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Abstract

For compressible fluids under shock wave reaction, we have proposed two Multiple-Relaxation-

Time (MRT) Lattice Boltzmann (LB) models [F. Chen, et al, EPL 90 (2010) 54003; Phys. Lett. A

375 (2011) 2129.]. In this paper, we construct a new MRT Lattice Boltzmann model which is not

only for the shocked compressible fluids, but also for the unshocked compressible fluids. To make

the model work for unshocked compressible fluids, a key step is to modify the collision operators of

energy flux so that the viscous coefficient in momentum equation is consistent with that in energy

equation even in the unshocked system. The unnecessity of the modification for systems under

strong shock is analyzed. The model is validated by some well-known benchmark tests, including

(i) thermal Couette flow, (ii) Riemann problem, (iii) Richtmyer-Meshkov instability. The first

system is unshocked and the latter two are shocked. In all the three systems, the Prandtl numbers

effects are checked. Satisfying agreements are obtained between new model results and analytical

ones or other numerical results.
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I. INTRODUCTION

In recent years, the Lattice Boltzmann (LB) method has attracted much attention as a

powerful tool in direct numerical simulation of fluid flows[1–3]. Unlike traditional computa-

tional fluid dynamics methods which solve macroscopic governing equations, the LB method

employs the discrete Boltzmann equation which describes the fluid on the mesoscale level.

This kinetic nature provides the LB method with essential physics.

However, there are also some limitations that restrict the applications of traditional LB

method, such as the numerical stability problem, the fixed Prandtl number, and so on. The

stability problem has been partly addressed by a number of techniques, such as the entropic

method[4, 5], flux-limiter[6] and dissipation[7, 8] techniques. Besides these techniques, an

effective method is the Multiple Relaxation Time (MRT) LB method[9–11], which employs

multiple relaxation parameters in the collision step, instead of the commonly used Single

Relaxation Time (SRT) collision. The flexibility gained from the MRT collision can be used

to improve the stability property and overcome the fixed Prandtl number problem.

To the authors’ knowledge, most of the existing MRT LB models work only for isothermal

system[12–15], to cite but a few. To simulate system with temperature field, Luo, et al.[16]

suggested a hybrid thermal MRT LB model, in which the mass and momentum equations

are solved by the MRT model, whereas the diffusion-advection equation for the temperature

is solved by Finite Difference (FD) technique or other means. Guo, et al.[17] proposed a

coupling MRT LB model for thermal flows with viscous heat dissipation and compression

work. Mezrhab, et al.[18] proposed a double MRT LB method, where MRT-D2Q9 model and

the MRT-D2Q5 model are used to solve the flow and the temperature fields, respectively.

Besides the models mentioned above, we have proposed two MRT finite difference Lattice

Boltzmann models for compressible fluids under shock in previous work[19, 20]. Numerical

experiments showed that compressible flows with strong shocks can be well simulated by

these models. In this paper, we further propose a new MRT Lattice Boltzmann model,

which is not only for the shocked compressible fluids, but also for the unshocked compressible

fluids. The rest of the paper is organized as follows: In Sec. II, we present the MRT LB

model. The von Neumann stability analysis is given in Section III. Simulation results are

presented and analyzed in Section IV. Section V makes the conclusion.
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FIG. 1: Schematics of vi for the discrete velocity model.

II. DESCRIPTION OF THE MRT LB MODEL

In the MRT LB method, the evolution of the distribution function fi is governed by the

following equation
∂fi
∂t

+ viα
∂fi
∂xα

= −M−1

il Ŝlk(f̂k − f̂ eq
k ), (1)

where viα is the discrete particle velocity, i = 1,. . . ,N , N is the number of discrete velocities,

the subscript α indicates x or y. The variable t is time, xα is the spatial coordinate. The

matrix Ŝ = MSM−1 = diag(s1, s2, · · · , sN) is the diagonal relaxation matrix, fi and f̂i

are the particle distribution function in the velocity space and the kinetic moment space

respectively, f̂i = mijfj , mij is an element of the transformation matrix M. Obviously, the

mapping between moment space and velocity space is defined by the linear transformation

M, i.e., f̂ = Mf , f = M−1f̂ , where the bold-face symbols denote N-dimensional column

vectors, e.g., f = (f1, f2, · · · , fN)T , f̂ = (f̂1, f̂2, · · · , f̂N)T , M = (m1, m2, · · · , mN)
T , mi =

(mi1, mi2, · · · , miN ). f̂
eq
i is the equilibrium value of the moment f̂i.

We construct a two-dimensional MRT LB model based on a 16-discrete-velocity model

(see Fig. 1):

(vi1,vi2) =



























cyc : (±1, 0) , for 1 ≤ i ≤ 4,

(±1,±1) , for 5 ≤ i ≤ 8,

cyc : (±2, 0) , for 9 ≤ i ≤ 12,

(±2,±2) , for 13 ≤ i ≤ 16,

where cyc indicates the cyclic permutation.
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The transformation matrix M is constructed according to the irreducible representation

bases of SO(2) group, and it can be expressed as follows:

M = (m1, m2, · · · , m16)
T ,

where

m1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

m2 = (1, 0,−1, 0, 1,−1,−1, 1, 2, 0,−2, 0, 2,−2,−2, 2),

m3 = (0, 1, 0,−1, 1, 1,−1,−1, 0, 2, 0,−2, 2, 2,−2,−2),

m4 = (
1

2
,
1

2
,
1

2
,
1

2
, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4),

m5 = (1,−1, 1,−1, 0, 0, 0, 0, 4,−4, 4,−4, 0, 0, 0, 0),

m6 = (0, 0, 0, 0, 1,−1, 1,−1, 0, 0, 0, 0, 4,−4, 4,−4),

m7 = (
1

2
, 0,−1

2
, 0, 1,−1,−1, 1, 4, 0,−4, 0, 8,−8,−8, 8),

m8 = (0,
1

2
, 0,−1

2
, 1, 1,−1,−1, 0, 4, 0,−4, 8, 8,−8,−8),

m9 = (1, 0,−1, 0,−2, 2, 2,−2, 8, 0,−8, 0,−16, 16, 16,−16),

m10 = (0,−1, 0, 1, 2, 2,−2,−2, 0,−8, 0, 8, 16, 16,−16,−16),

m11 = (
1

4
,
1

4
,
1

4
,
1

4
, 1, 1, 1, 1, 4, 4, 4, 4, 16, 16, 16, 16),

m12 = (1, 1, 1, 1,−4,−4,−4,−4, 16, 16, 16, 16,−64,−64,−64,−64),

m13 = (1,−1, 1,−1, 0, 0, 0, 0, 16,−16, 16,−16, 0, 0, 0, 0),

m14 = (0, 0, 0, 0, 2,−2, 2,−2, 0, 0, 0, 0, 32,−32, 32,−32),

m15 = (1, 0,−1, 0,−4, 4, 4,−4, 32, 0,−32, 0,−128, 128, 128,−128),

m16 = (0,−1, 0, 1, 4, 4,−4,−4, 0,−32, 0, 32, 128, 128,−128,−128).

For two-dimensional compressible models, we have four conserved moments, density ρ,

momentums jx, jy, and energy e. They are denoted by f̂1, f̂2, f̂3 and f̂4, respectively.

Specifically, f̂1 = ρ, f̂2 = jx, f̂3 = jy, f̂4 = e = ρ(T + u2/2). Using the Chapman-Enskog

expansion[13, 14, 21] on the two sides of LB equation, the Navier-Stokes (NS) equations

for compressible fluids can be derived. The equilibria of the nonconserved moments can be

chosen as

f̂ eq
5 = (j2x − j2y)/ρ, (2a)
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f̂ eq
6

= jxjy/ρ, (2b)

f̂ eq
7 = (e+ ρRT )jx/ρ, (2c)

f̂ eq
8

= (e + ρRT )jy/ρ, (2d)

f̂ eq
9

= (j2x − 3j2y)jx/ρ
2, (2e)

f̂ eq
10 = (3j2x − j2y)jy/ρ

2, (2f)

f̂ eq
11 = 2e2/ρ− (j2x + j2y)

2/4ρ3, (2g)

f̂ eq
13

= (6ρe− 2j2x − 2j2y)(j
2

x − j2y)/ρ
3, (2h)

f̂ eq
14 = (6ρe− 2j2x − 2j2y)jxjy/ρ

3. (2i)

The recovered NS equations are as follows:

∂ρ

∂t
+

∂jx
∂x

+
∂jy
∂y

= 0, (3a)

∂jx
∂t

+
∂

∂x

(

j2x/ρ
)

+
∂

∂y
(jxjy/ρ) = −∂P

∂x
+

∂

∂x
[µs(

∂ux

∂x
− ∂uy

∂y
)] +

∂

∂y
[µv(

∂uy

∂x
+

∂ux

∂y
)], (3b)

∂jy
∂t

+
∂

∂x
(jxjy/ρ) +

∂

∂y

(

j2y/ρ
)

= −∂P

∂y
+

∂

∂x
[µv(

∂uy

∂x
+

∂ux

∂y
)]− ∂

∂y
[µs(

∂ux

∂x
− ∂uy

∂y
)], (3c)

∂e

∂t
+

∂

∂x
[(e + P )jx/ρ] +

∂

∂y
[(e+ P )jy/ρ]

=
∂

∂x
[λ1(R

∂T

∂x
+

1

2
(uy

∂uy

∂x
+ ux

∂ux

∂x
− ux

∂uy

∂y
+ uy

∂ux

∂y
))]

+
∂

∂y
[λ2(R

∂T

∂y
+

1

2
(ux

∂ux

∂y
− uy

∂ux

∂x
+ ux

∂uy

∂x
+ uy

∂uy

∂y
))], (3d)

where µs = ρRT/s5, µv = ρRT/s6, λ1 = 2ρRT/s7, λ2 = 2ρRT/s8.

When µs = µv = µ, λ1 = λ2 = λ, the above NS equations reduce to

∂ρ

∂t
+

∂jα
∂xα

= 0, (4a)

∂jα
∂t

+
∂ (jαjβ/ρ)

∂xβ

= − ∂P

∂xα

+
∂

∂xβ

[µ(
∂uα

∂xβ

+
∂uβ

∂xα

− ∂uχ

∂xχ

δαβ)], (4b)

∂e

∂t
+

∂

∂xα

[(e+ P )jα/ρ] =
∂

∂xα

[λ(R
∂T

∂xα

+
1

2
uβ(

∂uα

∂xβ

+
∂uβ

∂xα

− ∂uχ

∂xχ

δαβ))]. (4c)
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It should be pointed out that, the viscous coefficient in the energy equation (4c) is not

consistent with that in the momentum equation (4b). Motivated by the idea of Guo et al.

[17], the collision operators of the moments related to the energy flux are modified:

Ŝ77(f̂7− f̂ eq
7 ) ⇒ Ŝ77(f̂7− f̂ eq

7 )+ (s7/s5− 1)ρTux(
∂ux

∂x
− ∂uy

∂y
)+ (s7/s6− 1)ρTuy(

∂uy

∂x
+

∂ux

∂y
),

Ŝ88(f̂8− f̂ eq
8
) ⇒ Ŝ88(f̂8− f̂ eq

8
)+ (s8/s6− 1)ρTux(

∂uy

∂x
+

∂ux

∂y
)+ (s8/s5− 1)ρTuy(

∂ux

∂x
− ∂uy

∂y
).

With this modification, we are able to get the following thermohydrodynamic equations:

∂ρ

∂t
+

∂jα
∂xα

= 0, (5a)

∂jα
∂t

+
∂ (jαjβ/ρ)

∂xβ

= − ∂P

∂xα

+
∂

∂xβ

[µ(
∂uα

∂xβ

+
∂uβ

∂xα

− ∂uχ

∂xχ

δαβ)], (5b)

∂e

∂t
+

∂

∂xα

[(e+ P )jα/ρ] =
∂

∂xα

[λR
∂T

∂xα

+ µuβ(
∂uα

∂xβ

+
∂uβ

∂xα

− ∂uχ

∂xχ

δαβ)]. (5c)

This modification method is also suitable for our previous MRT models[19, 20]. The

definitions of f̂ eq
12 , f̂

eq
15 , f̂

eq
16 have no effect on macroscopic equations, so the choices of the

three moments are flexible. Now we give three different and typical formations: f̂ eq
12

= f̂ eq
15

=

f̂ eq
16 = 0 (version 1); f̂ eq

12 = 0, f̂ eq
15 = ρux(−4+10T +5u2

x−5u2
y), f̂

eq
16 = ρuy(4−10T +5u2

x−5u2
y)

(version 2); f̂ eq
12 = M12if

max
i , f̂ eq

15 = M15if
max
i , f̂ eq

16 = M16if
max
i , fmax

i = ρ/(2πT ) exp(−(viα −
uα)

2/(2T )) (version 3). In the second version, the MRT model reduces to the usual lattice

BGK model in ref.[22] which uses a higher-order velocity expansion for Maxwellian-type

equilibrium distribution, if all the relaxation parameters are set to be a single relaxation

frequency s, namely S = sI.

III. STABILITY ANALYSIS

In this section, the von Neumann stability analysis[20] on the new MRT LB model is

performed. In the stability analysis, we write the solution of FD LB equation in the form of

Fourier series. If all the eigenvalues of the coefficient matrix are less than 1, the algorithm

is stable. Coefficient matrix Gij of the unmodified model can be expressed as follows,

Gij = δij −
viα∆t

2∆xα

(eikα∆xα − e−ikα∆xα)δij +
1

2
(
viα∆t

∆xα

)2(eikα∆xα − 2

+ e−ikα∆xα)δij −∆tM−1

il Ŝlk(
∂f̂k
∂fj

− ∂f̂ eq
k

∂fj
), (6)
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where

f̂k = Mkpfp,

∂f̂ eq
k

∂fj
=

∂f̂ eq
k

∂ρ

∂ρ

∂fj
+

∂f̂ eq
k

∂T

∂T

∂fj
+

∂f̂ eq
k

∂uα

∂uα

∂fj
. (7)

Because of the modification of the collision operators, the coefficient matrix Gij correspond-

ing to energy flux should be replaced by

Gij = δij −
viα∆t

2∆xα

(eikα∆xα − e−ikα∆xα)δij +
1

2
(
viα∆t

∆xα

)2(eikα∆xα − 2

+ e−ikα∆xα)δij −∆tM−1

i7 {̂S
77
(
∂f̂7
∂fj

− ∂f̂ eq
7

∂fj
) +

∂

∂fj
[(s7/s5 − 1)ρTux(

∂ux

∂x
− ∂uy

∂y
)]

+
∂

∂fj
[(s7/s6 − 1)ρTuy(

∂uy

∂x
+

∂ux

∂y
)]}, (8)

and

Gij = δij −
viα∆t

2∆xα

(eikα∆xα − e−ikα∆xα)δij +
1

2
(
viα∆t

∆xα

)2(eikα∆xα − 2

+ e−ikα∆xα)δij −∆tM−1

i8 {̂S
88
(
∂f̂8
∂fj

− ∂f̂ eq
8

∂fj
) +

∂

∂fj
[(s8/s6 − 1)ρTux(

∂uy

∂x
+

∂ux

∂y
)]

+
∂

∂fj
[(s8/s5 − 1)ρTuy(

∂ux

∂x
− ∂uy

∂y
)]}. (9)

We conduct a quantitative analysis using the software, Mathematica. In Fig.2 we show

some stability comparisons for the new MRT model, its SRT counterpart and our previous

model in refs.[19, 20]. The abscissa is for kdx, and the vertical axis is for |ω|max which is the

largest eigenvalue of coefficient matrix Gij. Grid sizes are dx = dy = 10−3, and time step

is dt = 10−5, the relaxation frequency in SRT is s = 105. The other parameters in stability

analysis are chosen as follows: (a), (ρ, u1, u2, T ) = (2.0, 2.0, 0.0, 2.0), the collision parameters

in MRT are si = 105, i = 1, · · · , 16, the Mach number is 1 (Ma = u/
√
2T = 2/2); (b),

(ρ, u1, u2, T ) = (2.0, 6.0, 0.0, 2.0), the collision parameters in the three versions are s9 = 103,

those in model[19] are s10 = 5 × 104, s11 = 2 × 104, s13 = 1.5 × 104, and those in [20] are

s9 = 8 × 103, s13 = 7 × 104, s14 = 5 × 104, the others are 105, and the Mach number is

3.0; (c), (ρ, u1, u2, T ) = (2.0, 10.0, 0.0, 2.0), the collision parameters in the three versions are

s9 = 1.2×104, s13 = 102, s14 = 5×104, s15 = 1.5×103, those in model[19] are s13 = 1.5×104,

and those in model[20] are s9 = 2 × 103, s13 = 6.1 × 104, s14 = s15 = 3 × 104, the others

are 105, and the Mach number is 5; (d), (ρ, u1, u2, T ) = (2.0, 12.0, 0.0, 2.0), the collision

parameters in the three versions are s9 = 104, s13 = 102, s14 = 6 × 104, s15 = 1.5 × 103,

7



FIG. 2: Stability comparison for the new MRT model and its SRT counterpart.

and those in model[19] are s11 = 2 × 104, s13 = 1.5 × 104, and those in [20] are s9 = 103,

s13 = 5 × 103, s14 = s15 = 3 × 104, the others are 105, and the Mach number is 6. In case

(a), the MRT and SRT have the same stability; with the increase of Mach number (case (b)

and (c)), the MRT models are stable, while the SRT version is not; if further increases the

Mach number, MRT models also encounter instability problem (case (d)). It is clear that,

by choosing appropriate collision parameters, the stability of MRT can be much better than

the SRT. Three versions of the new MRT model do not show large differences in numerical

stability.

IV. NUMERICAL SIMULATIONS

In this section, we study the following problems using the modified MRT LB model:

Couette flow, One-dimensional Riemann problem, and Richtmyer-Meshkov instability. We

work in a frame where the constant R = 1.

8



FIG. 3: Slip velocity and temperature jump simulated with the three versions and the model

proposed by Kataoka, et al.

A. Unshocked compressible fluids

Here we conduct a series of numerical simulations of Couette flow. The aims of simulation

of Couette flow are twofold. At first, we prove the Maxwellian property of the discrete

equilibrium functions. Consider a viscous fluid flow between two parallel flat plates, moving

in the opposite directions, Uwr = −Uwl = 0.2, where subscripts wr and wl indicate the walls

in the right and left sides. The initial state of the fluid is ρ = 1, T = 1, U = 0. The

temperatures of walls are Twr = Twl = 1. Near the walls, we adopt the diffuse reflection

boundary conditions proposed by Sofonea, et al[23]. In the other two boundaries the periodic

boundary condition is adopted. In the diffuse reflection boundary, the particles leaving the

wall are assumed to follow the Maxwellian distribution. Following the discretization of the

velocity space, in the FD LB model the Maxwellian distribution function is replaced by the

equilibrium distribution function.

Fig. 3 shows the velocity and temperature profiles simulated with the three versions of this

proposed model and the model proposed by Kataoka, et al[24]. The abscissa ix is the index

of lattice node in the x- directions, and the vertical axes are velocity u and temperature

T , respectively. The parameters are dx = dy = 0.01, dt = 10−4, NX × NY = 100 × 5.

The diffuse reflection boundary conditions work well with our model, the slip velocity and

temperature jump near the walls are clearly seen, and increase with Knudsen number. While

9



FIG. 4: Effects of heat conductivity on temperature profiles of Couette flow. (a) corresponds to

the unmodified model(version 1), and (b) corresponds to the modified model. Pr = 0.01, Pr = 1

and Pr = 2 correspond to s7 = s8 = 10, s7 = s8 = 103, and s7 = s8 = 2× 103, respectively (other

collision parameters are 103).

it fails to work for the model by Kataoka et al, because the temperature near the wall is

lower than the wall temperature, which is contrary to physical idea. In Couette flow the fluid

at the walls should have a higher temperature than the walls themselves, because of the heat

generated by the viscous flow. We think this contradiction is caused from the equilibrium

distribution function in their model which is not a Taylor expansion of the Maxwellian.

So it departs from the basic assumption of diffuse reflection boundary. None of the three

versions violates the basic assumption and destroys the Maxwellian property of the discrete

equilibrium functions.

Secondly, we will compare the ability of the unmodified model and the modified model for

the unshocked compressible fluids. In the simulation, the left wall is fixed and the right wall

moves at speed U = 0.1. The simulation results are compared with the analytical solution:

T = T1 + (T2 − T1)
x

H
+

µ

2λ
U2

x

H
(1− x

H
),

where T1 and T2 are the left and right wall’s temperatures (T1 = 1, T2 = 1.005), H is

the width of the channel. Other parameters remain unchanged. Periodic boundary con-

ditions are applied to the bottom and top boundaries, and the left and right walls adopt

the nonequilibrium extrapolation method. Fig. 4 and Fig. 5 show the temperature profiles

of Couette flow simulated with the unmodified model (version 1) and its modified version.

10



FIG. 5: Effects of viscosity on temperature profiles of Couette flow. (a) corresponds to the unmod-

ified model(version 1), and (b) corresponds to the modified model. Pr = 10, Pr = 5 and Pr = 1

correspond to s5 = s6 = 102, s5 = s6 = 2 × 102, and s5 = s6 = 103, respectively (other collision

parameters are 103).

In Fig. 4, we fix viscosity coefficient s5 = s6 = 103, and change the thermal conductivity

s7 = s8 from 10 to 2× 103. On the contrary, we fix thermal conductivity s7 = s8 = 103, and

change the viscosity s5 = s6 from 102 to 103 in Fig. 5. (a) corresponds to the unmodified

model (version 1), and (b) corresponds to the modified model. It is clearly shown that the

simulation results of modified model are in agreement with the analytical solutions, and the

Prandtl number effects on unshocked compressible fluids are successfully captured by the

modified model, but not by the unmodified model.

B. Shocked compressible fluids

(a) Riemann problem

Here we construct a high Mach number shock tube problem with the initial condition,






(ρ, u1, u2, T )|L = (5.0, 45.0, 0.0, 10.0), x ≤ 0.

(ρ, u1, u2, T )|R = (6.0,−20.0, 0.0, 5.0), x > 0.
(10)

The Mach number of the left side is 10.1 (Ma = u/
√
2T = 45/

√
20), and the right is 6.3

(Ma = u/
√
2T = 20/

√
10). Figure 6 shows the comparison of LB results and exact solutions

at t = 0.018, where the parameters are dx = dy = 0.003, dt = 10−5, s5 = s6 = 1.5 × 104,

11



FIG. 6: LB results and exact solutions for shock tube problem at time t = 0.018. ρ: density, P :

pressure, U : the x− component of velocity, T : temperature.

other values of s are 105. Squares correspond to simulation results with the unmodified

model (version 1), the circle symbols correspond to the modified MRT simulation results,

and solid lines represent the exact solutions, respectively. It can be seen that the simulations

of the two MRT models do not show large differences. For shocked compressible flows, there

exist a fast procedure and a slow one. The shock dynamic procedure is fast, while that of

heat conduction is slow. In such a case, from the view of macroscopic description, the terms

related to viscosity and heat conductivity may be neglected. So, terms related to viscosity

and heat conductivity in Eqs.(3) and (5) are all small terms and make negligible effects.

That is the reason why the unmodified model works also well in such cases.

(b) Richtmyer-Meshkov instability

The Richtmyer-Meshkov (RM) instability[25, 26] is a fundamental fluid instability that

develops when an incident shock wave collides with an interface between two fluids with

different densities. This instability is involved in numerous physical processes, such as in-

ertial confined fusion, supersonic and hypersonic combustion, supernova explosion, and so

on. RM instability has attracted considerable attention for several decades because of its

important theoretical and practical significance. To the best of our knowledge, the research
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FIG. 7: Snapshots of shock wave reaction on single bubble. The left column (a) corresponds to

s5 = s6 = 104, s7 = s8 = 105, the middle column (b) corresponds to s5 = s6 = 104, s7 = s8 = 104,

and the right column (c) corresponds to s5 = s6 = 104, s7 = s8 = 103. From black to white the

grey level corresponds to the increase of density.

of RM instability by LB method is still very limited. In this paper, we study the thermal

conductivity and viscosity effects on RM instability with the MRT LB method.

The investigation of the interaction of a planar shock with an isolated gas bubble is of

special significance in the study of RM instability, because the interface of gas bubble has

typical three dimensional characteristic and large initial distortion. It helps to understand

the mechanism of RM instability process. The problem we simulated is as follows: A planar

shock wave with the Mach number 1.22 (D = 1.725), traveling from the right side, impinges
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FIG. 8: Snapshots of shock wave reaction on single bubble. The left column (a) corresponds to

s5 = s6 = 103, s7 = s8 = 105, the middle column (b) corresponds to s5 = s6 = 103, s7 = s8 = 104,

and the right column (c) corresponds to s5 = s6 = 103, s7 = s8 = 103. From black to white the

grey level corresponds to the increase of density.

on a cylindrical bubble. The initial macroscopic quantities are as follows:

(ρ, u1, u2, p) |x,y,0=



















(1, 0, 0, 1) , pre− shock,

(1.28,−0.3774, 0, 1.6512) , post− shock,

(0.1358, 0, 0, 1) , bubble,

(11)

The domain of computation is a rectangle Nx × Ny = 600 × 100, Nx and Ny are the

numbers of lattice node in the x- and y- directions. Initially, the bubble is at the position

(450,50), the post-shock domain is [501, 600] × [0, 100]. In the simulations, the right side

adopts the initial values of post-shock flow, the extrapolation technique is applied at the left

boundary, and reflection conditions are imposed on the other two surfaces.
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In Figures 7 and 8, we show some simulation results with different configurations. The

abscissa is for ix, and the vertical axis is for iy, where ix and iy are the indexes of lattice node

in the x- and y- directions. From top to bottom, the three rows show the density contours at

times t = 0.5, 0.7, 1, respectively. The common parameters are dx = dy = 0.003, dt = 10−5.

The collision parameters in Fig. 7(a) are s5 = s6 = 104, s7 = s8 = 105, those in Fig. 7(b)

are s5 = s6 = 104, s7 = s8 = 104, and those in Fig. 7(c) are s5 = s6 = 104, s7 = s8 = 103,

105 for the others. The collision parameters in Fig. 8(a) are s5 = s6 = 103, s7 = s8 = 105,

those in Fig. 8(b) are s5 = s6 = 103, s7 = s8 = 104, and those in Fig. 8(c) are s5 = s6 = 103,

s7 = s8 = 103, 105 for the others. Fig. 7 and Fig. 8 show that when the viscosity is

constant, the small thermal conductivity is beneficial to the development of RM instability.

Comparing Fig. 7 with Fig. 8, we find when the thermal conductivity is constant, the small

viscosity is beneficial to the development of RM instability. The thermal conductivity and

viscosity have inhibition effects on the development of RM instability. Both the unmodified

model and the modified model get the same results.

V. CONCLUSIONS

We propose a MRT Lattice Boltzmann model which works not only for the shocked

compressible fluids but also for the unshocked compressible fluids. In the new model, a key

step is the modification of the collision operators of energy flux so that viscous coefficient

in momentum equation and that in energy equation are consistent no matter if the system

is shocked or not. The unnecessity of the modification for systems under strong shock is

analyzed. The new model is validated by some well-known benchmark tests, including (i)

thermal Couette flow, (ii) Riemann problem, (iii) Richtmyer-Meshkov instability. The first

system is unshocked and the latter two are shocked. In all the three systems, the Prandtl

numbers effects are checked. Satisfying agreements are obtained between the new model

results and analytical ones or other numerical results. Our previous models[19, 20] can be

revised in the same way to simulate unshocked compressible flows.
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