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Abstract

We have carefully instrumented a large portion of the
population living in a university graduate dormitory by
giving participants Android smart phones running our
sensing software. In this paper, we propose the novel
problem of predicting mobile application (known as
“apps”) installation using social networks and explain
its challenge. Modern smart phones, like the ones used
in our study, are able to collect different social net-
works using built-in sensors. (e.g. Bluetooth proximity
network, call log network, etc) While this information
is accessible to app market makers such as the iPhone
AppStore, it has not yet been studied how app mar-
ket makers can use these information for marketing re-
search and strategy development. We develop a simple
computational model to better predict app installation
by using a composite network computed from the dif-
ferent networks sensed by phones. Our model also cap-
tures individual variance and exogenous factors in app
adoption. We show the importance of considering all
these factors in predicting app installations, and we ob-
serve the surprising result that app installation is indeed
predictable. We also show that our model achieves the
best results compared with generic approaches: our pre-
diction results are four times better than random, and
reach almost45% prediction precision with45% recall.

Introduction
Recent research projects have demonstrated that
social networks correlate with individual behav-
iors, such as obesity (Christakis and Fowler 2007)
and diseases (Colizza et al. 2007), to name
two. Many large-scale networks are analyzed,
and this field is becoming increasing popu-
lar (Eagle, Macy, and Claxton 2010) (Leskovec, Adamic, and Huberman 2007).

We are interested in studying the network-based pre-
diction for mobile applications (referred as “apps”) in-
stallation, as the mobile application business is growing
rapidly (Ellison 2010). The app market makers, such as
iPhone AppStore and Android Market, run on almost all
modern smart phones, and they have access to phone data
and sensor data. As a result, app market makers can infer
different types of networks, such as the call log network and
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the bluetooth proximity network, from phone data. However,
it remains an unknown yet important question whether these
data can be used for app marketing. Therefore, in this paper
we address the challenge of utilizing all different network
data obtained from smart phones for app installation predic-
tion.

It is natural to speculate that there are network effects in
users’ app installation, but we eventually realize that it was
very difficult to adopt existing tools from large-scale social
network research to model and predict the installation of cer-
tain mobile apps for each user due to the following facts:

1. The underlying network is not observable. While
many projects assume phone call logs are true so-
cial/friendship networks (Zhang and Dantu 2010), others
may use whatever network that is available as the un-
derlying social network. Researchers have discovered
that call network may not be a good approximation
(Eagle and Pentland 2006). On the other hand, smart
phones can easily sense multiple networks using built-
in sensors and software: a) The call logs can be used to
form phone call networks; b) Bluetooth radio can be used
to infer proximity networks (Eagle and Pentland 2006);
c) GPS data can be used to infer user moving pat-
terns, and furthermore their working places and affilia-
tions (Farrahi and Gatica-Perez 2010); d) Social network
tools (such as the Facebook app and the Twitter app) can
observe users’ online friendship network. In this work,
our key idea is to infer anoptimal composite network, the
network that best describes app installation, from multi-
ple layers of different networks easily observed by mod-
ern smart phones, rather than assuming a certain network
as the real social network explaining app installation.

2. Analysis for epidemics (Ganesh, Massoulié, and Towsley2005)
and Twitter networks (Yang and Leskovec 2010) is based
on the fact that network is the only mechanism for
adoption. The only way to get the flu is to catch the flu
from someone else, and the only way to retweet is to see
the tweet message from someone else. For mobile app,
this is, however, not true at all. Any user can simply open
the AppStore (on iPhones) or the Android Market (on
Android phones), browse over different lists of apps, and
pick the one that appears most interesting to the user to
install without peer influence. One big challenge, which
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makes modeling the spreading of apps difficult, is that
one can install an app without any external influence
and information. One major contribution of this paper is
that we demonstrate it is still possible to build a tool to
observe network effects with such randomness.

3. The individual behavioral variance in app installation is
so significant that any network effect might possibly be
rendered unobservable from the data. For instance, some
geek users may try and install all hot apps on the market,
while many inexperienced users find it troublesome even
to go through the process of installing an app, and as a
result they only install very few apps.

4. There are exogenous factors in the app installation behav-
iors. One particular factor is the popularity of apps. For in-
stance, the Pandora Radio app is vastly popular and highly
ranked in the app store, while most other apps are not. Our
model takes this issue into account too, and we show that
exogenous factors are important in increasing prediction
precision.

Classic diffusion models such as Granovetter’s
work (Granovetter and Soong 1983) are applicable to
simulation, but lack data fitting and prediction powers.
Statistical analysis used by social scientists such as matched
sample estimation (Aral, Muchnik, and Sundararajan 2009)
are only for identifying network effects and mechanism.
Recently works in computer science for inferring network
structure assume simple diffusion mechanism, and are
only applicable to artificial simulation data on real net-
works (Gomez Rodriguez, Leskovec, and Krause 2010) (Myers and Leskovec 2010).
On the other hand, our work addresses the above is-
sues in practical app marketing prediction. On the
mobile-based behavioral prediction side, The closest
research is the churn prediction problem in mobile net-
works (Richter, Yom-Tov, and Slonim 2010), which uses
call logs to predict users’ future decisions of switching
mobile providers. To our knowledge, we don’t see other
related works for similar problems.

Data
We collected our data from March to July 2010 with 55 par-
ticipants, who are residents living in a married graduate stu-
dent residency of a major US university. Each participant
is given an Android-based cell phone with a built-in sens-
ing software developed by us. The software runs in a pas-
sive manner, and it didn’t interfere the normal usage of the
phone.

Our software is able to capture all call logs in the ex-
periment period. We therefore obtained a call log network
between all participants by treating participants as nodes
and the number of calls between two nodes as weights
for the edge in-between. The software also scans near-
by phones and other Bluetooth devices every five min-
utes to capture the proximity network between individu-
als. The counts on the number of Bluetooth hits are used
as edge weights similar to the call log network as done in
Eagle et al (Eagle and Pentland 2006). We have also col-
lected the affiliation network and the friendship network
by deploying a survey, which lists all the participants and

ask each one to list their affiliations (i.e. the academic de-
partment), and rate their relationships with everyone else
in the study. We believe for app market makers the af-
filiation network can also be inferred simply by using
phone GPS/cell tower information as shown by Farrahi et
al(Farrahi and Gatica-Perez 2010). However, this is not the
focus of this work, and here we simply use survey data in-
stead. Though the friendship network is also collected using
surveys, we suggest that the app market makers can obtain
the friendship network from phones by collecting data from
social networking apps such as the Facebook and Twitter
apps. We summarize all the networks obtained from both
phones and surveys in Table 1. We refer to all networks in
Table 1 ascandidate networks, and all candidate networks
will be used to compute the optimal composite network. It
should be noted that all networks are reciprocal in this work.

We want to emphasize the fact that the network data we
used in Table 1 are obtainable for app market makers such as
Apple iTunes Store, as they have access to phone sensors as
well as user accounts. Therefore, our approach in this paper
can be beneficial to them for marketing research, customized
app recommendation and marketing strategy making.

Our built-in sensing platform is constantly monitoring the
installation of mobile apps. Every time a new app is in-
stalled, this information will be collected and sent back to
our server within a day. Overall, we receive a total of 821
apps installed by all 55 users. Among them, 173 apps have
at least two users. For this analysis, we only look at app in-
stallations and ignore un-installations. We first demonstrate
statistics for all of the apps in the study: In Fig. 1(a), we plot
the distribution of number of users installing each app. We
discover that our data correspond very well with a power-
law distribution with exponential cut. In Fig. 1(b), we plot
the distribution of number of apps installed per user, which
fits well with an exponential distribution.

Fig. 1(a) and 1(b) illustrate detailed insight into our
dataset. Even with a small portion of participants, the distri-
bution characteristic is clearly observable. We find that apps
have a power-law distribution of users, which suggests that
most apps in our study community have a very small user
pool, and very few apps have spread broadly. The exponen-
tial decay in Fig. 1(b) suggests that the variance of individ-
ual user is significant: There are users having more than 100
apps installed, and there are users having only a couple of
apps.

Model
In this section, we describe our novel model for capturing
the app installation behaviors in networks. In the following
content,G denotes the adjacency matrix for graphG. Each
user is denoted byu ∈ {1, ..., U}. Each app is denoted by
a ∈ {1, ..., A}. We define the binary random variablexa

u to
represent the status of adoption (i.e. app installation):xa

u =
1 if a is adopted by usern, 0 if not.

As introduced in the previous section, the different social
relationship networks that can be inferred by phones are de-
noted byG1, ...,GM . Our model aims at inferring an opti-
mal composite networkGopt with the most predictive power
from all the candidate social networks. The weight of edge



Network Type Source Notation
Call Log Network Undirected,Weighted # of Calls Gc

Bluetooth Proximity Network Undirected,Weighted # of Bluetooth Scan Hits Gb

Friendship Network Undirected,Binary Survey Results (1: friend; 0: not friend) Gf

Affiliation Network Undirected,Binary Survey Results (1: same; 0: different) Ga

Table 1: Network data used in this study.
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Figure 1: Circles are real data, and lines are fitting curves.Left: Distribution of number of users for each app. Right: Distribution
of number of apps each user installed.

ei,j in graphGm is denoted bywm
i,j . The weight of an edge

in G
opt is simply denoted bywi,j .

Adoption Mechanism
One base idea of our model is the non-negative accumulative
assumption, which distinguishes our model from other linear
mixture models. We defineGopt to be:

G
opt =

∑

m

αmG
m,where∀m,αm ≥ 0. (1)

The intuition behind this non-negative accumulative as-
sumption is as follows: if two nodes are connected by a cer-
tain type of network, their app installation behaviors may
or may not correlate with each other; On the other hand, if
two nodes are not connected by a certain type of network,
the absence of the link between them should lead tonei-
ther positive or negative effect on the correlation between
their app installations. As shown in Table 2 in the exper-
iment session, our non-negative assumption brings signifi-
cant performance increase in prediction. Non-negative as-
sumption also makes the model stochastic and theoretically
sound. We treat binary graphs as weighted graphs as well.
Sinceα1, ..., αM is the non-negative weights for each can-
didate network in describing the optimal composite network.
We later refer to the vector(α1, ..., αM ) as the optimal com-
posite vector. Our non-negative accumulative formulationis
also similar to mixture matrix models in machine learning
literature (El-Yaniv, Pechyony, and Yom-Tov 2008).

We continue to define the network potentialpa(i):

pa(i) =
∑

j∈N (i)

wi,jx
a
j , (2)

where the neighbor of nodei is defined by:

N (i) = {j|∃m s.t.wm
i,j ≥ 0}. (3)

The potentialpa(i) can also be decomposed into poten-
tials from different networks:

pa(i) =
∑

m

αm (
∑

j∈N (i)

wm
i,jx

a
j )

︸ ︷︷ ︸

pm
a
(i)

, (4)

wherepma (i) is the potential computed from one single can-
didate network. We can think ofpa(i) as the potential of
i installing appa based on the observations of its neighbors
on the composite network. The definition here is also similar
to incoming influence from adopted peers for many cascade
models (Kempe, Kleinberg, and Tardos 2003).

Finally our conditional probability is defined as:

Prob(xa
u = 1|xa

u′ : u′ ∈ N (u)) = 1− exp(−su − pa(u)),
(5)

where∀u, su ≥ 0. su captures the individual susceptibility
of apps, regardless of which app. We use the exponential
function for two reasons:

1. The monotonic and concave properties off(x) = 1 −
exp(−x) matches with recent research (Centola 2010),
which suggests that the probability of adoption increases
at a decreasing rate with increasing external network sig-
nals.

2. It forms a concave optimization problem during maxi-
mum likelihood estimation in model training.

As shown in the experiment section and based on our expe-
riences, this exponential model yields the best performance.



Model Training
We move on to discuss model training. During the train-
ing phase, we want to estimate the optimal values for the
α1, ..., αM ands1, ..., sU . We formalize it as an optimiza-
tion problem by maximizing the sum of all conditional like-
lihood.

Given all candidate networks, a training set composed of
a subset of apps TRAIN⊂ {1, ..., A}, and{xa

u : ∀a ∈
TRAIN, u ∈ {1, ..., U}}, we compute:

arg max
s1,...,sU ,α1,...,αM

f(s1, ..., sU , α1, ..., αM ),

Subject to: ∀u, su ≥ 0, ∀m,αm ≥ 0 (6)

where:

f(s1, ..., sU , α1, ..., αM )

= log

[
∏

a∈TRAIN

∏

u:xa
u
=1

Prob(xa
u = 1|xa

u′ : u′ ∈ N (u))

∏

u:xa
u
=0

(
1− Prob(xa

u = 1|xa
u′ : u′ ∈ N (u))

)
]

=
∑

a∈TRAIN




∑

u:xa
u
=1

log(1 − exp(−su − pa(u))

−
∑

u:xa
u
=0

(su + pa(u))



 (7)

(8)

This is a concave optimization problem. Therefore, global
optimal is guaranteed, and there exist efficient algorithms
scalable to larger datasets (Boyd and Vandenberghe 2004).
We use a MATLAB built-in implementation here, and it usu-
ally take a few seconds during optimization in our experi-
ments.

Compared with works on inferring net-
works (Gomez Rodriguez, Leskovec, and Krause 2010) (Myers and Leskovec 2010),
our work is different as we computeGopt from existing can-
didates networks. In addition, we don’t need any additional
regularization term or tuning parameters in the optimization
process.

We emphasize that our algorithm doesn’t distinguish the
causality problem (Aral, Muchnik, and Sundararajan 2009)
in network effects: i.e.,we don’t attempt to understand the
different reasons why network neighbors have similar app
installation behaviors. It can either be diffusion (i.e. my
neighbor tells me), or homophily (i.e. network neighbors
share same interests and personality). Instead, our focus is
on prediction of app installation, and we leave the causality
problem as future work.

Virtual Network for Exogenous Factors
Obvious exogenous factors include the popularity and qual-
ity of an app. The popularity and quality of an app will
affect the ranking and review of the app in the App-
Store/AppMarket, and as a result higher/lower likelihood of
adoption. We can model this by introducing a virtual graph

Gp, which can be easily plugged into our composite network
framework.Gp is constructed by adding a virtual nodeU+1
and one edgeeU+1,u for each actual useru. The correspond-
ing weight of each edgewU+1,u for computingpa(u) isCa,
whereCa is a positive number describing the popularity of
an app. In our experiment, we use the number of installations
of the app in this experimental community asCa. We have
been looking at other sources to obtain reliable estimates for
Ca, but we found that the granularity from public sources to
be unsatisfying. In practice for app market makers, we argue
thatCa can be easily obtained accurately by counting app
downloads and app ranks.

The exogenous factors also increase accuracy in measur-
ing network effects for a non-trivial reason: Considering
a network of two nodes connected by one edge, and both
nodes installed an app. If this app is very popular, then the
fact that both nodes have this app may not imply a strong
network effect. On the contrary, if this app is very uncom-
mon, the fact that both nodes have this app implies a strong
network effect. Therefore, introducing exogenous factors
does help our algorithm better calibrate network weights.

Experiments
Our algorithm predicts the probability of adoption (i.e.
installing an app) given its neighbor’s adoption status.
pi ∈ [0, 1] denotes the predicted probability of instal-
lation, while xi ∈ {0, 1} denotes the actual outcome.
The most common prediction measure is the Root Mean

Square Error (RMSE=
√

1
n

∑n

i=1(pi − xi)2). This mea-
sure is known to assess badly the prediction method’s abil-
ity (Goel et al. 2010). Since in our dataset most users have
installed very few apps, a baseline approach can simply pre-
dict the same smallpi and still achieve very low RMSE.

For app marketing, the key objective is not to know
the probability prediction for each app installation, but to
rank and identify a sub-group of individuals who are more
likely to appreciate and install certain apps compared with
average users. Therefore, we mainly adopt the approach
in rank-aware measures from information retrieval prac-
tices (Manning et al. 2008). For each app, we rank the like-
lihood of adoption computed by prediction algorithms, and
study the following factors:

a) Mean Precision atk (MP-k): We select the topk indi-
viduals with highest likelihood of adoption as predicted
adopters from our algorithms, and compute precision atk

( # true adopters amongk predicted adopters
k

). We average precisions
at k among all apps in the testing set to get MP-k. On
average each app has five users in our dataset. Therefore,
the default value fork is five in the following text. MP-
k measures algorithm’s performance on predicting most
likely nodes.

b) OptimalF1-score (referred later simply asF1 Score). The
optimal F1-score is computed by computingF1-scores
( 2×precision×recall

precision+recall )for each point on the Precision-Recall
curve and selecting the largestF1 value. Unlike MP-k, the
optimalF1 score is used to measure the overall prediction
performance of our algorithms. For instance,F1 = 0.5



suggests the algorithm can reach a 50% precision at 50%
recall.

Prediction using Composite Network
To begin with, we illustrate different design aspects for our
algorithm.

To demonstrate the importance of modeling both net-
works and individual variances in our model, we here
demonstrate the prediction performance with five configu-
rations using a 5-fold cross-validation: a) to model both in-
dividual variance and network effects; b) to model both indi-
vidual variance and network effects, but exclude the virtual
networkGp capturing exogenous factors; c) to model with
only individual variance (by forcingαm = 0 in Eq. 6), d) to
model with only network effects (by forcingsu = 0, ∀u),
and e) to model with network effects while allowing the
composite vector to be negative. The results are illustrated
in Table 2.

We find the surprising results that app installations are
highly predictable with individual variance and network in-
formation as shown in Table 2. In addition, Table 2 clearly
suggests that all our assumptions for the model are indeed
correct, and both individual variance and network effects
play important roles in app installation mechanism, as well
as the exogenous factors modeled byGp.

We also notice that while accuracy almost doubles, it is
often impossible to realize this improvement using RMSE.
Therefore, we will not RMSE for the rest of the work.
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Figure 2: We demonstrate the prediction performances using
each single network here. For comparison, we also show the
result of random guess, and the result using our approach,
which combines all potential evidence.

We now illustrate the prediction performance when our
algorithm is only allowed to use one single network. The
results are shown in Fig. 2. We find that except the affilia-
tion network, almost all other networks predict well above
chance level. The call log network seems to achieve the best
results. We conclude that while network effects are strong in
app installations, a well-crafted model such as our approach
can vastly increase the performance by computing the com-
posite network and counting other factors in.

Prediction Performance
We now test the performance of our model with some other
implementations for predictions. As there is no other closer

work related to app prediction with multiple networks, we
here compare prediction performance with some alternative
approaches we can think of.

Since it is practically difficult to observe every user app
installation behaviors, in our experiments we also want to
test the performance of each algorithm when the test set is
small. In particular, we evaluate the performance of differ-
ent implementations with two approaches for cross valida-
tion: 1) Normal-size training set: We randomly choose half
of all the apps in the dataset as the training set, and test on
the other half of the dataset. 2) Small-size training set: We
randomly choose only 20% of all the app installations in our
dataset as the training set, and test on the the rest 80% apps.
In both cases, we repeat the process for five times for cross
validation and take average of the results.

For our algorithm, we feed it with networks
Gp, Ga, Gb, Gf and Gc obtained by phones and sur-
veys as described previously. For SVM, we apply two
different approaches in predictions:

• We don’t consider the underlying network, but simply use
the adoption status of all other nodes as the features for
each node. We test this approach simply to establish a
baseline for prediction. We refer it as “SVM-raw”.

• We compute the potentialpma (i) for each candidate net-
work Gm, and we use all the potentials from all candi-
date networks as features. Therefore, wepartially borrow
some ideas from our own model to implement this SVM
approach. We refer this approach as “SVM-hybrid”.

We use a modern SVM implementation
(Chang and Lin 2001), which is capable of generating
probabilistic predictions rather than binary predictions.

We also replace Eq. 5 with a linear regression model by
usingpma (i), ∀m together with # of apps per user (instead
of learningsu in our MLE framework) as independent vari-
ables. We call this approach “Our Approach (Regression)”
in the following text to distinguish the difference. We also
force the non-negative accumulation assumption in the re-
gression setting.

Results for both the normal-size training set and the small-
size training set are shown in Table 3, and we discover that
our algorithm outperforms other competing approaches in
all categories. However, we notice that with many our model
assumptions, generic methods can also achieve reasonably
well results. Performance on half of the users that are less
active in app installation is also shown. Because this group
of users are very inactive, they may be more susceptible to
network influence in app installation behaviors. We notice
that our algorithm performs better in this group with more
than 10% improvement over other methods.

Predicting Future Installations
In app marketing, one key issue is to predict future app in-
stallations. Predicting future app adoption at timet in our
model is equivalent to predicting installation with part ofthe
neighbor adoption status unknown. These unknown neigh-
bors who haven’t adopted at timet may or may not adopt at
t′ > t. Though our algorithm is trained without the informa-
tion of time of adoption, we show here that the inferred in-



RMSE MP-5 F1 Score
Net.+ Ind. Var. + Exogenous Factor 0.25 0.31 0.43

Net. + Ind. Var. 0.26 0.29 0.42
Ind. Variance Only 0.29 0.097 0.24

Net. Only (non-negative) 0.26 0.24 0.37
Net. Only (allow negative) 0.30 0.12 0.12

Table 2: The performance of our approach under five differentconfigurations. We observe that modeling both individual vari-
ance and networks are crucial in performance as well as enforcing non-negative composition for candidate networks as inEq.
1.

Methods Using 20% as Training Set Using 50% as Training Set Using 50% as Training Set
All Users All Users Low Activity Users
MP-5 F1 Score MP-5 F1 Score MP-5 F1 Score

Our Approach 0.28 0.46 0.31 0.43 0.20 0.43
SVM-raw 0.17 0.26 0.24 0.32 0.14 0.27

SVM-hybrid 0.14 0.29 0.27 0.30 0.16 0.30
Our Approach (Regression) 0.27 0.42 0.30 0.41 0.18 0.39

Random Guess 0.081 0.17 0.081 0.17 0.076 0.14

Table 3: Prediction performance for our algorithm and competing methods is shown.

dividual variancesu and composite vector(α1, ..., αM ) can
be used to predict future app adoption.

We here apply the following cross-validation scheme to
test our algorithm’s ability in predicting future installations:
For the adopters of each app, we split them to two equal-size
groups by their time of adoption. Those who adopted earlier
are in G1, and those who adopted later are in G2. The train-
ing phase is the same as the previous section; In the testing
phase, each algorithm will only see adoption information for
subjects in G1, and predict node adoption for the rest. The
nodes in G2 will be marked as non-adopters during predic-
tion phase.

Results from cross validation are shown in Table 4. We
notice that our algorithm still maintains the best perfor-
mance and limited decrease in accuracy compared with Ta-
ble 3. Since the number of adopted nodes are fewer than
those in Table 3, we here show MP with smallerk in Table
4.

MP-k F1 Score
k = 3 k = 4 k = 5

Our Approach 0.18 0.16 0.15 0.35
SVM-hybrid 0.15 0.13 0.12 0.32

Our(Regression) 0.17 0.15 0.14 0.33
Random 0.045 0.045 0.045 0.090

Table 4: MP-k andF1 scores for predicting future app in-
stallations are shown above.

Notice in Table 4 that the random guess precision is re-
duced by half. Therefore, even the precision here is 30%
lower than in Table 3, it is mainly due to the fact that nodes
in G1 are no longer in the predicting set. Our accuracy is
considerable as it is four times better than random guess.

Predictions With Missing Historical Data

In practice, sometimes it is not possible to observe the app
installation for all users due to privacy reasons. Instead,for
app market markers they may only be allowed to observe and
instrument a small subset of a community. We here want to
study if it is still possible to make some prediction in app
installations under such circumstance.

To formally state this problem, we assume that all the
nodes1, ..., U are divided into two groups. The observable
group G1 and the unobservable group G2. During cross val-
idation, only nodes in the observable group are accessible to
our algorithms in the training process, and nodes in the un-
observable group are tested with the prediction algorithms.
Therefore, for our algorithm, even the individual variance
su, u ∈ G1 is computed in the training process, we will not
havesu′ , u′ ∈ G2 for Eq. 5 in the testing phase. We illustrate
the prediction precision results in Fig. 3. It seems that even
trained on a different set of subjects without calibrating users
variance, the composite vector learned by our algorithm can
still be applied to another set of users and achieve 80% over
random guess.

Conclusion
Our contributions in this paper include a) We show the data
of a novel mobile phone based experiments on the app in-
stallation behavior; b) We illustrate that there are strongnet-
work effects in app installation patterns even with tremen-
dous uncertainty in app installation behavior; c) We show
that by combining measurable networks using modern smart
phones, we can maximize the prediction accuracy; d) We de-
velop a simple discriminative model which combines indi-
vidual variance, multiple networks and exogneous factors,
and our model provides prediction accuracy four times bet-
ter than random guess in predicting future installations.

Future works include the causality problem in studying
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Figure 3: The MP from our approach and two comparison
approaches. We here setk for MP to be the average number
of users in G2 for each testing app.

network phenomena and a temporal model for app adoption.
We believe the former one can be done with a much care-
fully crafted lab experiments. For the latter one, we have
attempted multiple temporal adoption models but failed.We
suspect that the mechanism of temporal diffusion of apps is
very complicated, and we leave this as a future work.

Though our convex optimization framework is fast and
reasonably scalable, it should be noted that still the proposed
method in this paper may not be suitable to handle data from
billions of cell phone users. Potential solutions include di-
viding users into small clusters and then conquering, and
sampling users for computation. The scalability problem re-
mains a future work.
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