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Understanding how and how far information, behaviors, or pathogens spread in social networks
is an important problem, having implications for both predicting the size of epidemics, as well as
for planning effective interventions. There are, however, two main challenges for inferring spreading
paths in real-world networks. One is the practical difficulty of observing a dynamic process on a
network, and the other is the typical constraint of only partially observing a network. Using a
static, structurally realistic social network as a platform for simulations, we juxtapose three distinct
paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2)
the topologically shortest path in the fully observed network, and hence the single most likely
stochastic path, between the two nodes; and (3) the topologically shortest path in a partially
observed network. In a sampled network, how closely does the partially observed shortest path
(3) emulate the unobserved spreading path (1)? Although partial observation inflates the length
of the shortest path, the stochastic nature of the spreading process also frequently derails the
dynamic path from the shortest path. We find that the partially observed shortest path does not
necessarily give an inflated estimate of the length of the process path; in fact, partial observation
may, counterintuitively, make the path seem shorter than it actually is.

PACS numbers: 89.75.-k, 89.75.Hc, 02.50.Tt

I. INTRODUCTION

The small-world property, first empirically discovered
by Milgram [1] and then revisited by many, perhaps most
famously by Watts and Strogatz [2], captures the remark-
able idea that we are all connected to each other via very
short paths, typically encompassing only a handful of in-
termediaries. Path-based network measures, such as di-
ameter and average path length, are useful elementary
network characteristics, but exploring paths and path
lengths is especially important when dealing with pro-
cesses on networks that may be able permeate only up
to a finite depth. This is relevant for a large class of
general infection processes, such as the propagation of a
certain behavior, the transmission of a piece of informa-
tion, or the spread of a pathogen. As a first approxi-
mation, one might, of course, assume that any of these
may percolate through entire social networks, and indeed
the relationship between the three paths discussed in this
paper also hold in that case. However, it is likely in prac-
tice that the information being transmitted gets altered
along the way; the behavior gets modified as it is imi-
tated; or the pathogen becomes mutated as it is passed
on. Consequently, the penetration depth of a given piece
of information, a given behavior, or a given pathogen is
often bounded. When this is the case, understanding
path lengths becomes especially important,

More nuanced accounts of spreading phenomena
should distinguish between these different variants of
information, behaviors, or pathogens. When viewed
from this angle, any given spreading processes in itself,

∗ Onnela@med.harvard.edu; jponnela.com

most likely, has a finite (typically stochastic) permeation
depth. But measuring these depths is difficult in practice
because of the fundamental difficulty in monitoring the
unfolding of real-world spreading processes. Even when
time-stamped interaction events are available, such as in
some recent insightful studies utilizing cell phone commu-
nication data [3, 4], one still does not have actual spread-
ing data but, instead, needs to assume that something is
being spread, possibly across multiple ties, and one also
needs to operationalize this assumption. (We would like
to point out to the reader that the notion of temporal dis-
tance, corresponding to the time-ordered shortest path
between nodes and defined for empirical event sequences
in [4], is different from the notion of dynamic path lengths
discussed below.) In contrast, unlike the process itself,
outcomes of a spreading process are often directly ob-
servable (e.g. symptoms of chicken pox). But even if we
could observe the outcomes, a key remaining challenge
in dealing with person-to-person social networks is that
instead of observing the full network evolve in time, fi-
nancial and human resources, ethical considerations, and
methodological issues typically limit us to a sampled, or
partially observed, network snapshot (an exception is ex-
perimental networks [5, 6]).

Transport processes, such as the routing of data on
the Internet [7], are somewhat different from but re-
lated to the spreading processes discussed above. In
contrast to the World Wide Web, which allows for the
links from each site to be observed, it is not possible to
directly map the physical connections between Internet
routers. Instead, these networks are typically sampled
using traceroute-like methods, which are trees initiated
from a single source. It has been recently shown both
empirically [8] and analytically [9, 10] that the resulting

ar
X

iv
:1

10
6.

55
36

v2
  [

ph
ys

ic
s.

so
c-

ph
] 

 1
9 

O
ct

 2
01

1



2

sampled networks are biased [11]. Notwithstanding the
common assumption that data packets follow shortest
routes from source to target, it was found that, although
the undirected shortest paths had a mean length of 11.4,
the routes had a mean length of 15.6 hops [12] and only
19.3% of the routes taken were along the shortest paths.

Here, we focus on the problem of estimating infection
path lengths for an unobsevable stylized infection pro-
cess in a partially observed social network. Similar to
degrees of separation, which quantify how far nodes are
from each other, infection path lengths, also known as
degrees of influence, quantify how far a given process
might spread in the network [13]. In the case of contact
networks, understanding path lengths might enable us to
estimate the virulence of a pathogen and its nature, e.g.,
how frequently it mutates. In the case of social networks,
understanding path lengths might enable us to evaluate
the infectiousness of certain behaviors and experiences,
such as obesity, depression, voting, and smoking [14, 15].
Understanding how far these conditions may be able to
spread from one person to another has important conse-
quences for both gauging the overall extent of these “so-
cial epidemics,” as well as for planning the most effective
interventions. Both goals are of substantial importance
from the point of view of public policy.

Since one cannot in practice follow the paths taken
by an actual infection or spreading process, the shortest
path connecting the source and target nodes functions as
a reasonable proxy for the actual path. Indeed, the short-
est path is the single most likely path connecting a given
source node to a given target node, since the probability
for a given path, under some fairly general assumptions,
decreases exponentially as a function of its length. A
counterbalancing factor is that the number of paths, or
path degeneracy, increases as a function of the distance
between the source and target nodes, and this happens
in a way that depends delicately on the structure of the
network. An important consequence is that spreading
phenomena often do not follow the shortest paths. Still,
all in all, the shortest path is always our best guess for
the actual path, given that in a practical setting one does
not have microscopic spreading data available.

This results in three different paths to consider (Fig. 1).
First, there is the stochastic path of length ` from node
i to node j, followed by the as-yet-unspecified but inher-
ently unobservable dynamic process; second, there is the
unsampled, potentially observable, but often only par-
tially observed, shortest path of length `u (subscript u for
“unsampled”) between nodes i and j; and, finally, there
is the shortest path in the sampled network of length `s
(subscript s for “sampled”) from node i to j.

As mentioned above, the relationship between the
three paths holds whether or not the spreading process
has a finite permeation depth. However, when this is the
case, the problem becomes even more relevant, because
now the properties of the thing that is spreading might
be related to the length of the actual path it has taken
through the system. For example, the relative stability
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FIG. 1. (Color online) Schematic of a network infection and
sampling process. (A) The full (unobserved) network with
the initially infected node colored (upper left corner). (B)
The shortest path from the source node to the target node
(lower right corner) corresponds to the most likely infection
path in the fully observed network and has `u = 2. (C) The
(unobservable) spreading process unfolds in the (unobserved)
network. The actual path taken by the infection is shown
with wavy edges. The target node is reached in three steps
giving ` = 3. (D) The partially observed network has some
nodes and links missing depending on the sampling param-
eters. The shortest path from source to target has length
`s = 3, corresponding to the length of the most likely path
taken by the infection. In this case, using the shortest path
length in the fully observed network `u to estimate the actual
path length l would result in an underestimate of path length,
whereas using the path in the partially observed network, in
this case, correctly yields ` = `u = 3.

or mutability of pathogens can depend on the properties
of the system through which they are moving. Recently,
genotyping of pathogens has been combined with social
network mapping to identify likely point sources of epi-
demics, and infection paths; this work has contrasted
biological and social network approaches to identifying
and quantifying outbreaks [16].

We will explore some of the properties of these three
distinct paths by using a real-world social network as
a platform for simulating both the spreading process
and the subsequent sampling process. We introduce the
dataset in Section II, and describe the details of our ap-
proach in Section III. The main results are presented in
Section IV, and we discuss our findings Section V.

II. COMMUNITY NETWORKS

In this Section, we study path lengths for a simple
spreading process on a static real-world social network
with sampling. The platform network possess all the pro-
totypical features of social networks: a fat-tailed degree
distribution, assortativity by degree, a high level of clus-
tering, the small-world property, and network communi-
ties. Our results are therefore expected to hold for social
(and other) networks with similar characteristics. The
platform is a communication network constructed from
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72.4 million private one-to-one cell phone calls among 3.4
million individuals in an undisclosed European country
over a one-month period [17–19]. This allows the com-
prehensive ascertainment of ties between people who are
customers of the given cell phone operator, and results
in a fairly realistic human social network. We keep only
reciprocated ties, and denote the number of calls placed
between nodes i and j with wij = wji, which can be
conceptualized as tie strength.

Instead of dealing with the entire network, we wish
to use several non-overlapping samples of the network
with varying properties (size, density, etc.) by slicing
it where it most naturally breaks into pieces, which is
across communities. To that end, we identify the largest
80 communities [20–24] and use them as our samples.
To avoid confusion with subsequent node and tie sam-
pling, we refer to these network samples as community
networks. We detect network communities using modu-
larity maximization in its original formulation [25, 26].
Modularity, which is a number lying between -1 and 1,
measures how well a given partition {c1, c2, . . . , cN} of a
network compartmentalizes its communities, is given by

Q =
1

2L

∑
i,j

[
Aij −

kikj
2L

]
δ(ci, cj), (1)

where the adjacency matrix element Aij denotes the
strength of the tie connecting nodes i and j, ki is the de-
gree of node i, L the total weight of the edges (or number
of unweighted edges) in the network, ci the community
assignment of node i, and δ(ci, cj) is the Kronecker delta
function, which is unity if and only if ci = cj , otherwise
it is zero. Modularity, in its original formulation, mea-
sures the difference between the total fraction of edges
that fall within groups versus the fraction one would ex-
pect by chance. The common null model, codified by the
kikj/(2L) term, takes degree heterogeneity into account
by preserving the expected degree distribution. High val-
ues of Q indicate network partitions in which more of the
edges fall within groups than expected by chance. While
maximizing modularity is known to be an NP-hard prob-
lem [27], there are numerous computational heuristics
available [20, 21], and our choice is the so-called Louvain
method [28].

III. SPREADING ON AND SAMPLING OF
COMMUNITY NETWORKS

Here, we describe the spreading and sampling pro-
cesses which are carried out on each of the 80 static
community networks. We use the canonical Susceptible-
Infectious (SI) model, in which each node occupies one of
the two states (S or I) [29]. The stylized spreading pro-
cess is carried out in the fully observed community net-
works, and it proceeds as follows. For each community
network, starting from one initially infected seed node,
each infected node, per time step, attempts to infect one

FIG. 2. Visualization of one of the 80 community networks
used in this study. The network consists of one-to-one cell
phone calls, and this particular network contains 2130 nodes.

of its neighbors chosen uniformly at random. The length
of a time step is therefore defined as the shortest possible
time during which the infection can spread from an infec-
tious node to a susceptible node. For node j with degree
kj , this selection probability is given by pj = 1/kj , which
corresponds to an isotropic one-step random walk. We
call this the unweighted selection because the choice of
the neighbor is topological only, meaning that the neigh-
bor is selected uniformly at random. In contrast, we
also use weighted selection, where a neighbor k of node
j is chosen with probability pjk = wjk/

∑
m wjm, where

wjm represents the strength of the tie between nodes j
and m, quantified in terms of call volume as described
above, leading to neighbor selection that is biased to-
wards stronger ties.

Once the neighbor has been chosen, the infection hap-
pens with infection probability, which we have fixed at
0.05. We run each realization of the simulation for 200
time steps, which is a sufficiently long time, given the
value of infection probability, to allow for even very long
paths (of the order network diameter) to emerge. We
keep track of every infection path by tabulating the pre-
decessors (parents) of each newly infected node, and in
case of repeat infections, i.e, an already infected node is
made infected for the second time, we only keep track of
the first infection event (hence ignoring complex conta-
gion processes [5, 30, 31]).

We are interested in the length of the dynamic path
` taken by the infection from the seed node to multiple
target nodes. In particular, we now wish to make infer-
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ences about path lengths, taken by the spreading pro-
cess described above, under partial network observation.
The latter is achieved using a computational approach,
which simulates a twofold ego-centric sampling design.
The simulated sampling design is termed conventional
because, unlike an adaptive design, it does not use infor-
mation collected during the “survey,” or earlier stages of
the sampling process, to direct subsequent sampling [32].

The two stages making up the partial observation are
node sampling and tie sampling. First, node sampling,
for which the units of sampling are nodes, refers to the
process of observing a fraction of the nodes, where, more-
over, only ties that fall between the observed nodes are
retained in the sample. Node sampling, sometimes also
called node filtering, therefore corresponds to the idea of
observing only a subset of the nodes. We use fn to denote
the fraction of unobserved nodes, such that 1− fn is the
fraction of observed or sampled nodes. The idea of node
sampling is similar to the study of random breakdowns
of networks in the context of percolation theory. Starting
with an initial degree distribution P (k0), the probability
that a node of degree k0 becomes a node of degree k,
where k ≤ k0, is given by

(
k0
k

)
(1 − fn)kfk0−kn , and the

new degree distribution [33] becomes

P ′(k) =

∞∑
k0=k

P (k0)

(
k0
k

)
(1− fn)kfk0−kn , (2)

where the post-sampling quantities are denoted by a
prime. This leads to an average degree of 〈k〉′ = 〈k0〉(1−
fn) in the sampled network.

Second, tie sampling, for which the units of sampling
are network ties, refers to the idea that we typically ob-
serve only some fraction of the contacts (neighbors) of
each sampled node. It encapsulates the notion that hu-
man subjects commonly do not disclose all of their social
contacts, a problem that can be partially mitigated by
suitable name generators, which are survey instruments
used to solicit information from individuals about the
people whom they are connected to [34–37].

For generality, we allow for arbitrary combinations of
node and tie sampling. However, when combining the
two, we always carry out node sampling first and tie sam-
pling second, which is the order these two processes would
occur in a real-world sampling situation. Note that when
combining the two sampling processes, the actual num-
ber of ties removed in tie sampling is computed from the
initial number of ties present in the network prior to node
sampling.

To clarify this, consider a network of N nodes and L
links. Since the sampled nodes are chosen uniformly at
random from the node population, any tie is included in
the sample if and only if the adjacent nodes are included.
Since each node is included in the sample with probabil-
ity (1− fn), on average a fraction (1− fn)2 of ties in the
network will be included in the sample after node sam-
pling. For example, if fn = 0.2, the expected number
of ties is 0.64L. If we subsequently apply tie sampling

using, say, fe = 0.2, the expected fraction of ties falls
further to 0.64L − 0.2L = 0.44L. In other words, us-
ing these sampling parameters, less than half of the ties
in the network would be present in the sample. In gen-
eral, as a consequence of the full (node & tie) sampling
process, the expected number of nodes in the sample is
N ′ = (1− fn)N , whereas the expected number of ties in
the sample is L′ = [(1− fn)2 − fe]L.

IV. SIMULATION RESULTS

In this Section, we report results on three different
types of inference. First, to what extent do path lengths
`s in a partially observed or sampled network represent
path lengths `u in the underlying unsampled network?
Second, if it were possible to observe the network fully,
how well would topological paths represent the actual
(unobserved) dynamic paths as followed by the process?
Third, if the network were to be only partially observed,
how well do sampled topological paths represent the ac-
tual (unobserved) dynamic paths followed by the pro-
cess? Note that the first question is strictly topological,
while the second and third questions are affected by both
network topology and process dynamics.

To quantify these biases, we define three bias factors,
where the averages are taken over different process real-
izations. First, the ratio of sampled path length to un-
sampled path length as a function of actual path length
is denoted

b1(`) =
〈`s(`)〉
〈`u(`)〉

≥ 1 (3)

since `s(`) ≥ `u(`) for all `; second, the ratio of unsam-
pled path length to the actual path length is

b2(`) =
〈`u(`)〉
`

≤ 1 (4)

since ` ≥ `u(`) for all `; and, third, the ratio of sampled
path length to the actual path length

b3(`) =
〈`s(`)〉
`

> 0 (5)

but is otherwise unbounded. The corresponding averages
are

b1 = 〈b1(`)〉 , b2 = 〈b2(`)〉 , b3 = 〈b3(`)〉 , (6)

where the averages are taken over a range of values for `.
For any network, b1 ≥ 1, b2 ≤ 1, and b3 > 0.

In Figs. 3 and 4, we show the average path lengths
using unweighted neighbor selection for community net-
works of ∼2,000 nodes and ∼20,000 nodes, respectively,
averaged over 1, 000 attemped realizations (see discus-
sion below), for the sampled path lengths `s, shown in
red, and the unsampled path lengths `u, shown in blue,
as a function of the actual path length ` as followed
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FIG. 3. (Color online) Observed path lengths (OPL) as a function of the actual path lengths (APL) in a medium-size community
of N ≈ 2, 000 nodes. Each panel corresponds to a different fraction of unobserved nodes and unobserved ties as indicated in
each panel by the (fn, fe) pair. The blue curves correspond to the average unsampled path lengths `u and the red curves to the
average sampled path lengths `s. The extent of fluctuations is indicated with the error bars, which are given as `u(`)±σu(`) for
unsampled paths and `s(`)±σs(`) for sampled paths. The diagonal dashed black lines corresponds to the identity relationship,
i.e., points where the observed path lengths are identical to the actual path lengths. For this particular community, the sampled
path lengths are typically shorter than the actual path lengths.

by the infection process. Since the process is run 1,000
times for each combination of sampling parameter values
(fn, fe), each dot represents an average. To quantify the
extent of fluctuations around the average, we also com-
pute standard deviations, such that the plotted function
can be expressed as `u(`) ± σu(`) for unsampled paths

and `s(`) ± σs(`) for sampled paths, where σu(`) and
σs(`) are the corresponding standard deviations. Note
that the sampled path lengths `s are necessarily as long
as or longer than the unsampled path lengths `u, mean-
ing that the red curve always lies on or above the blue
curve. The distance between the red and blue curves de-
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FIG. 4. (Color online) Observed path lengths (OPL) as a function of the actual path lengths (APL) in a large community of
N ≈ 20, 000 nodes. For this particular community, the average sampled path lengths `s may be longer or shorter than the
actual path lengths, depending on the values of fn and fe.

scribes the bias due to approximating the (unobserved)
shortest paths in the original network with the (sampled)
paths in the perturbed network and is quantified by b1.
Note also that the blue curve is always on or below the
black line, consistent with the fact that the actual path
can never be shorter than the shortest path (by defini-
tion). The distance between the blue curve and the black
line is the bias due to not having observed the spreading
process, but instead approximating it with shortest paths
computed in the (typically unobserved) original network.

This bias is quantified by b2. Finally, the gap between the
red and the black line is the bias due to not having ob-
served the spreading process but, instead, approximating
it with sampled shortest paths, i.e., shortest paths com-
puted in the perturbed network. The extent of this bias
is quantified by b3.

Depending on the network, the sampled paths may be
longer or shorter than the actual paths, but which of
these outcomes is more typical? For any of the 80 com-
munity networks, and for any of the 49 unique (fn, fe)
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sampling parameter combinations, and for any value of
the the actual path length {1, 2, 3, 4, 5, 6}, we obtain
1, 000 attempted realizations for `u and `s. We say at-
tempted because the more we sample, the thinner the
resulting network becomes, and consequently the smaller
the number of paths of any given length in the sampled
network. Under heavy sampling, it is possible that not
every realization contains of path of length, say, ` = 6.
For this reason, when computing the mean path lengths
and the standard deviations, the statistics need to be
weighted. To accomplish this, let us first expand our
earlier notation slightly. We let `u(`, η) and `s(`, η) rep-
resent the average path lengths, unsampled and sampled,
respectively, at distance ` for network η; similarly we let

σu(`, η) and σs(`, η) represent the corresponding stan-
dard deviations of the path lengths; and finally nu(`, η)
and ns(`, η) are the number of observations in each cat-
egory, which are less than or equal to 103, the number
of attempted realizations in each category. The values of
fn and fe are considered fixed. The ensemble mean for
sampled paths is now given by

〈`s(`)〉η =
1∑n

η=1 ns(`, η)

n∑
i=1

ns(`, i)`s(`, i), (7)

and the ensemble standard deviation is given by

〈σs(`)〉η =

√√√√√ 1∑n
η=1 ns(`, η)

n∑
i=1

ns(`, i)σ2
s(`, i) +

1(∑n
η=1 ns(`, η)

)2 n∑
i=1

n∑
j=i+1

ns(`, i)ns(`, j)
[
`s(`, i)− `s(`, j)

]2
, (8)

where 〈`s(`)〉η is simply a weighted mean of the means,
whereas 〈σs(`)〉2η has two components, the former being
a weighted mean of the variances, and the latter being a
weighted mean of the squares of all pairwise differences of
the means. Both results follow from a direct calculation,
and the expressions for the unsampled paths are identical
and follow by changing the subscripts from s to u. We
show the plots of 〈`u(`)〉η±〈σu(`)〉η and 〈`s(`)〉η±〈σs(`)〉η
for both unweighted and weighted neighbor selection in
Fig. 5 As expected, the average unsampled paths under-
estimates the actual path lengths, and the extent of this
bias increases as ` increases. The sampled path lengths
may however overestimate or underestimate the actual
path lengths. While the averages behave very similarly,
there are significant differences in fluctuations between
the unweighted and weighted spreading process. While
the weighted process in general shows more fluctuations,
the extent of fluctuations is especially pronounced for
sampled path lengths. In other words, the weighted
spreading process may veer the dynamic path even fur-
ther from the structurally shortest paths.

The average outcomes are surprisingly similar for un-
weighted and weighted neighbor selection, which could
have its origin in how the community networks are sam-
pled and the connection between network structure and
tie strength as quantified by the weak ties hypothesis
[17, 38]. To elaborate on this, we would expect commu-
nity networks to have a high density of ties, higher than
what would be expected by chance. The weak ties hy-
pothesis, on the other hand, states that there is a positive
association between the fraction of shared friends any two
connected individuals i and j have and the strength of
the tie wij connecting them. This suggests that most ties
within communities would be expected to be fairly strong
and, consequently, the impact of incorporating weights

in the neighbor selection process might be fairly small.
However, as indicated above, the extent of fluctuations
is much greater for the weighted neighbor selection than
for the unweighted one.

In order to express the bias for all examined path
lengths ` = 1, . . . , 6, and over all 80 community net-
works, we computed the conditional averages 〈b1|fn, fe〉,
〈b2|fn, fe〉, and 〈b3|fn, fe〉, which quantify the overall bias
for given levels of node and tie sampling, and they are
shown in Fig. 6. The underlying numerical values are
given in Table I. For example, using fn = fe = 0.2,
which implies that after sampling 44% of ties remain in
the network, results in 〈b1|fn = 0.20, fe = 0.20〉 = 1.50,
showing that sampled paths are 50% longer than unsam-
pled paths for the given level of node and tie sampling;
〈b2|fn = 0.20, fe = 0.20〉 = 0.88 shows that the un-
sampled topological paths are 88% of the length of the
stochastic paths; and finally 〈b3|fn = 0.20, fe = 0.20〉 =
1.32 shows that sampled topological paths over-estimate
path length by 32%.

The above averages, although informative, mask the
variation from one community network to another.
Therefore, instead of averaging over community net-
works, we average, each network, over the sampling pa-
rameters fn and fe. Figs. 7, 8, and 9 show the value of
this average bias plotted against network size N , number
of links L, link density d = 2L/N(N − 1), and aver-
age shortest path length 〈`〉 for all 80 subnetworks. To
three of the four plots in each figure, we fitted a linear
regression model of the form 〈b〉 = β0 + β1 log(x), where
x is either N , L, or d. To gauge the goodness of fit of
the model, we used the simple (non-adjusted) R2 statis-
tic. For each bias factor, 〈b1〉, 〈b2〉, and 〈b3〉, we find
that most variance is always explained by L (number of
links), then by N (number of nodes), and finally by d
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FIG. 5. (Color online) Observed path lengths (OPL) as a function of the actual path lengths (APL) averaged over 80 com-
munities using unweighted neighbor selection (8 panels on the left) and weighted neighbor selection (8 panels on the right).
For each type of neighbor selection, the leftmost column corresponds to node sampling only, where the value of fn is indicated
in the panel, and fe = 0 for all panels (i.e. there is no edge sampling). The rightmost columns for each type of neighbor
selection correspond to edge sampling, where the value of fe is indicated in the panel, and fn = 0 for all panels (i.e. there is
no node sampling). Shortest paths in partially observed networks typically overestimate the actual path lengths, the extent of
which depends on the sampling parameters as well as the length of the actual path ` taken by the process. Note that weighted
neighbor selection in the spreading process introduces considerable fluctuations, meaning that if the process is sensitive to tie
strengths, sampled topological paths reflect the actual process path length poorly, and may either significantly overestimate or
underestimate the path length.

(link density), although the three typically come close
to one another. The R2 values using L as the predictor
of bias are 0.89, 0.63, and 0.88 for 〈b1〉, 〈b2〉, and 〈b3〉,
respectively, and the corresponding parameter values of
interest are β1 = 0.4826 (for 〈b1〉), β1 = 0.0320 (for 〈b2〉),

and β1 = 0.4698 (for 〈b3〉). Consequently, of the three,
the value of 〈b2〉 is by far the least sensitive to variation
in L (or N or d; see Fig. 8).

Therefore, using unsampled topological paths for
stochastic paths typically results in a fairly small over-
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FIG. 6. (Color online) Surface plots of sampling bias as a
function of fe, the fraction of removed edges (horizontal axes)
and fn, the fraction of removed nodes (vertical axes) for the
unweighted neighbor selection as described in Section III. (a)
Plot of b1, the average ratio of sampled path lengths to un-
sampled path lengths. (b) Plot of b2, the average ratio of
unsampled path lengths to to actual path lengths. (c) Plot
of b3, the average ratio of sampled path lengths to to ac-
tual path lengths. The results are essentially identical for the
weighted neighbor selection.

all bias, and the bias is always downwards as expected,
and therefore the resulting values for 〈b2〉 are always be-
low one. In contrast, using sampled topological paths for
stochastic paths may result in an upward or downward
bias, depending the network and the sampling parame-
ters, such that 〈b3〉 may be less than one or more than

fn|fe 0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00 1.00 1.07 1.14 1.20 1.27 1.34 1.41
0.05 1.05 1.11 1.18 1.25 1.33 1.40 1.48
0.10 1.08 1.16 1.23 1.31 1.38 1.46 1.54
0.15 1.12 1.20 1.28 1.36 1.45 1.52 1.59
0.20 1.16 1.24 1.33 1.42 1.50 1.57 1.63
0.25 1.20 1.29 1.38 1.46 1.54 1.60 1.64
0.30 1.23 1.33 1.42 1.50 1.57 1.60 1.51

fn|fe 0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00 0.93 0.92 0.92 0.91 0.91 0.91 0.90
0.05 0.92 0.92 0.91 0.91 0.90 0.90 0.89
0.10 0.92 0.92 0.91 0.90 0.90 0.89 0.88
0.15 0.92 0.91 0.90 0.90 0.89 0.88 0.86
0.20 0.91 0.90 0.90 0.89 0.88 0.86 0.84
0.25 0.91 0.90 0.89 0.88 0.86 0.84 0.82
0.30 0.90 0.89 0.88 0.86 0.84 0.81 0.77

fn|fe 0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00 0.93 0.99 1.05 1.10 1.16 1.22 1.27
0.05 0.96 1.02 1.08 1.14 1.20 1.26 1.32
0.10 1.00 1.06 1.12 1.18 1.25 1.31 1.36
0.15 1.03 1.09 1.16 1.22 1.29 1.34 1.39
0.20 1.06 1.12 1.19 1.26 1.32 1.36 1.39
0.25 1.08 1.16 1.23 1.29 1.33 1.36 1.35
0.30 1.11 1.18 1.25 1.30 1.33 1.31 1.17

TABLE I. Values of different bias ratios. Top panel:
〈b1|fn, fe〉, the average ratio of sampled shortest path lengths
to unsampled shortest path lengths. Middle panel: 〈b2|fn, fe〉,
the average ratio of unsampled shortest path lengths to actual
path lengths. Bottom panel: 〈b3|fn, fe〉, the average ratio of
sampled shortest path lengths to actual path lengths. All ra-
tios are tabulated according to fn and fe. The value in the
bottom right corner for fn = fe = 0.30 in the top and bottom
panels deviates from the trend present in the two tables. As
this value corresponding to the greatest degree of sampling
(both tables deal with sampled path lengths) and hence to
the least number of data points in the average, it is likely a
statistical fluctuation.

one. The extent of this bias is well predicted by the num-
ber of links L in the network, and the value β1 = 0.4698
suggests that multiplying the number of links by a fac-
tor of ten results in an addition of 0.47 in its value. Of
the studied 80 community networks, 35 had 〈b3〉 less than
one; based on the results of the regression models, in par-
ticular the locations where the regression lines meet the
(horizontal) no-bias lines, these networks have typically
less than 3,500 nodes, less than 5,000 links, high link
density (d > 0.0008), and average shortest path length
greater than 25. In other words, compared to the popu-
lation of studied community networks, these tend to be
small and relatively densely connected networks.

V. DISCUSSION

The last few years have seen a strong emphasis in the
literature on understanding structural properties of com-
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FIG. 7. (Color online) Average bias-ratios 〈b1〉 (sampled path
length divided by unsampled path length) as a function of dif-
ferent network characteristics for the studied 80 subnetworks.
The value of 〈b1〉 is always greater than one.
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FIG. 8. (Color online) Average bias-ratios 〈b2〉 (unsampled
path length divided by dynamic path length) as a function of
different network characteristics. The value of 〈b2〉 is always
less than one.

plex networks, although increasingly the field appears to
be moving in the direction of network dynamics, where
dynamics can be understood both as dynamics of net-
works and dynamics on networks. Spreading and dif-
fusion processes are the archetypes of dynamical pro-
cesses on networks. In this paper, we have explored
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FIG. 9. (Color online) Average bias-ratios 〈b3〉 (sampled path
length divided by dynamic path length) as a function of dif-
ferent network characteristics. The value of 〈b3〉 may be less
than one or greater than one, depending on the community
network. The horizontal line corresponds to 〈b3〉 = 1.

the connection between structural (topological) shortest
paths, which are elementary network characteristics and
on which others measures, such as betweenness centrality,
are based, and the lengths of certain types of functional
(dynamic) spreading paths. We have introduced the ad-
ditional layer of network sampling which is relevant from
an empirical point of view but which, as we have seen,
typically complicates the relationship between structural
and functional paths.

More specifically, we have considered the properties
of three different types of paths in social networks. In
particular, we have compared their lengths under partial
network observation, i.e. when there is sampling at the
level of nodes, ties, or both. The paths we studied were:
(1) the stochastic path taken by a spreading process from
source to target, which is known in simulations; (2) the
shortest path from source to target in a fully observed
network; and (3) the shortest path from source to target
in a partially observed network.

Our findings counteract the naive intuition that sam-
pling will always inflate path lengths, in other words, the
notion that dealing with a partially observed network
would necessarily make processes seem to travel farther
than the actually do. The shortest path between any
two nodes in a partially observed network will, of course,
be as long or longer than the shortest path between the
same nodes in a fully observed network. However, in
some cases, the upward bias caused by partial observa-
tion, the extent of which depends on the structure of
the underlying network, can be offset by the tendency



11

of spreading processes to take non-optimal (longer than
shortest) paths, the extent of which depends on the de-
tails of the spreading process. In some of the community
networks studied, the sampled path lengths were always
shorter than the actual path lengths, while in other net-
works either could be shorter, depending on the extent
and nature (nodes vs. ties) of sampling. We found that
when averaged over all community networks, there were
more fluctuations present for the weighted process than
for the unweighted one. In particular, the fluctuations
were especially pronounced for sampled paths.

Since social networks are almost never fully observed,
even if some facet of them might be, such as electronic
communication records under ideal circumstances, it is
important to understand the impact of sampling on path
lengths, and it is likely to find many applications. For
example, in a recent study, in addition to epidemiolog-
ical and genomic data, Gardy and coauthors used a so-
cial network constructed from patient interviews to deter-
mine the origin and transmission dynamics of a tubercu-
losis outbreak [16]. Traditional contact tracing (the iden-
tification and diagnosis of persons who may have come
into contact with an infected person) did not identify a
probable source. However, the structure of the elicited
social network suggested “the most likely source” of the
epidemic. Although it is not clear how the source was
identified, it was likely inferred from (partially observed)
topological shortest paths.

Another recent study by Rocha, Liljeros, and Holme
studied a network of alleged offline sexual contacts be-
tween anonymous escorts and sex buyers as self-reported
by both parties in an online community [39]. Approx-
imately 71% of the individuals in the largest connected
component were reachable by following the time-ordering
of the contacts, suggesting that a majority of the com-
ponent was connected in a way that would allow sex-

ually transmitted diseases to spread between its mem-
bers [39]. In this case, time-ordered data were available,
which strongly limits the possible spreading paths, given
that the contacts need to happen in a certain tempo-
ral sequence to potentially transmit a harmful virus or
bacterium. Nevertheless, the system is a sample of the
underlying population, since the buyers and sellers could
be sexually active with individuals not members of the
online community. If one were to calculate, for example,
how far a given strain of the HIV could have travelled
and, hence, how many individuals might have been ex-
posed to it, misestimating the path lengths might lead to
misestimates of the size of the epidemic.

There are three obvious ways to extend our work.
First, there is the structure of the underlying network,
and the results are expected to vary significantly as the
topology of this platform is varied. Second, there are the
details of the spreading process, which could be modi-
fied to be more realistic, and could be tailored towards
specific illnesses. Further, to study the spread of behav-
iors and norms, it might be fruitful to include ideas from
the growing literature on complex contagions [5, 30, 31].
Third, in our sampling scheme, the units of sampling
were either nodes, ties, or both nodes and ties, but one
could study the phenomenon for more realistic sampling
designs, such as respondent driven sampling (RDS) used
to study small but important hard-to-reach populations,
such as injection drug users [40]. Finally, although we
have framed the problem in the context of social net-
works, the concepts are generic, and they could be ap-
plied to any type of network for which an understanding
of the permeation depths of dynamic processes in sam-
pled data are important.
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