Stanford University School of Humanities and Sciences

Department of Applied Physics

Apply

David A. Reis

Associate Professor of Photon Science and of Applied Physics

Directory Link Research Group Link Research areas:

Accelerator Physics, AMO Physics, Condensed Matter, Energy Sciences, Laser Physics, Materials Science, Nano Sci/Eng, Photonics, Synchrotron Radiation, Ultrafast Science, X-Ray Physics

Description

Condensed Matter Physics

My research interests include ultrafast processes in the solid state and fundamental light-matter interactions. My group investigates nonequilibrium dynamics in solids with atomic level spatial and temporal resolution. Of particular interest are ultrafast dynamics including electron-phonon and phonon-phonon coupling, coherent phonon dynamics, photo-induced phase transitions, thermal transport and most recently strong-field induced attosecond electron dynamics. Our tools include ultrafast optical laser and x-ray sources (as well as ultrafast x-ray lasers such as the Linac Coherent Light Source x-ray free-electron laser at SLAC).

Lasers and Accelerators

My group makes extensive use of ultrafast lasers and optics and accelerator sources of x-rays in our research.

Nanoscience and Quantum Engineering

Our group studies thermal transport across interfaces of dissimilar materials using ultrafast laser and x-ray probes. Fundamentally these processes occur on the nanoscale involving electron and phonon propagation through thin films and interfaces.

Courses Taught

Solid State Physics I

Selected Publications

Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth

Atomic-scale visualization of inertial dynamics

Clocking femtosecond x-rays

Ultrafast x-ray scattering in solids

Ultrafast bond softening in bismuth: Mapping a solid's interatomic potential with x-rays

Probing unfolded acoustic phonons with x rays

Thermal transport in a semiconductor heterostructure measured by time-resolved x-ray diffraction

Femtosecond electronic response of atoms to ultraintense x-rays

Imaging nonequilibrium atomic vibrations with x-ray diffuse scattering

Observation of high-order harmonic generation in a bulk crystal

More Faculty in This Theme See all >>

Harold Y. Hwang

Aharon Kapitulnik

Kathryn A. Moler

Benjamin Lev

Daniel S. Fisher Ian R. Fisher

