tg is within the range 

of 190-200 K. Additional support of Tg 200 K may be drawn from the observed onset of 

translational mobility in water beyond the first hydration layer indirectly observed at 200 K 

by monitoring the lamellar spacing of PM stacks as a function of temperature. The molecular 

dynamics simulation of hydration water of PM has u
2
(T)  at 30 ps changing T-dependence 

near 200 K. 

The dielectric relaxation data of  from Berntsen et al. enable us to verify that the transition 

seen at 260 K in the u
2
(T)  of either the hydration water or the membrane protein is indeed 

the dynamic transition caused by the JG -relaxation entering the spectral range of the IN 16 

with time window shorten than about 1 ns. On extrapolating the dielectric  obtained for 

h=0.2 and 0.4 above 200 K by an Arrhenius law, we estimate at 260 K that  is a factor of 

about 4 or 5 shorter than 1 ns. The actual T-dependence of  is likely weaker than the 

Arrhenius dependence assumed because the prefactor of the latter is about 10
-19

 s and is 

unphysical. Therefore, a good correspondence in order of magnitude between  at T=260 K 

and the IN 16 time resolution of about 1 ns is possible. 

The fact that membrane motion does not show the change of T-dependence of u
2
(T)  at 

200 K is clear. This suggests that the membrane dynamics is not as sensitive to glass 

transition as  hydration water,  probably because presence of lipids  may have a stronger 

impact on the membrane protein dynamics than hydration water, when the glass transition 

temperature is crossed. This behavior is at variance with what we have seen above (see for 

instance Fig. 3 and Fig. 7)  in some soluble proteins, where the change of T-dependence of the 

protein u
2

 at Tg has been seen. However, for the dynamic transition, the dynamics of the 

membrane protein is still coupled to or controlled by that of hydration water and it occurs at 

Td 260 K. Thus, by identifying specifically that the 200 K transition is at Tg, the challenge by 

the neutron scattering data of hydrated PM on the current view of the dynamic transition is 

removed. Returning to the experimental fact that the power laws of ( ) =A
-c

 or u
2
(t) = 

Bt
c
, with c<<1 terminates at times of the order of , it was argued that the intensity factor A 

or B approximately varies with temperature like 1/log( (T)) [62]. Experimentally, it is found 

in conventional glass-formers [98, 99] as well as in aqueous mixtures [61, 58, 39, 100] and 

hydrated proteins [85, 14], that the relevant (T) changes from the Arrhenius T-dependence 

below Tg to a stronger T-dependence above Tg. Therefore, this change in T-dependence of 

(T) on crossing Tg leads to the corresponding change in T-dependence of u
2
(T)  at Tg. 

Conceptually, the change in T-dependence of (T) on crossing Tg is one of consequences of 

the deeper experimental fact that the - and the JG -relaxation are coupled or inseparable, 

and thus (T) mimics a(T) in properties. One of the remarkable experimental fact showing 

that the two relaxations are coupled is the invariance of the ratio of their relaxation times to 

different combinations of pressure and temperature while keeping one of them constant [98, 

99]. The coupling between the two relaxations is the basic prediction of the Coupling Model, 

wherein the primitive relaxation is the analogue of the JG -relaxation.  

There are only a few papers published in the past reporting neutron scattering on D2O 

hydrated proteins that have mentioned the presence of change at Tg [24, 28, 101]. One is the 
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study of hydrated DNA by Sokolov et al. [101] by spectrometer with frequency resolution of 

30 GHz corresponding to 5 ps in time-scale. These authors integrated the quasi-elastic 

scattering intensity in the frequency range 60–200 GHz at different temperatures, and rescaled 

them by the Bose factor. Although the Tg of the hydrated DNA had not been determined 

either by calorimetry or dielectric relaxation, it can be expected to fall within the range of 

180-200 K. By interpolation of the scanty results of the integrated intensity spanning across 

the possible Tg at 83, 138, 211, 236, 255, and 275 K, Sokolov et al. managed to show its 

temperature dependence changes at some temperature within 180-200 K. The data had been 

transformed into the frequency dependence susceptibility spectra ( ). We point out that 

( ) exhibits the nearly constant loss (NCL) at all these temperatures. At 138 and 211 K, the 

NCL is found at frequencies lower than 125 GHz. At 236, 255, and 275 K, the NCL is 

identified with the level of the very flat minimum. When plotted against temperature, these 

few data points of NCL suggest that the NCL has weak T-dependence below the purported Tg 

within the range of 180-200 K, and changes to a stronger T-dependence above it. This 

property, shared by NCL in many glassformers and hydrated proteins (see also Fig.10), found 

also in hydrated DNA reaffirms the observation of possible break at the purported Tg is due to 

NCL from caged dynamics, and its sensitivity to glass transition. Beyond addressing the 

possible break of integrated intensity at Tg, Sokolov et al. analyzed their data at higher 

temperatures of 297 and 325 K in terms of Mode Coupling Theory (MCT), and suggested 

there is a dynamic transition at T 230 K, which they ascribed to the critical temperature Tc of 

MCT, but it cannot be the commonly known dynamic transition at Td. The spectrometer they 

used only can sense motion shorter than 5 ps (like IN5) or 20 ps (like IN6) when extended 

by using 9 Å neutrons. Thus, Td must be significantly higher than 230 K. This is because a 

similar system, hydrated tRNA at h=0.35-0.50, has Td near the same temperature from 

measurement on a spectrometer with frequency resolution of 0.24 GHz, and time scale ~1 ns, 

a hundredfold better in resolution than in Ref.[102]. Moreover, Cornicchi et al. found Td for 

DNA at h=0.55 is at 230-240 K by IN13 with an about 10 times better resolution [22, 103]. 

Cursory mention of caged motion was made by Khodadadi et al. [40] in their sketch of 

the protein dynamics. They described the caged dynamics as fast picosecond relaxation, 

appearing in neutron and light scattering spectra in the frequency range 100 GHz-1 THz. It 

is incorrect to restrict manifestation of caged dynamics to such high frequency range. In fact, 

at temperatures below Tg and in some range above Tg, caged dynamics can persist down to 

much lower frequencies than 100 GHz, and can be observed even by low frequency dielectric 

and mechanical relaxation as the nearly constant loss. [51, 54, 55]. More importantly, 

Khodadadi et al. did not mention that caged dynamics can change temperature dependence on 

crossing Tg, which is the thrust of our present paper. From their view of the caged dynamics 

as fast picosecond relaxation is staying in the frequency range 100 GHz-1 THz for all 

temperatures as illustrated in their Fig.11, it cannot cause any change of the T-dependence of 

the mean square displacement from neutron scattering at any temperature including Tg.    

Another neutron scattering study mentioning change of temperature dependence of the 

mean square displacement at Tg is on D2O hydrated lysozyme by Zanotti et al. [24]. In this 

study the methyl-group rotation in lysozyme has not been taken into account and thus the 

presence of the change of temperature dependence at Tg 150 K is not totally certain. Most 

proteins fully hydrated by water alone have Tg in the range approximately from 150-180 K, 

and the complication due to methyl-group rotation contributing in the same temperature range 

makes it difficult to identify the presence of the break at Tg in the elastic intensity or mean 
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square displacement. This problem is circumvented in solvated proteins using solvents with 

higher Tg as shown throughout the sections in the above. For proteins hydrated by water 

alone, full or specific deuteration of the protein or choice of spectrometer with very short time 

window have to be made to eliminate or remove the methyl group rotation contribution to the 

observed elastic intensity in order to observe the break at Tg. This will be the subject of a 

paper [104] to follow this one, where the presence of break in T-dependence of u
2
(T)  at Tg 

in several proteins hydrated by water will be proven.     

Besides us, Doster had shown in one recent paper the presence of two changes of T-

dependence of u
2
(T) , one at Tg and another at Td. This he did in Ref.[28] from the proton 

mean square displacements of H2O adsorbed to proteins obtained by SPHERE with time 

resolutions of 2 ns where the protein is C–PC, and by IN6 at 15 ps where the protein is 

myoglobin. Once more the data show that the dynamic transition temperature Td depends on 

the resolution of the spectrometer, but not in the case of the changes of T-dependence of 

u
2
(T)  at Tg found before in conventional glass-formers [47]. The intermediate scattering 

function I(Q,t) of adsorbed water for myoglobin at h=0.34 g/g taken by IN6 shows the decay 

in two steps within 15 ps. The first step occurring at times less than 0.3 ps was interpreted as 

associated with fast hydrogen bond fluctuations dubbed the β-process with correlation time 

nearly independent of T and the wave vector Q, while the amplitude increases with Q and T. 

These fast hydrogen bond fluctuations can contribute to u
2
(T)  of caged water molecules, 

and its T-dependence can change at Tg if the fluctuations are sensitive to change in density on 

vitrification. However, this scenario applies only to hydration H2O, and not when the solvent 

is glycerol as in Figs.1-3 or glycerol-D2O in Fig.3. Also this applies not to the u
2
(t)  of 

water O atoms over a range of temperature ranging from below Tg to some higher temperature 

but below Td shown in Fig.10 for hydrated MPB. This is because the fast process seen from 

u
2
(t)  in Fig.10 extends to 100 ps while the hydrogen bond fluctuations according to Doster 

manifest at times less than about 0.3 ps. This fast process comes from caged water molecules 

and has origin common to those found in ordinary glass-formers. It is also present in the case 

of the hydration water for myoglobin at h=0.34 g/g taken by IN6, as evidenced by the plateau 

of I(Q,t) shown for Tg 180 K and 220 K in Ref.[28], and certainly at temperatures below Tg 

although not presented.  

Mode Coupling Theory (MCT) also addressed caged molecular dynamics of conventional 

glass-formers, and there is a specific prediction on the fast -process obeying scaling 

relations. Doster [7, 28] suggested I(Q,t) of adsorbed water for myoglobin at h=0.34 g/g taken 

by IN6 can be explained by the two-steps decay of MCT. Before this can be accepted, the 

time dependence of I(Q,t) or the susceptibility minimum (obtained after Fourier 

transformation) and the scaling relations must be tested. Even if successful, it is not clear how 

MCT can address the change of T-dependence of u
2
(T)  at Tg because neither the ideal MCT 

nor the version that incorporates translation-rotation coupling [105, 106] have predictions for 

the temperature dependence of the caged dynamics at or near Tg.  

The crossover of temperature dependence of u
2
(T)  of hydrated and solvated proteins at Tg 

has been observed before in many small molecular and polymeric glass-formers by neutron 

scattering [47], dynamic light scattering [50,62], and dielectric relaxation [51]. Hence this 

property of hydrated protein could likely have the same origin as conventional glass-formers. 

Proposed before as a possible molecular mechanism responsible for the crossover of 

temperature dependence of u
2
(T)  at Tg of glass-formers is caged molecular motions, and the 

sensitivity of the amplitude of the motion to change of specific volume on crossing Tg [62]. 
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The u
2
(T)  having this property corresponds in susceptibility to the loss of molecules 

moving within cages formed by the anharmonic potential at Tg. This loss has no characteristic 

time and the corresponding u
2
(T)  appears as a scaleless power law or logarithmic function 

of time (i.e., nearly constant loss in susceptibility), and continues until the cages are dissolved 

by the onset of the Johari-Goldstein -relaxation involving the motion of the entire molecule. 

From this relation between the caged dynamic and the -relaxation, the change of u
2
(T)  at 

Tg has been rationalized [62] from the well known and experimentally observed change of T-

dependence of both the strength and the relaxation time of the -relaxation on crossing Tg 

[55,58]. The plenty of evidence for change of T-dependence of the nearly constant loss when 

crossing Tg in common glassformers [47, 50, 51] could be construed to suggest the same 

interpretation for the solvated proteins. Notwithstanding the suggested origin of u
2
(T)  of 

hydrated proteins is caged dynamics, more experimental investigation is needed before 

definitive conclusion can be made. In fact, other possible origin of the observed change of 

slope of <u
2
(T)> at Tg could be vibrational contributions. Some molecular vibrations, 

including Boson peak intensity and frequency, are also sensitive to temperature change and on 

crossing Tg [107]. It has been demonstrated that the density of vibrational states of amorphous 

materials, as well as that of hydrated and solvated proteins [14, 107], undergoes a change on 

crossing Tg. This can affect the elastic intensity of neutron scattering, and the effect reflects in 

mean square displacement. Therefore, in analyzing only data coming from elastic incoherent 

neutron scattering, it is difficult to single out or neglect these contributions to <u
2
(T)>. More 

experimental work with alternative techniques on hydrated and solvated proteins needs to be 

done in order to provide an exhaustive picture. 

 

 

 

3. Conclusion                              

From the evidences given in the sections above, the following conclusions can be made on 

the dynamics of solvated proteins probed by elastic or quasielastic neutron scattering, and by 

molecular dynamics simulations. As a function of increasing temperature and observed from 

either the protein or the solvent, the mean square displacement u
2
(T)  shows change to a 

stronger T-dependence after crossing temperature close to the glass transition temperature Tg, 

of the solvated protein. In all cases, Tg is independently determined by calorimetry or by 

dielectric spectroscopy. For solvated proteins, this change of u
2
(T)  at Tg coexists with the 

usually found dynamic transition of the solvated protein at Td, which is higher than Tg. The 

change of u
2
(T)  is observed near Tg, independent of the time window of the spectrometer 

used for solvated proteins and conventional glass-formers. In contrast, Td depends on the 

resolution of the spectrometer because the dynamic transition is caused by entrance inside the 

time window of the spectrometer of the β-relaxation of the solvent (coupled to the protein) 

and its most probably relaxation time is a function of temperature. 

The change of u
2
(T)  at Tg was found before in many conventional glass-formers of 

various kinds, and now also in solvated proteins. This supposedly universal dynamic property 

of glass-formers as well as in hydrated proteins poses as an outstanding problem that 

challenge for explanation [62]. Possible origin of this general property could be contributions 
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to u
2
(T)  coming from vibrations including the Boson peak by others [107], and caged 

dynamics by us [47,50,51,62]. Boson peak frequency and intensity [107] show changes on 

crossing Tg, reflecting in the elastic intensity and in a possible crossover of u
2
(T)  Our 

explanation is the change of amplitude of caged molecular motions on crossing Tg, as it has 

been demonstrated in conventional glass-formers by different techniques (light scattering and 

dielectric spectroscopy), reporting a crossover in the amplitude of the nearly constant loss. 

More experimental work is needed to provide a conclusive explanation for the observed 

change of u
2
(T)  at Tg, but from the evidence presented in this paper it is clear that, 

regardless of its origin, a crossover does exist at Tg, it does not depend on the timescale of the 

spectrometer, and it occurs beside the so-called dynamic transition at Td. Remarkably, 

molecular dynamic simulations of a hydrated protein have found the change of u
2
(T)  at Tg 

at times before the dynamic transition at Td.  

There are neutron scattering experiments of some hydrated proteins in which the presence 

of the change of T-dependence of u
2
(T)  at Tg is not obvious. This occurs in some hydrated 

proteins with methyl groups and low Tg that falls in the temperature region where rotation of 

methyl group contributes strongly to the rise of u
2
(T)  with temperature. Highly hydrated 

proteins is another case where change of T-dependence of u
2
(T)  at Tg cannot be easily 

observed. A plausible explanation follows from the fact found in conventional glass-formers 

that the change of T-dependence of u
2
(T)  at Tg is small in strong glass-formers with low 

degree of cooperativity [62], and hydrated water at high hydration level is such the case. 

The dynamic transition at Td can be mistaken as the observed change of T-dependence of 

u
2
(T)  at Tg if one is not aware of the presence of the latter coexisting with the former. This 

has happened before in the literature, and has led to unnecessary inconsistency in the 

interpretation of the dynamic transition. The inconsistency is removed after taking into 

account of the presence the change of T-dependence of u
2
(T)  at Tg.            
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