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The interplay of geometrical and topological entanglement in semiflexible knotted polymer rings
confined inside a spherical cavity is investigated using advanced numerical methods. By using
stringent and robust algorithms for locating knots, we characterize how the knot length lk depends
on the ring contour length, Lc and the radius of the confining sphere, Rc. In the no- and strong-
confinement cases we observe weak knot localization and complete knot delocalization, respectively.
We show that the complex interplay of lk, Lc and Rc that seamlessly bridges these two limits can be
encompassed by a simple scaling argument based on deflection theory. The same argument is used to
rationalize the multiscale character of the entanglement that emerges with increasing confinement.

If we tie a knot in a piece of rope and pull the latter at its extremities, the knotted part will become readily
distinguishable from the rest of the rope because it localizes. Indeed, for a very long rope only a neglible fraction of
its contour length will be required to accommodate the knot [1]. In this intuitive example of knot localization the
topological (global) entanglement embodied by the knot does not interfere with the geometrical (local) entanglement
of the rest of the rope. This is hardly the case for polymers that circularize in equilibrium. In such rings, knots are
abundant [2] and the interplay between topological and geometrical entanglement impacts significantly the molecules’
dynamical, mechanical and metric properties [3–5]. Understanding how and to what extent global and local entangle-
ment are related is a major open issue in polymer physics [6] with ramifications in key biological contexts[7], especially
those related to genome organization in eukaryotes, bacteria and viruses [8–12].

A first breakthrough in the problem could be made by establishing what fraction of the polymer ring is occupied
by the knot(s) and whether this measure is sufficiently robust or depends instead on the geometrical entanglement
degree. As a prototypical context to examine this problem we consider semi-flexible, self-avoiding rings of cylinders
with the simplest knotted topology, a 31 (trefoil) knot, and subject to isotropic spatial confinement. In such a system,
by varying the size of the confining region, the degree of geometrical complexity can be changed and related to the
equilibrium size of the knotted ring portion.

For definiteness, the rings properties are set to match dsDNA. Specifically, the cylinder diameter and long axis are
set equal to d = 2.5nm and b = 10nm, respectively. The latter quantity is ten times smaller than the DNA Kuhn
length (equal to twice the persistence length, lp = 50nm) thus ensuring a fine discretization of the model DNA. The
system energy includes steric hindrance of non consecutive cylinders plus a bending potential:

Eb = −KbT
lp
b

N∑
i=1

~ti · ~ti+1 (1)

where ~ti is the orientation of the axis of the ith cylinder, ~tN+1 ≡ ~t1 and the temperature T is set to 300K. We
considered rings of N = 50, ...250 cylinders, corresponding to countour lengths, Lc = Nb ranging from 500nm to 2.5
µm. This range allows for probing changes in knot localization going from semiflexible to fully-flexible rings [13] as
well as examing the effect of the interplay between Lc, lp and the radius of the confining sphere, Rc. For simplicity
of notation in the following all lengthscales are expressed in units of b.

Because compact ring configurations are entropically disfavoured with respect to unconstrained ones, simple stochas-
tic sampling schemes cannot be effectively used to generate spatially confined rings [6]. An analogous entropic attrition
works against having a sizeable population of knots of a given type, trefoils in our case, at all levels of confinement [6].
To overcome these two difficulties we used a biased Multiple-Markov-chain sampling scheme [12] with 24 Markovian
replicas. For each replica, ring configurations are evolved using crankshaft and hedgehog Monte Carlo moves [14]. The
moves preserve the length of the rings, but not the topology, consistently with ergodicity requirements [6, 15]. In fact,
even when the configurations before and after the move are self-avoiding, the move itself may involve self-crossings
of the chain. A newly generated ring, Γ, is accepted according to the standard Metropolis criterion with canonical
weight, exp [−U(Γ)/KBT ], where the potential energy, U is suitably chosen to enhance the populations of compacts
trefoil rings. Specifically, if Γ is non self-avoiding or has a too complicated topology (8 or more minimal crossings
according to the Alexander polynomial [6]) then U is set equal to infinity, otherwise U(Γ) = Eb(Γ) + pRc(Γ). In the
latter expression, Rc is the radius of the sphere containing Γ (calculated as the largest distance of the cylinder vertices
from the ring geometric center) and p is a confining field whose value is set differently for the various replicas so to
sample rings with different degree of confinement.
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FIG. 1. (a) Typical configurations of trefoil-knotted rings with N = 200 cylinders at different levels of confinement. The
encapsidated configurations for Rc = 6 and Rc = 3 are magnified for ease of visualization. The knotted portion of the rings is
shown in red. (b) Sketch of a trefoil-knotted ring; its knotted portion is highlighted in red in panel (c) and its shortest knotted
arc is shown in blue in panel (d). (e) Average knot length, lk, as a function of 1/Rc for rings of varying number of cylinders,
N = 50...250. (f) Dependence of lk on Lc in the no- and strong-confinement limits; the lines represent the best-fitting power
laws. The strong-confinement data correspond to the limiting values approached exponentially by the curves in panel (e). The
exponential fit was limited to the data points for which lk > 0.6Lc.

For each value of N this procedure was used to generate at least ∼ 107 configurations with varying compactness
and topology. For the a posteriori data analysis we picked, out of the generated rings, an uncorrelated subset with
31 topology (positively established with the KNOTFIND algorithm [16]). Finally a thermodynamic reweighting
technique [12] is used to remove the p bias and obtain canonical averages for the observables.

Figure 1a illustrates both the range of spherical confinement spanned by the sampled rings as well as the arclength
covered by the knot. As a first method to identify the knotted portion we look for the arc, Γ1, that (i) has the 31
topology while the complementary subchain, Γ2 ≡ Γ\Γ1 is unknotted; (ii) cannot be further shortened without losing
the full-ring 31 topology and finally (iii) can be extended continuously to encompass the whole ring retaining the 31
topology and the unknottedness of the complementary arc, Γ2. The topological state of the open arcs Γ1 and Γ2 is
established after bridging their termini with the minimally-interfering closure of ref. [17].

The above scheme for locating the knot can be seamlessly and robustly applied at all levels of ring compactification.
As such, it considerably extends the scope of previous investigations where, depending on the free or collapsed nature
of the rings, the knotted-arc identification had to be made with different and inequivalent methods, including ones
affecting chain geometry by a rectification procedure or by external constraints such as a sliplink[18, 19].

Two important facts emerge from Fig. 1e: for a given ring contour length, Lc, the increased confinement is parallelled
by an increase of the length of the knotted arc, lk; at the same time, for a given size of the confining sphere one has
that lk increases with Lc. As a first step towards a comprehensive rationalization of the results we examine the lk
versus Lc behaviour in the no- and strong-confinement limits, which are shown in Fig. 1f.

In the unconstrained case, it is seen that lk increases as a power of Lc: lk(Rc →∞) ∝ Lαc with α = 0.75±0.02. The
sublinear increase implies that lk/Lc vanishes for increasing Lc, resulting in a weak knot localization. This is consistent
with previous results on knot localization for unconstrained rings both on- and off-lattice where, however, different
values of α ranging from 0.54 to 0.75 were reported [18, 19]. It also agrees qualitatively with recent experimental
findings on knotted circular DNA adsorbed on mica surfaces based on single molecule imaging techniques [20].

A power-law dependence of lk on Lc provides a good fit of the data for strong confinement too but in this case
α = 1.09 ± 0.07. This is compatible with a linear dependence of lk on Lc thus implying a full delocalization of the
knot in equilibrated rings subject to severe three-dimensional confinement. To the best of our knowledge this fact has
not been established before. However, it is worth pointing out that knot delocalization has been previously observed
for θ-collapsed knotted rings [18, 19]. The analogy with our findings is noteworthy since the ring metric properties
are dictated purely by equilibrium thermodynamics for collapsed rings while spatial constraints are also at play for
confinement.

We next turn our attention to the intermediate regime intervening between the no- and strong-confinement limits
and show that the complex behaviour of Fig. 1e can be rationalized in terms of a surprisingly simple relationships
involving the length scales Lc, Rc and lk.
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FIG. 2. (a) Mean squared end-to-end distance, R2
ee, of arcs of length s in rings of N = 150 cylinders at different levels

of confinement. The dashed horizontal line indicates the reference value equal to 6/5R2
c while the continuous line shows

the expected R2
ee for an unconstrained, non-self-avoiding Kratky-Porod (KP) chain. The intersection of these reference lines

determines the nominal deflection arclength, s̄ highlighted by the dropline. (b) Collapse of the same data points as in Fig. 1e
obtained by rescaling lk and Lc by s̄. The slope of the line fitting the data for Lc

s̄
> 40 is 1.09 ± 0.02.

To this purpose we first observe that upon increasing confinement the geometric characteristics of the rings resemble
those of uniformly filled spheres. In particular the eigenvalues of the tensor of gyration of rings become close to the
eigenvalue of a uniformly-filled sphere (see supporting material).

The approximately uniform filling of the confining sphere by mildly- or strongly-confined rings is well illustrated
in Fig. 2a which portrays the mean squared end-to-end separation, R2

ee(s) of ring portions of different arclengths, s.
In fact, the profile of R2

ee(s) is noticeably flattened and its plateau value is about 6/5R2
c , which is the mean square

distance of two points inside a spherical volume of radius Rc. The value of s at which the plateau value of R2
ee is

reached corresponds to the typical contour length, s̄, of a discrete worm-like (Kratky-Porod) chain with mean squared
end-to-end distance equal to 6/5R2

c

R2
ee(s̄) = 2lps̄

[
1− lp

s̄

(
1− e−

s̄
lp

)]
=

6

5
R2
c . (2)

s̄ is the nominal arclength of unrestricted ring-portions that are just long enough to hit the sphere boundary and, by
inverting (2), can be expressed in terms of the principal branch of the Lambert W function [21],

s̄/lp = 1 + y +W (− exp[−1− y]) (3)

where y ≡ 3R2
c/5l

2
p. We shall refer to s̄ as the deflection arclength, in analogy with the deflection argument originally

introduced for polymers in channels [22] and later applied to other contexts, such as crumpled globules [8].
The deflection arclength is crucial for rationalizing the results of Fig. 1e and 1f. In particular it is plausible that

confined rings that experience the same nominal number of deflections at the spherical hull boundary should have
statistically similar knot lengths once rescaled by s̄. This conjecture is supported by the scatter plot of Fig. 2b where
the rescaled knot length is plotted against the number of nominal deflections Lc/s̄ for rings of all considered lengths,
50 ≤ N ≤ 250, and degrees of confinement. Despite the heterogeneity of the original data sets (see Fig. 1e), the plot
displays a striking collapse of the data points. A broadening of the curves is seen only in the limit of unconstrained
rings, where indeed, the deflection length looses meaning. We stress that, because s̄ is calculated deterministically,
no single adjustable parameter was introduced to obtain the collapse in Fig. 2b. The collapsed curve exhibits an
asymptotic linear trend thus reinforcing the delocalization result of Fig. 1f.

We conclude the study of the interplay of ring geometry and topology by showing that, by increasing the ring
compactification, a non-trivial type and degree of entanglement is observed at progressively smaller arclengths.

To do so we search for the smallest arcs with 31 topology. As illustrated in Fig. 1c,d such minimally-long knotted
portion may differ from the proper knotted arc introduced before because it does not necessarily satisfy criterion (iii).
Consequently, it may correspond to an ephemeral knot (because it can be contained in a longer arc with different
topology, e.g. an unknot) [23].

Fig. 3a illustrates how the length of the shortest knotted arc, ls, behaves for increasing confinement and compares it
with lk. It is seen that for no- or midly-constrained rings, when the ring geometrical entanglement is minimal, the two
measures are in good accord. However, upon increasing confinement they progressively diverge. Notice that ls and
lk provide lower and upper limits to the range of arclengths over which non-trivial topological entanglements (after
arc closure) are observed. Consequently, the divergence of the two metrics indicates that the entanglement cannot be
described by a single length scale but it displays a multiscale behaviour that amplifies upon increasing confinement.
Similarly to the case of the proper knot length, lk, the concept of deflection arclength is useful for rationalizing the
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FIG. 3. (a) Dependence of knot length, lk, and the shortest knot length, ls, on confinement for rings of N = 150 cylinders.
(b) Scatter plot of ls/s̄ versus Lc/s̄ for rings of all lengths and degree of confinement.

interplay of ls, Rc and Lc. In fact, ls expectedly results from the balance between (a) the increasing probability that
a knot can be tied with a minimal (nominal) number of deflected segments/cylinders for longer and more confined
rings and (b) the decreasing probability that the complementary arc is unknotted.

In the plot of Fig. 3b it is seen that, for increasing Lc, the ls/s̄ data tend to approach a limiting curve that has a
linear dependence on Lc/s̄. The results indicate that for medium and strong confinement the length of the smallest,
and possibly ephemeral, knot ls increases approximately linearly both with the Lc at fixed Rc and with Rc at fixed
Lc (more data in supp. mat.). Together with the behaviour of lk, the results provide a quantitative basis for the
multiscale character of the ring entanglement that sets in for increasing confinement.

To summarize, we have used simulations to measure the length of the topologically entangled portion (lk) of knotted
self-avoiding ring polymers subjected to different degree of spherical confinement. We find that for weak confinement,
when the geometrical entanglement of the chain is moderate, the knot is weakly localized while for strongly packed
rings it delocalizes completely. The delocalization trend at increasing confinement and different Lc follows the neat
scaling behavior of Fig. 1f which is rationalised in terms of the deflection arclength. The latter therefore appears to be
a key quantity to characterize the complex interplay of the geometry and topology in confined polymer rings, which
reverberates in the above mentioned multiscale entanglement. This observation prompts the question of whether an
analogous concept and scaling argument can be introduced to characterize and rationalize the entanglement found in
other systems of densely-packed circular polymers, such as ring melts or theta-collapsed rings [8, 18, 19]. We wish to
point out that our results have direct bearings on the relevant problem of viral DNA ejection into infected cells [24].
In fact this crucial step of the viral infection is not hindered by the presence, in the packaged genome, of knots because
the latter are highly delocalised [7, 11].

We thank D. Marenduzzo and A. McGown for useful discussions. We acknowledge support from Italian Ministry
of Education.
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SUPPORTING MATERIAL

A. Size and shape of confined rings
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FIG. 4. The average eigenvalues of the rings gyration matrix, λ1, λ2, λ3 (largest to smallest) are shown as a function of the
radius of the confining spherical cavity, Rc. Errorbars report the standard deviation around the average value. The inset shows
the data for high spatial confinement. Going from no- to mild confinement, the average length of the rings principal gyration
axis is substantially reduced while the other two are much less affected. For example, the initial five-fold reduction of λ1 in
rings of N = 150 cylinders is accompanied by a change of λ2 of about 50% and a change of λ3 not larger than 10%. The
latter variation is non-monotonic, indicating a swelling of the mildly confined semi-flexible rings in the plane perpendicular to
the (squeezed) primary gyration axis. Importantly, the strong shape anisotropy of unconstrained rings is largely lost even for
mild confinement: already at Rc = 5 all average gyration are compatible with the gyration eigenvalue of the uniformly-filled
confining hull within the estimated errors.
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B. Multiscale entanglement: detailed comparison of lk and ls

0

50

100

150

200

250

l k

0 0.1 0.2 0.3 0.4 0.5
1/Rc

50
75
100
125

150
175
200
225
250

0

50

100

l s

0 0.1 0.2 0.3 0.4 0.5
1/Rc

(b)

(a)

FIG. 5. Average length of shortest knotted arc (a) for rings of different contour lengths Lc and increasing degree of confinement
1/Rc. Notice that, at a given contour length, ls becomes smaller for increasing confinement. Also, ls increases with Lc at fixed
degree of confinement. The average length of knotted portion, lk, shown in Fig. 1 of the manuscript, is reported in panel (b)
for ease of comparison.
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C. Comparison with infinitely thin rings

The robustness and generality of the multiscale character of the entanglement found for self-avoiding rings is
underscored by the fact that an analogous phenomenology is found for confined infinitely-thin trefoil-knotted rings, as
reported in the following. The infinitely-thin rings are Kratky-Porod chains: they have the same persistence lengths
as the self-avoiding ones discussed in the main paper, but have no excluded volume.

Given the absence of steric hindrance, higher levels of compactifications are achieved compared to self-avoiding
rings.
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FIG. 7. (a) and (b): average knot length, lk, as a function of 1/Rc for rings with and without excluded volume respectively.
(c) and (d): Dependence of lk with Lc in the no- and strong- confinement limits for rings with and without excluded volume
respectively. Note that analogous qualitative behaviour of the two types of models.
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