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Abstract: Biological soft tissues encountered in clinical and pre-clinical imaging mainly consist 

of light element atoms, and their composition is nearly uniform with little density variation. Thus, 

x-ray attenuation imaging suffers from low image contrast resolution. By contrast, x-ray phase 

shift of soft tissues is about a thousand times greater than x-ray absorption over the diagnostic 

energy range, thereby a significantly higher sensitivity can be achieved in terms of phase shift. In 

this paper, we propose a novel Fourier transform based iterative method to perform x-ray 

tomographic imaging of the refractive index directly from differential phase shift data. This 

approach offers distinct advantages in cases of incomplete and noisy data than analytic 

reconstruction, and especially suitable for phase-contrast interior tomography by incorporating 

prior knowledge in a region of interest (ROI). Biological experiments demonstrate the merits of 

the proposed approach. 
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1. Introduction: Biological soft tissues encountered in clinical and pre-clinical imaging mainly 

consists of light element atoms, and their elemental composition is nearly uniform with little 

density variation. X-ray computed tomography (CT) has been widely used in the biomedical 

field but the contrast resolution has been poor along with the associated radiation dose problem 

[1]. Novel x-ray imaging research and development has been performed over the past years, 

especially in the area of x-ray phase contrast imaging, because the x-ray phase shift of soft 

tissues is about a thousand times greater than the x-ray attenuation coefficient over the diagnostic 

energy range. It is well recognized that phase-contrast imaging reveals detailed structural 

features of soft tissues and offers critical information that helps identify malignant from healthy 

tissues. Momose et al. first proposed two-grating interferometry in the hard X-ray region, and 

performed x-ray phase imaging using a phase transmission grating and an absorption 



transmission grating made by gold stripes on glass plates [2]. This work has been extended for 

3D tomographic phase reconstruction using a hard x-ray two-grating interferometer [3-4]. 

Recently, three-grating interferometry in the hard x-ray region with low-brilliance x-ray tubes 

has been demonstrated [5]. It is exciting that phase contrast imaging can be efficiently performed 

with a conventional x-ray source, allowing widespread applications in biomedical imaging, 

industrial nondestructive testing, or security screening. Diffraction enhanced imaging (DEI) is 

another effective phase-contrast method in medical and biological fields. DEI takes advantage of 

high angular resolution of perfect crystals, has extremely high sensitivity with weakly absorbing 

low-Z samples, and produces refraction-angle images, which reflect gradients of the refractive 

index in the sample [6]. 	  

Differential phase-contrast tomography is to reconstruct a spatial distribution of the 

refractive index from differential projection data.  The reconstruction problem of directional-

derivative projection data has been studied for years. Pavlov et al. proposed that thephase shift 

could be recovered from differential data using a cubic spline approximation, and then the 

refractive index be reconstructed using the filtered-backprojection (FBP) method [7]. 

Maksimenko et al. proposed that the gradient of the refractive index could be first reconstructed, 

and then the refractive index be recovered using an integration method [8]. This type of 

integration methods was sensitive to noise and would generate strong streak noises [9]. Faris et al 

proposed a FBP method with a sign filter function directly applied to directional-derivative 

projection data for beam-deflection optical tomography [10]. This method was also adapted for 

phase-contrast tomography [11]. 	  

While analytic methods are widely used for image reconstruction, iterative reconstruction 

methods offer distinct advantages than analytic counterparts when data are incomplete, 

inconsistent, and rather noisy. Furthermore, because gratings of large sizes are difficult to 

fabricate and model in practice, x-ray grating interfermetric imaging is commonly performed 

wtih small samples [12]. Therefore, for large objects the interior tomography approach would be 

valuable to reconstruct a region of interest (ROI) accurately. Because the interior problem does 

not have a unique solution without any constraint [13], interior tomography achieves 

theoretically exact interior reconstruction by incorporating the prior aknowledge that are 

practically available.  



In this paper, we propose a novel Fourier transform based iterative method to perform x-

ray tomographic imaging directly from differential phase shift data. In the second Section, we 

will present the Fourier transform based iterative scheme, discuss the solution uniqueness, and 

describe an algorithm for interior differiental phase-contrast tomography. In the third Section, 

experimatal results will be reported to demonstrate the feasibility and merits of the proposed 

approach. Finally, discussions and conclusion will be made. 

2. Materials and methods: The experiments were performed using the beamline 20XU of 

SPring-8 at the synchrotron facility in Japan, where high-flux monochromatic x-rays have a 

sufficient spatial coherence. The x-ray Talbot interferometer was used that consists of a phase 

grating (G1), an amplitude grating (G2), and a charged-coupled device (CCD) with optical lens 

and a phosphor screen. The Talbot interferometer was arranged for the beamline and used in 

imaging biological soft tissues. In the Talbot interferometric imaging, moiré patterns were 

acquired using the fringe-scanning method. When one of the gratings was scanned along the 

transverse direction , the intensity signal in each pixel in the detector plane would oscillate as 

a function of . Then, the recorded individual intensity images at each projection view were 

processed for a differiantal phase shift image  [4]. 

2.1. Iterative method: The phase shift  can be expressed as a projection of the refractive 

index along with the x-ray beam direction,  

,                                                  (1)   

where λ is the x-ray wavelength,  a directional vector of the x-ray beam at a projection angle , 

and . For x-ray grating interfermetric imaging, Eq. (1) is discretized into a linear 

system for each projection view,    

                                                                
(2) 

where  is a vector of the discretized phase shift, Aθ is weighting matrix, and  is a vector of 

the discretized refractive index distribution to be reconstructed.  

Then, we perform the discrete Fourier transform for both sides of Eq. (2), respectively, 

                                                              (3) 



where  denotes the discrete Fourier transform of column vectors of , and   is the 

discrete Fourier transform of .  In term of the Fourier transform derivative theorem, we have 

                                                    (4) 

From Eqs. (3) and (4), we obtain the following linear system 

                                                         (5) 

where 
 
is the discrete Fourier transform of differential phase shift data . With Eq. (5), 

we can reconstruct a refractive index distribution directly from differential phase shift data. 

Specifically, we can use a classical iterative method, such as the algebraic reconstruction 

technique (ART) or simultaneous algebraic reconstruction technique (SART).   

2.2. Interior reconstruction: Most importantly, interior tomography can be performed based on 

Eq. (5) from truncated differential phase shift data. However, the interior problem is not uniquely 

solvable without appropriate prior knowledge. By incorporating a prior knowledge in a region of 

interest (ROI), the solution of the interior reconstruction of the refractive index is uniquely 

determined from truncated differential phase shift data, a mathematical discussion is presented as 

follows.  

Without loss of generality, we assume that an object is supported on a disk 

, and an interior ROI defined as 

  for . 

Lemma 1 [14]: If  and  are compactly supported on the disk , and 

, then the difference  is an 

analytic function in . 

Lemma 2 [15]: If a function  satisfies:  and  for , where  

is the Hilbert transform of , then  for . 

From Lemmas 1 and 2, we can immediately obtain the following theorem on the solution 

uniqueness of interior refractive index reconstruction using the relation between the 

backprojection of differential projection of an image and its Hilbert transform [16]:  



Theorem 1. If a refractive index image  is known on a small subregion  of 

ROI, then the refractive index function can be determined uniquely and stably from the truncated 

differential phase shift data  and the prior knowledge on . 

From Theorem 1, the interior reconstruction can be practically performed with an excellent 

image quality from truncated differential phase shift data and a known subregion inside an ROI 

based on Eq. (5) using an iterative method, such as ART and SART. Note that the prior 

knowledge must be incorporated into the iterative process so that the iteration would converge to 

the true refractive index distribution. 

3. Results and discussion: To verify our method, we conducted a differential phase contrast 

tomographic imaging for a piece of rabbit liver. The biological sample was imaged using an x-

ray grating Talbot interferometer at SPring-8 [4]. Using 0.1 nm x-rays, the acquisition of moiré 

patterns was done in a five-step fringe scan at each angular view of the sample rotation with a 

step of 0.720 over a 1800 range Images were recorded on a CCD camera with optical lens and a 

phosphor screen. The CCD camera consisted of 706×706 pixels with an effective pixel size of 

4.34 µm. From the recorded individual intensity images at every projection view, the differiantal 

phase shift images were extracted for each angular position of the sample.  

3.1. Global reconstruction: To test the reconstruction robustness against measurement noise, 

we did not preprocess differiantal phase shift data for noise reduction. Representative 

reconstruction methods were implemented, including FBP directly from differiantal phase shift 

data, integration and reconstruction (first phase shift images were recovered from differiantal 

phase shift data using an integration method, and then the refractive index distribution 

reconstruction using either FBP or iteration methods), as well as our proposed Fourier transform 

based iterative method. In this comparative study, the image reconstruction using FBP appears 

noisy. The integration and reconstruction methods gave even worse results because the 

integration step generated strong artifacts, as shown in Fig. 1 (b). With the same differential 

projection dataset, 10 iterations were performed with the proposed method. We obtained an 

excellent refractive index image with highly contrast and spatial resolution, as shown in Fig.1 (c). 

This also shows that the proposed iterative method seems robust against measurement noise. 



   

Fig. 1. Global reconstruction. (a) The image at the 200th slice reconstructed using FBP from 
differiantal phase shift data compromised by measurement noise; (b) the image reconstructed 
using the integration and reconstruction method; (c) the image reconstructed using the proposed 
Fourier transform based iterative method from the same dataset as that used in (a). The display 
window is [0.0, 1.1×10-7]. 
 

3.2. Interior reconstruction: Furthermore, we conducted the interior reconstruction from 

truncated local differiantal phase shift data using the proposed iterative method. An ROI of the 

biological sample was selected to contain 128×128 pixels, which occupies only 3.3% of the 

global area. Nine pixel values around the ROI center were assumed as prior knowledge for 

interior reconstruction. Based on Eq. (5), 15 SART iterations were done incorporating the prior 

information. The reconstructed results are in an excellent agreement with the ROI in the global 

image reconstruction with FBP, as shown in Fig. 2. The detailed features in the ROI are 

quantitatively accurate. 

Conclusions: In summary, we have proposed a Fourier transform based iterative method to 

perform the tomographic imaging in terms of the x-ray refractive index directly from differential 

phase shift data. Using experimental data from an x-ray grating interferometer in Japan, we have 

verified that the proposed method can accurately reconstruct an x-ray refractive index 

distribution and is robust against measurement noise. Specially, by incorporating the prior 

knowledge, this method is accurate and stable for interior reconstruction solely from truncated 

differential projection data. It is expected that this new method will help improve x-ray phase-

contrast tomographic imaging and find biomedical applications. 

(a) (b) (c) 
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Fig. 2. Interior reconstruction. (a) The global image at the 250th slice reconstructed 
using FBP from differiantal phase shift data after the background noise is suppressed;  
(b) the magnified ROI in (a); (c) the interior image reconstructed at the same slice 
location using the Fourier transform based iterative method; (d) the profile 
comparison between (b) and (c) along the horizontal midline. The display window is 
[0.0, 1.1×10-7]. 
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