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Traditionally, there is no evidence suggesting that there are strong ties between the rich-club property and
the function of complex networks. In this study, we find that whether a very small portion of rich nodes
connected to each other or not can strongly affect the frequency of occurrence of basic building blocks (motif)
within networks, and therefore the function, of a heterogeneous network. Conversely whether a homogeneous
network has a rich-club property or not generally has no significant effect on its structure and function. These
findings open the possibility to optimize and control the function of complex networks by manipulating rich-
club connections. Furthermore, based on the subgraph ratio profile, we develop a more rigorous approach to
judge whether a network has a rich-club or not. The new method does not calculate how many links there are
among rich nodes but depends on how the links among rich nodes can affect the overall structure as well as
function of a given network. These results can also help us to understand the evolution of dynamical networks
and design new models for characterizing real-world networks.

PACS numbers: 89.75.Fb, 89.75.Hc, 89.75.Da

The function properties of complex networks —
properties such as synchronizabilty, and efficiency
of information transport — depend sensitively on
the detailed topological structure of the partic-
ular network. We show that, despite this, the
functional behavior of a complex network can
be largely controlled by rewiring a very small
fraction of nodes within the network. For net-
works with scale-free degree distribution (het-
erogeneous networks) the connectivity pattern
among the highest degree nodes determines the
functional behavior of the entire network. That
is, whether a network exhibits a dominant rich-
club (whether high degree nodes are mutually
connected or not) will determine the functional
behavior of the entire network. For random
graphs and other networks with homogeneous de-
gree distribution this is not the case. Our results
provide a mechanism by which the behavior of
real-world networks can be effectively controlled
by rewiring only a very small portion of links.
This suggests the likely mechanism by which real-
world networks such as the internet and gene
regulatory networks in various organisms evolve.
The connectivity among a small portion of hub
nodes will control the functional behavior of the
entire network, and thus a real network can be
made more robust or provide more efficient in-
formation processing by rewiring those links.

I. INTRODUCTION

The motif, defined as a small connected subgraph that
recurs in a graph, is the basic building block, or func-
tional unit, of complex networks1. In real-world networks
(e.g., gene regulatory networks), motifs represent the el-
ementary interaction patterns between small groups of
nodes, and the relative frequencies with which motifs
appear represent different functions of the network2–4.
Although it has been found that there is a topologi-
cal relationship between the large-scale attributes (scale-
free and hierarchical) and local interaction patterns (sub-
graph based)5, it remains unclear whether there is a rela-
tionship between small functional units and other struc-
ture properties such as rich-club connections of complex
networks. In our previous study we find that rich-club
connections can dominate some global properties (e.g.,
assortativity and transitivity) of a network6, which im-
plies the possible relation between the rich-club property
and the network’s subgraph organization.

The rich-club property refers to the organization pat-
tern of rich nodes7, especially whether rich nodes tend to
connect to one another, or with the remaining nodes8–13.
Because rich nodes often play a central role in the
static property of, and dynamic processes on, complex
networks14–16, significant attention has been paid to the
prominent effects of the richest elements17 and the or-
ganization among them6,18. A systematic framework is
needed to clearly understand the roles of rich nodes in
different real-world networks with distinct degree distri-
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butions.

In this study, we find the influences of rich nodes and
their organization pattern depend largely on the degree
distributions of complex networks. Rich nodes are impor-
tant in scale-free networks19, because a power-law degree
distribution indicates that the majority of nodes partici-
pate in at most one or two motifs, while a few rich nodes
take part in a very large number of small subgraphs. Ma-
nipulating a very small number of rich-club connections
therefore can strongly affect the frequencies of the basic
functional blocks (motifs) for a heterogeneous network.
In comparison, for the network with a homogeneous de-
gree distribution (e.g., the network of US power grid), the
links among rich nodes show a tiny effect on the whole
network. The main reason behind this is that all nodes
(including rich nodes) in a homogeneous network are en-
gaged in only a few interactions, and there are no hubs
linking to a significantly larger number of other nodes.

These results are helpful in understanding the origin of
motifs and motif clusters in real-world complex networks,
and the mechanisms by which how small subgraphs ag-
gregate into larger superstructures. Our finding has an
important potential application: we can build a frame-
work to optimize and control the functional behaviors of
complex networks. In most cases we can not regener-
ate or redesign a real-world network, but manipulating a
small number of rich-club connections gives us a chance
to optimize the structure of the network and control the
relative frequencies of small functional units in a pre-
dictable manner.

Furthermore, although pioneer studies have developed
a series of methods to judge whether a network has rich-
club properties9,11,13, these approaches are based on how
many links there are among rich nodes instead of how
these links affect the whole network. Based on subgraph
ratio profile, the topological structure among rich nodes
can be uncovered from the inspection of the basic func-
tional units. In this study we develop a novel method to
judge whether a network has a rich-club or not. The new
method does not calculate how many links connect to
rich nodes compared with its randomized version while
it depends on how the organization pattern of rich nodes
affects the appearance of different motifs.

Taken together, these findings indicate the strong ties
between the local subgraphs and rich-club properties of
complex networks, which complements our understand-
ing of a network’s topological and functional organiza-
tion. Because each network can be characterized by a set
of distinct types of subgraphs and rich-club connections
are a significant property, our findings are expected to
provide new insights in understanding the evolution of
dynamical networks and design new models for charac-
terizing real-world networks. Our work is a step in an
ongoing effort to bridge the local topology of a network
and its global statistical features.

II. METHOD

A. Link rewiring algorithms

Here we select the top 0.5% of the nodes with the high-
est degree as rich nodes in a network and manipulate
the connections among them. We use link rewiring al-
gorithms to generate the network with rich-club and the
network without rich-club, respectively. The basic idea is
very similar to the random rewiring method20, while the
main difference is that our new method only switches the
links among rich nodes and a small number of low-degree
nodes. First we make rich nodes fully connected to one
another, so they form a completely connected rich-club.
Secondly, we completely eradicate the edges among rich
nodes, so that the network has no rich-club.

(b)(a)

(c) (d)

FIG. 1. (Color online) (a) and (b) are the two connection
patterns for the four end nodes of a pair of links. (a) rich-club
connection, where one link connects to the two rich nodes and
the other link connects to the other low-degree nodes; (b) non-
rich-club connection, where one link connects to one rich node
and one low-degree node, and the other link connects to the
two remaining nodes. Using the link rewiring algorithms, we
can obtain (c) the network with rich-club, or (d) the network
without rich-club.

Now we specify the rewiring algorithms. First we make
all rich nodes fully connected to generate a network with
a significant rich-club. If there is a link between two rich
nodes, their structure remains unchanged [Fig. 1(a)]. If
there is no link between two rich nodes, we perform the
operation from Fig. 1(b) to 1(a). That is, we select an-
other two low-degree nodes that respectively connect to
the two rich nodes while do not connect to each other
[Fig. 1(b)]. Then we cut the two links between the rich
nodes and their low-degree neighbors, and connect the
two rich nodes as well as the two low-degree nodes, re-
spectively [Fig. 1(a)]. After repeating this process until
all rich nodes form a completely connected rich-club, we
can obtain the network with a full-connected rich-club
[Fig. 1(c)].
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Secondly, we completely eradicate the edges among
rich nodes, so that the network has no rich-club prop-
erty. If there is no link between two rich nodes, we will
do nothing [Fig. 1(b)]. If there is a link between two rich
nodes, we do the operation from Fig. 1(a) to 1(b). We
randomly select another pair of low-degree nodes which
connect to each other while do not connect to either of the
two rich nodes [Fig. 1(a)]. Then we cut off the links both
between the two low-degree nodes and between two rich
nodes respectively, and let each rich node connect to one
low-degree node [Fig. 1(b)]. Repeating the above process
until the links among the whole rich nodes are completely
eradicated, we will get a network without rich-club prop-
erty [Fig. 1(d)].
Because we use the rewiring method, the degree of

every node in the original network exactly remains un-
changed. For the topological structure of the original
network, there is only small variation induced by manip-
ulating rich-club connections, so we can monitor how the
subgraph frequencies are affected by the rich-club prop-
erty. Furthermore, we can compare the results of the
subgraph ratio profile for the original network, the net-
work with rich-club, and the network without rich-club,
to make more reliable inference of whether the original
network has a rich-club property or not.

B. Motif clusters of rich nodes in non-rich-club and

rich-club networks

Each network will be scanned for all possible n-node
subgraphs (we choose n = 4). In a network with a skewed
degree distribution, rich nodes have much higher degrees
than the overwhelming majority, so whether they con-
nect to each other to form a rich-club will strongly af-
fect the frequencies of subgraphs. Actually, rich nodes
can absorb a very large number of subgraphs and form
a motif cluster. For example, the triangles may not dis-
tribute uniformly within a scale-free network but tend to
aggregate around the hubs, because a node with k links
can carry up to k2 triangles5. The aggregation of motifs
into motif clusters is important, because it implies that
the potential functional properties of the large number
of subgraphs also need to be evaluated at the level of
subgraph clusters instead of being evaluated only at the
level of a single subgraph.
Exploring rich-club connections provides a new way

to evaluate the functional properties of abundant sub-
graphs at the level of subgraph clusters. A few rich nodes
usually take part in a very large number of small sub-
graphs and they can form motif clusters in real-world
complex networks. Actually, the organization of rich
nodes can dominate the appearance of particular motifs
prominently. In the non-rich-club network [Fig. 2(b)],
rich nodes do not tend to connect to each other, so the
non-rich-club subgraphs [Fig. 2(d)] will be more com-
mon. On the contrary, in the rich-club network [Fig.
2(c)], rich nodes trend to connect to each other, so the

original network

non-rich-club network rich-club network

rich node

low-degree node

non-rich-club motifs rich-club motifs

(a)

(b) (c)

(d) (e)

FIG. 2. (Color online) The demonstration for the aggregation
of non-rich-club motifs when a network has no rich-club and
the aggregation of rich-club motifs when a network has a rich-
club.

network will demonstrate a larger number of the rich-club
motifs [Fig. 2(e)]. In the original network [Fig. 2(a)], rich
nodes may or may not connect to each other. Compar-
ing the appearing frequencies of motifs in the above three
networks, we can conclude whether the original network
has a rich-club property.

It is obvious that by considering the subnetworks of
rich nodes, the frequencies of the non-rich-club motifs
and/or rich-club motifs are remarkably more than those
of the randomized versions of the subnetworks. The in-
herent existence of two distinct classes of subgraphs (non-
rich-club motifs and rich-club motifs) in a heterogeneous
network demonstrates that, in contrast to the homoge-
neous network, the highly abundant motifs can not exist
in isolation but must naturally aggregate into subgraph
clusters. Specifically, in the network with a rich-club,
the neighbors of a highly connected node are linked to
each other, therefore the chance that low-degree nodes
participate in highly connected subgraphs is slim. In a
homogeneous network, however, all nodes are engaged in
only a few interactions and the appearance of motifs is
the statistical average of the whole network, for there are
no hubs linking to a significantly higher number of other
nodes to form motif clusters.
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III. RESULTS

A. Motif distributions in homogeneous and heterogeneous

networks

Table I lists the results of six undirected networks (in-
cluding three real-world networks and three model net-
works) arranged with kmax/ks increasing. The value of
the structural cutoff degree ks can be regarded as the first
approximation of the maximum degree within a scale-free
network21. Here kmax/ks is a convenient index that can
be used in complex networks with any degree distribu-
tion to show the proportion of links (or degrees) rich
nodes possess in comparison with the remaining nodes in
a network6.

TABLE I. Statistics of six undirected networks: number of
nodes n, average degree 〈k〉, the exponent of degree distribu-
tion if the distribution follows a power law: α (or “–” if not),

structural cutoff degree ks =
√

〈k〉n21, maximal degree kmax.
SW is the network generated by the small-world model22, PG
is the network of US power grid19, BA is the network gener-
ated by the scale-free model19, EPA is the network from the
pages linking to www.epa.gov23 , PFP is the network gener-
ated by the model for the Internet topology24 and AS is the
network of the Internet topology at the level of autonomous
systems25.

Network SW PG BA EPA PFP AS
n 5000 4941 5000 4772 5000 5375
〈k〉 6.0 2.7 6.0 3.7 6.0 3.9
α − − 3.0 2.0 2.2 2.2

kmax 16 19 219 175 1259 1193
ks 173.2 115.4 173.2 132.9 173.2 144.8

kmax/ks 0.09 0.16 1.26 1.32 7.26 8.24
type kmax ≪ ks kmax ≈ ks kmax ≫ ks

The low values of kmax/ks for SW and PG mean that
the two networks have a homogeneous degree distribution
and the degrees of rich nodes are close to the majority of
nodes. While a high value of kmax/ks indicates that the
network has a heterogeneous degree distribution and the
degrees of a few rich nodes are far larger than the rest,
like BA and EPA. Especially, PFP and AS not only have
a power-law degree distribution, but also possess a few
superrich nodes17 for kmax ≫ ks in the two networks.
Although motifs are only local interaction patterns,

the distribution of motifs can greatly reflect the topolog-
ical properties of the networks5,26. In Table II, we list
the percentage of heterogeneous-motif, the percentage of
homogeneous-motif, and the percentage of the sum of
heterogeneous-motif and homogeneous-motif for all the
networks. The heterogeneous-motif is an unequal small
structure: the blue vertex represents a rich node, and
the other three red vertexes represent low-degree nodes.
This non-equilibrium structure shows that the three low-
degree nodes all attach to the rich node, while the low-
degree nodes do not connect to each other. Obviously,
the rich node has the highest status in the four nodes

and this structure should appear more in a network with
a heterogeneous degree distribution. Especially, as in
the case of many real-world networks, subgraphs with a
central node are abundant in a scale-free network. The
homogeneous-motif is a chain-structure, and the stations
of the four nodes are more likely to be equal. We assert
that this structure should frequently occur in a network
with a homogeneous degree distribution.
As we have predicted, the results in Table II show that

the percentage of homogeneous-motif for SW [61.9%] and
PG [59.4%] are larger than the networks with a hetero-
geneous degree distribution. The subset of n-node sub-
graphs in a heterogeneous network often contains a cen-
tral node, so the heterogeneous-motif occurs more com-
monly in heterogeneous networks, such as for BA [64.5%],
EPA [80.5%], PFP [92.8%] and AS [96.0%]. In sum-
mary, with the value of kmax/ks increasing, the ratio of
heterogeneous-motif/homogeneous-motif increases too.

TABLE II. The first row is the percentage of heterogeneous-
motif, the second row is the percentage of homogeneous-
motif, the third row is the ratio of heterogeneous-motif and
homogeneous-motif, and the fourth row is the percentage of
the sum of the two subgraphs. SW, PG, BA, EPA, PFP and
AS represent the same networks in Table I.

Motif SW PG BA EPA PFP AS

9.7% 31.3% 64.5% 80.5% 92.8% 96.0%

61.9% 59.4% 34.6% 18.5% 4.7% 3.1%

/ 0.16 0.53 1.86 4.35 19.93 31.40

+ 71.6% 90.7% 99.1% 99.0% 97.5% 99.1%

The above results indicate that rich nodes in homoge-
neous networks (e.g., SW and PG) only have a very lim-
ited effect on the whole network, for all nodes (including
rich nodes) in such type of networks are engaged in only
a few interactions. Obviously, rich-club connections are
more involved in the heterogeneous-motif in a heteroge-
neous network, for a node with higher degree has a more
chance to participate in this structure. In a heteroge-
neous network (e.g., BA, EPA, PFP and AS), a few rich
nodes with much more links than the overwhelming ma-
jority can absorb a very large number of subgraphs and
form motif clusters, which makes rich-club connections
more influential to the whole network.
The percentage of the sum of heterogeneous-motif and

homogeneous-motif for all the networks is very high (up
to 99.1%), which means other types of motifs are rela-
tive sparse compared with the above two types of motifs.
Therefore, to form a specific functional block, the abso-
lute frequencies of a particular subgraph are not neces-
sary very large. Actually, it is enough for the relative
frequencies of the motif for the original network are sta-
tistically higher than those for its randomized version2.
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Moreover, in view of the difficulty in forming the specific
functional blocks in a randomized network, the sparse
distribution of other motifs gives us a chance to con-
trol the appearance of small functional subgraphs in real-
world networks by manipulating rich-club connections.

B. Superfamilies of non-rich-club and rich-club networks

Because undirected networks have only two types of
triads (unclosed triple and triangle), we only analyze the
profile of the six types of undirected connected tetrads (4-
node motifs). The normalized Z scores of tetrads show a
significant dependence on the network size, so we use
the abundance of each subgraph i relative to random
networks4:

∆i =
Nreali − 〈Nrandi〉

Nreali + 〈Nrandi〉+ ε
, (1)

where ε = 4 ensures that | ∆i | is not misleadingly large
when the subgraph appears very few times in both the
real and random networks. The Subgraph Ratio Profile
(SRP) is the vector of | ∆i | normalized to length 1:

SRPi = ∆i/(
∑

∆i
2)1/2. (2)

Network motifs, which are patterns of interconnections
occurring in complex networks are significantly higher
than those for randomized networks2. The motif pat-
tern reflects the local structural properties of complex
networks and thus can be used to classify networks.
If different types of networks share the similar result
of SRP, these networks can be classified into the same
“superfamily”4. The networks in the same triad super-
family share not only some particular types of motifs, but
also very similar proportions of all types of subgraphs.
Here we show the SRP results for the original network,

the network with rich-club, and the network without rich-
club in Fig. 3. If the above three networks belong to the
same superfamily, it means that the rich-club property
has weak effect on the original network, and this result
shows the network is a homogeneous network. If the three
networks belong to different superfamilies, it means that
rich-club connections can strongly affect the structure
and function of the original network, and this result in-
dicates that the network is heterogeneous. Furthermore,
according to the fact that the original network belongs
to the same superfamily as the network with rich-club or
the network without rich-club, we can judge whether the
original network has a rich-club property.
The networks of SW and PG have a homogeneous de-

gree distribution, so rich nodes in the two networks are
not significantly higher than others. Therefore, as has
been shown in Figs. 3(a) and 3(b), whether the two net-
works have rich-club properties does not have any influ-
ence on SRP. Moreover, the original network, and the

1 2 3 4 5 6
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non−rich−club
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rich−club
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1 2 3 4 5 6
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0
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(b) PD(a) SW

(c) BA

(e) PFP

(d) EPA

(f) AS

FIG. 3. (Color online) The subgraph ratio profile (SRP) for
six undirected networks. SW, PG, BA, EPA, PFP and AS
represent the same networks in Table I.

networks with and without rich-club all belong to the
same superfamily. The above results indicate whether a
homogeneous network has a rich-club property is not very
important, and rich-club connections can not control the
functions of such type of networks.

Because the networks of BA and EPA have a het-
erogeneous degree distribution, rich nodes possess much
more links than the overwhelming majority. Therefore,
whether the two networks have rich-club properties can
greatly affect the result of SRP. As is shown in Figs. 3(c)
and 3(d), the original network and the network with rich-
club do not belong to the same superfamily. Conversely,
the original network and the network without rich-club
belong to the same superfamily, so BA and EPA both
have no rich-club property.

For the networks of PFP and AS, they not only have
a heterogeneous degree distribution but also have a few
superrich nodes, so whether the two networks have a rich-
club can affect the result of SRP most significantly. The
original network and the network without rich-club do
not belong to the same superfamily. For the original PFP
and the network with rich-club belong to the same super-
family, PFP has the property of rich-club as is shown in
Fig. 3(e). Basically we can say that AS has a rich-club
property, for the original AS has the very similar SRP to
the network with rich-club, except for the motif 6 (4-node
clique) in Fig. 3(f). Yet the non-consistency of motif 6
for the original network and the network with rich-club
may be the origin of arguments on whether the Internet
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topology has a rich-club property8–11.

IV. CONCLUSIONS

In conclusion, we find that the influences of rich-club
connections strongly depend on the degree distributions
of complex networks. Our findings show that in a homo-
geneous network, whether the network has a rich-club or
not is not very important for its structure and function.
While rich-club connections in a heterogeneous network
have a crucial implication, for they can partially optimize
and control the function of the whole network.
Our new framework for measuring the subgraph ra-

tio profile can provide a more impartial judgement on
whether a network has a rich-club. Previous studies put
more attention on finding whether the links among rich
nodes appear more frequently in the original network
compared with its randomized counterparts9,10. While
the actual influence of rich-clubs in different degree dis-
tribution networks has not been studied. Our approach
which is based on the effect of the rich-club on the net-
work structure and function, is therefore more advanced.
We demonstrate that strong ties between the rich-

club property and local (subgraph-based) structure un-
derscore the importance to understand the properties of
complex networks as fully integrated systems. Indeed,
the abundance of some kinds of local interaction pat-
terns reflects the rich-club property of a network, rais-
ing intriguing questions about the role of local events in
shaping a network’s overall behavior5. These results indi-
cate that the analysis described here may have an impact
on our understanding for other types of subgraphs (e.g.,
cliques27 and cycles28) in complex networks.
Our results show the significance of the rich-club prop-

erty and motif distributions in modeling and designing
real-world networks29. An appropriate model should
have similar structure and function to the real-world net-
work. To meet this demand the model can be designed
from the basic motifs or the subgraph ratio profile, which
can be easily controlled by the rich-club property.
Our findings also deepen our understanding of the evo-

lution of dynamical networks. The existence of the dense
rich-club motifs and/or non-rich-club motifs in real-world
networks may be a unifying property of evolved systems,
so it is interesting to understand the rich-club concept
from the perspective of network evolution. We conjec-
ture that the common origin of the local functional blocks
and the rich-club property is primarily the same, because

neither the density and topology of subgraphs nor the
rich-club property can be dissociated from the evolution
of the overall network. Following the framework in this
work, we will contrive to bridge the gap between local
topologies of a network and its global statistical features
in future.
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A.-L. Barabá, Proc. Natl. Acad. Sci. U.S.A. 101, 17940 (2004).

6X.-K. Xu, J. Zhang, and M. Small, Phys. Rev. E in press.
7H. Zhao and Z.Y. Gao, Physica A 381, 473 (2007).
8S. Zhou and R.J. Mondragón, IEEE Commun. Lett. 8, 180
(2004).

9V. Colizza, A. Flammini, M.A. Serrano, and A. Vespignani, Nat.
Phys. 2, 110 (2006).

10L.A.N. Amaral and R. Guimera, Nat. Phys. 2, 75 (2006).
11S. Zhou and R.J. Mondragón, New J. Phys. 9, 173 (2007).
12J.J. McAuley, L. da F. Costa, and T.S. Caetano, Appl. Phys.
Lett. 91, 084103 (2007).

13Z.-Q. Jiang and W.-X. Zhou, New J. Phys. 10, 043002 (2008).
14R. Albert, H. Jeong, and A-L. Barabási, Nature (London) 406

378 (2000).
15A.E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102(R) (2002).
16M. Small, C.K. Tse and D. Walker, Physica D 215, 146 (2006).
17X.-K. Xu, J. Zhang, J. Sun, and M. Small, Phys. Rev. E 80,
056106 (2009).

18T. Opsahl, V. Colizza, P. Panzarasa, and J.J. Ramasco, Phys.
Rev. Lett. 101, 168702 (2008).

19A.-L. Barabási and R. Albert, Science 286, 509 (1999).
20S. Maslov and K. Sneppen, Science 296, 910 (2002).
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