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Mod-CSA: Modularity optimization by conformational space annealing
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We propose a new modularity optimization method, Mod-CSA, based on stochastic global op-
timization algorithm, conformational space annealing (CSA). Our method outperforms simulated
annealing in terms of both efficiency and accuracy, finding higher modularity partitions with less
computational resources required. The high modularity values found by our method are higher
than, or equal to, the largest values previously reported. In addition, the method can be combined
with other heuristic methods, and implemented in parallel fashion, allowing it to be applicable to

large graphs with more than 10000 nodes.

I. INTRODUCTION

Network science has emerged as an important frame-
work to study complex systems [1, 2]. One of the most
important properties of networks is the existence of mod-
ules/communities; communities are subgraphs of densely
inter-connected nodes, and nodes in a community are
considered to share common characteristics [3, 4]. Proper
community detection allows one to determine potentially
hidden relationships between nodes, and also allows one
to reduce a large complex network into smaller and com-
prehensible ones. For this reason, good community detec-
tion within networks has been a subject of great interest.
There exist various definitions of community [4-7]. The
most widely used approach to detect such sub-groups of
nodes with non-random connections involves the use of
modularity to quantify the quality of a given partition
of a network [4, 8, 9]. Using modularity, the community
detection problem is thus recast as a global optimization
problem. However, finding the maximum modularity so-
lution is an NP-hard problem [10], and enumeration of
all possible partitions is intractable in general. Therefore,
an efficient optimization algorithm is required to obtain
high modularity solutions.

Most of the modularity optimization studies have fo-
cused on developing fast heuristic methods generating
reasonable quality community structures. Currently,
simulated annealing (SA) is considered to be the best
algorithm [4, 11] and has been adopted in many theoret-
ical and practical studies where communities with high
modularity are required [12-14].

In this paper, we propose a new modularity maximiza-
tion method based on conformational space annealing
(CSA) algorithm [15-19]. We show that CSA outper-
forms SA both in generating better community structures
and in computational efficiency. CSA consistently finds
community structures with higher modularity using less
computational resources. Moreover, for networks con-
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taining approximately up to 1000 nodes, CSA repeatedly
finds converged solutions. Considering the stochastic na-
ture of the algorithm, this suggests that the converged
solution is likely to be the optimal solution of the net-
work.

II. METHODS

Let us consider a network with IV nodes and M edges.
Modularity measures the fraction of intra-community
edges minus its expected value from the null model, a
randomly rewired network with the same degree assign-
ments. Modularity is defined as

where N, is the number of assigned communities, I; is
the number of edges within the community ¢ and D; is
the sum of degrees of nodes in the community 4.

To benchmark the performance of CSA against that
of SA, we implemented SA following existing stud-
ies [12, 20]. Initially, using F = —@Q, a simulation starts
at a high temperature T, to sample broad range of the so-
lution space as well as to avoid trapping in local-minima.
As the simulation proceeds, T is slowly decreased to more
completely explore basins of high modularity. At a given
T, a set of stochastic movements including N? single-
node moves and NN collective moves consisting of random
merges and splits of communities, are carried out. To
split a community, a ‘nested” SA method is used [12, 20],
which isolates a target community from the entire net-
work and split it into two communities. Each 'nested’
SA starts with two randomly separated groups for short
annealing and the annealed solution serves as a collec-
tive move. For each trial movement, if () increases, the
movement is accepted, otherwise it is accepted with prob-

ability P = exp (%) After a set of movements are
tried, T' is decreased to a1, where o = 0.995.

Our method, CSA, is a global optimization method
which combines essential ingredients of three methods:
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Monte Carlo with minimization (MCM) [21], genetic al-
gorithm (GA) [22], and SA [23]. As in MCM, we consider
only the phase/conformational space of local minima;
i.e., all solutions are minimized by a local minimizer. As
in GA, we consider many solutions (called bank in CSA)
collectively, and we perturb a subset of bank solutions
by cross-over between solutions and mutation. Finally,
as in SA, we introduce a parameter D.,;, which plays
the role of the temperature in SA. In CSA, each solution
is assumed to represent a hyper-sphere of radius D in
the solution space. Diversity of sampling is directly con-
trolled by introducing a distance measure between two
solutions and comparing it with D, to deter two solu-
tions from coming too close to each other. Similar to the
reduction of T"in SA, the value of D.,; is slowly reduced
in CSA; hence the name conformational space annealing.

To apply CSA to optimize modularity, three ingredi-
ents are required: (a) we need a local modularity max-
imizer for a given network partition, (b) we need a dis-
tance measure between two ()-maximized network parti-
tions, and (c) we need ways to combine two parent par-
titions to generate a daughter partition which will be
(Q-maximized subsequently.

Here, the community structure is represented by as-
signing an index to each node, where nodes with an iden-
tical index belong to the same community. For local max-
imization of ), we use a quench procedure which accepts
a move if and only if it improves @), equivalent to SA at
T=0.

The distance between two community structures is
measured by the variation of information (VI) [24]. For
two given partitions of X and Y, VI is defined as

VI(X,Y)=H(X,Y) - I(X;Y)

where H is the entropy function and I is the mutual
information function of the probability p(z,y) = ny ,/n,
where n is the number of total nodes, x/y refers to a
community from X /Y, and ng, is the number of nodes
shared by xz and y. With H and I defined by

H(Xv Y) - = ZP(I; y) logp(a:, y)
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where p(x) = ny/n and ny, is the number of nodes in
community x. If X is identical to Y, it is easy to show

that VI(X,Y) = 0. We have also tried other measures
such as Rand index [25] and normalized mutual informa-
tion (NMI) [26] and they gave no significant difference in
results.

In CSA, we first generate 50 random partitions which
are subsequently maximized by quench procedures. We
call these solutions as the first bank which is kept un-
changed during the optimization. We make a copy of the
first bank, and call it the bank. The partitions in the
bank are updated by better solutions found during the
course of optimization. The initial value of D, is set
as Dgyg/2, where Dg,g is the average distance between
partitions in the first bank. A number of partitions (30
in this study) in the bank are selected as seed partitions.
With each seed, 20 trial partitions are generated by cross-
over between the seed and a randomly chosen partition
from either the bank or the first bank. An additional 5
are generated by random mutation of the seed.

For a cross-over, we use two operations, a convergent
copy and a divisive copy, shown in Figure 1. In both
cases, one community represented by an index is ran-
domly selected from a source solution and it is copied
into a target solution after assigning a new index. For
the convergent copy, the new index is chosen from one
of the neighboring indices of the copied nodes from the
target in a random fashion. For the divisive copy, a new
index not present in the target is chosen. The rationale of
using these operators is that the community index itself
has no particular meaning, while a well-defined commu-
nity structure from one solution can serve as an advanta-
geous feature that should be preserved to generate a bet-
ter solution. For each operation, the minimum number
of nodes that should be copied are randomly determined
between 1% to 40% of total nodes and the above oper-
ation is repeated until the total number of copied nodes
exceeds the number.

For mutation, random merge and split operators were
introduced. The random merge was carried out by com-
bining two adjacent communities. The random split op-
erator divides a community into two randomly assigned
groups. All trial conformations generated by cross-over
and mutation operations are optimized by quench proce-
dures. It should be noted that only local moves are used
in the quench procedures since the divergent and divisive

copy operators can act as the merge and split moves used
in SA.

After local-maximization of trial partitions, these par-
titions are used to update the bank. The modularity of
a trial partition « is compared with the modularities of
partitions in the bank. If « is worse than the worst par-
tition of the bank, it is discarded. Otherwise, we find
the partition A in the bank which is closest to «, as de-
termined by distance D(a, A). If D(a, A) < Deyt, o is
considered as similar to A and it replaces A if o > A.
If @ < A it is discarded. If D(a, A) > Deys, o is re-
garded as a new partition similar to none in the bank,
and it replaces the worst existing partition, that is, it re-
places the lowest modularity partition in the bank. We
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FIG. 1. (Color online) Two cross-over operators, (A) con-
vergent copy and (B) divisive copy are shown. In (A) the
community indexed by 1 from the source is copied into the
target, and the new indices are set to 1 or 3 with the prob-
ability of 2/3 and 1/3. In (B) the community indexed by 3
from the source is copied into the target and the new index 2
is assigned.

carry out this operation for all trial partitions. With up-
dated bank, new seed partitions are selected again from
the bank which have not yet been used as seeds. This
entire process of generating partitions by perturbation
and subsequent local maximization and updating bank
is repeated until all partitions in the bank are used as
seeds. At each iteration step, Dy is reduced with a pre-
determined ratio. After D.,; reaches to its final value,
Davg/5, it is kept constant.

Once all partitions in the bank are used as seeds with-
out generating better partitions, implying that the pro-
cedure might have reached a deadlock, we reset all bank
partitions to be eligible for seeds and repeat another
round of search procedure. After this additional search
also reaches a deadlock, we expand our search space by
adding an additional 50 randomly generated and opti-
mized partitions to the bank, and repeat the whole pro-
cedure. In this study, we terminated our calculation after
100 partitions were used as seeds. Additional adding cy-
cles should be considered for more rigorous optimization,
especially for problems with high complexity.

III. RESULTS

To compare performance of CSA and SA, we applied
CSA and SA to a number of real-world networks com-
monly used in existing modularity optimization studies,
shown in Table I. All networks considered are undi-
rected and unweighted. Due to the stochastic nature
of both methods, we performed 50 independent simu-
lations for each method. The results are summarized

Network Nodes Edges
Dolphins 62 159
Les Miserables 77 254
Political books 105 441
College football 115 613
Jazz 198 2742
USAir97 332 2126
Netscience_main 379 914
C. elegans 453 2025
Electronic Circuit (s838) 512 819
E-mail 1133 5451
Erdos02 6927 11850
PGP 10680 24316
condmat2003 27519 116181

TABLE I. Number of nodes and edges of benchmark networks
used in this study are displayed.

in Table II. The maximum, average and standard de-
viation of modularity values obtained by both methods
are displayed. As a measure of required computational
resources, we counted the number of function evalua-
tions performed until the maximum modularity solution
is found, N™**. We observe that CSA consistently finds
equal or higher modularity solutions than does SA for all
networks tested, with a smaller number of function evalu-
ations. To demonstrate the search efficiency of CSA more
clearly, we also measured the number of function evalua-
tions required by CSA to generate a solution equivalent
to the best modularity obtained by SA, which is denoted
as Ngqul in Table II. CSA clearly requires many fewer
function evaluations to generate solutions better than the
best ones obtained by SA. For small networks (e.g. up to
the Jazz musician network), CSA finds the best solution
with less than 10% of the function evaluations required by
SA and for the worst case, the C. elegans network, CSA
requires only 25% of the function evaluations of SA.

It should be noted that CSA can be applied to networks
containing more than 103 nodes where for SA this is im-
practical. For the three largest networks in Table II, CSA
found good solutions within a reasonable computational
time whereas SA runs did not yield reasonable value of
modularity within 2 days of wall clock time. This differ-
ence in computational time reflects a number of factors.
It is partly due to the high parallel efficiency of the CSA
algorithm [35]. In SA, generation of a trial solution is
dependent on its previous state, which makes it imprac-
tical to implement the algorithm in a parallel fashion.
However, the majority of computation in CSA consists of
independent local maximization procedures on hundreds
of trial solutions generated by cross-over and mutation,
and each maximization can be separately carried out.



CSA SA

Network Qmaz  Qavg 0 Qmar  Qavg 0 NESE/NFS™ NEES/NFST tosa  tsa
Dolphins 0.52852 0.52852 0 0.52852 0.52507 0.0036 0.077 0.077 0.09 0.74
Les Miserables 0.56001 0.56001 0 0.56001 0.55194 0.0071 0.362 0.362 0.01 0.18
Political books 0.52724 0.52724 0 0.52724 0.52723 0 0.055 0.019 0.07 2.52
College football 0.60457 0.60457 0 0.60457 0.60457 0 0.093 0.093 0.05 0.26
Jazz 0.44514 0.44514 0 0.44487 0.44477 1.6e-4 0.073 0.052 0.17 6794
USAir97 0.36824 0.36824 0 0.35376 0.34787 0.0044 0.271 0.010 0.13 429.2
Netscience_main 0.84859 0.84859 0 0.84383 0.83544 0.0044 0.345 0.019 1.3 263.3
C. elegans 0.45325 0.45325 0 0.45212 0.44927 0.0026 0.960 0.246 16.8 2512.3
Electronic Circuit (s838) 0.81936 0.81936 0 0.81871 0.80812 0.0048 0.639 0.424 2.6 1129.4
E-mail 0.58283 0.58282 2.2e-5 0.58198 0.58015 0.0015 0.510 0.119 73.6 42296

Erdos02 0.71843 0.71782 3.2e-4 - - - - - 3356 -

PGP 0.88675 0.88648 1.le-4 - - - - - 10757 -

condmat2003 0.76745 0.76484 0.0010 - - - - - 57609 -

TABLE II. Modularity optimization results obtained by 50 seperate runs of Mod-CSA and SA are displayed. Qmaez denotes
the maximum modularity value, Qqavy the average of maximum modularity value of each run, o the standard deviation of the
modularity value, N™%* the number of function evaluations until the calculation reached the maximum modularity, Né‘g‘jl
the number of function evaluations required for CSA runs to sample equal or higher modularity solutions than the maximum
modularity of SA runs, ¢ the average execution time to find the best solution in seconds. All simulations were performed on
Intel Nehalem core @ 2.93GHz. CSA and SA runs were performed with 64 cpus and single cpu, respectively. For the three
largest networks, SA results are not available because calculations were not finished within 2 days.

CSA
Network Ne Qmaz  Qpub  Qopt %fﬁ Source
Dolphins 5 0.52852 0.5285 0.5285 16.0 [27-29]
Les Miserables 6 0.56001 0.5600 0.5600 20.0 [29]
Political books 5 0.52724 0.5272 0.5272 100.0 [28-30]
College football 10 0.60457 0.6046 0.6046 100.0 [28, 29, 31]
Jazz 4 044514 0.4451 - - [28, 30, 32, 33]
USAir97 6 0.36824 0.3682 0.3682 0.0 [29]
Netscience_main 19 0.84859 0.8486 0.8486 0.0 [29]
C. elegans 9 045325 0.452 - - [34]
Electronic Circuit (s838) 16 0.81936 0.8194 0.8194 0.0 [29]
E-mail 10 0.58283 0.582 - - [34]
Erdos02 40 0.71843 0.7162 - - [30]
PGP 100 0.88674 0.8841 - - [30, 34]
condmat2003 80 0.76745 0.761 - - [31]

TABLE III. Comparison between the maximum modularity values obtained by CSA, Qmaz, With previously published ones,
Qpub, and the maximum values obtained by the exact method [29], Qopt, is displayed. N. denotes the number of communities
found by CSA. Source indicates the reference that the modularity value is collected. %fﬁ denotes the percentage of SA runs

that reached to the optimal modularity community structure.

The quench procedure in CSA consists of local moves
only, which is rather fast with large networks. On the
other hand, the most time-consuming operation in SA is
the splitting move by the nested SA procedure which we
find is indeed essential to obtain good SA solutions. In
CSA, the operation of the divisive copy when generating
trial solutions plays the equivalent role of the split move
in SA. To compare the computing efficiency of CSA with
existing methods, the time complexities of CSA and SA
are estimated based on the simulation results with the

benchmark networks. As shown in Figure 2, the time
complexity of CSA is estimated to be O(n?®) which is
comparable to other heuristic methods [36, 37] and bet-
ter than that of SA, O(n*3), where n is the number of
nodes.

In terms of convergence, CSA yields more robust so-
lutions than SA. Except the political books and college
football networks, the maximum modularity solution
found by SA varied from simulation to simulation.
For networks containing over 300 nodes, SA failed
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FIG. 2. (Color online) Comparison of time complexities of
CSA (red, circle) and SA (blue, cross) is shown. Network size,
n, represents the number of nodes, and CPU time corresponds
to the average time to find final solutions in seconds.

to sample the optimal solution, which raises serious
concerns when applying SA to modularity optimization
for practical use [11]. However, for all test networks up
to about 10% nodes, all CSA runs converged to the same
solution, except the E-mail network where 41 out of 50
converged. Considering the small size of networks and
the stochastic nature of the algorithm, we believe that
the converged solution of each network is likely to be the
true maximum modularity of the network.

We also compared maximum modularities obtained
by CSA with the maximum values from previous pub-
lications; see Table III. CSA finds equivalent or higher
@ values compared to existing studies in all networks
tested.

Recently, the exact maximum modularity values of
several small benchmark networks up to 512 nodes were
reported; they are displayed in Table III as Qop [29].
We performed 50 independent runs for these networks
and all runs converged to the optimal solutions without
exception. This result supports the hypothesis that
CSA is efficient enough to find the putative maximum
modularity solution for a network containing up to 10°
nodes.

CSA algorithm presented in this work aims to obtain

optimal modularity solutions and the method is not free
from the problem of the resolution limit arising from
using modularity [38]. However, the CSA procedure and
operators proposed in this work are general, and can be
used to optimize other fitness functions. To overcome
the resolution limit issue, more robust fitness functions
should be considered to be combined with CSA, such as
the map equation [39] or the partition density [7]. It
should be noted that the current work can be extended
to deal with directed or weighted networks in conjunc-
tion with modified modularity functions [40, 41]. In
order to handle large networks, CSA can be combined
with other efficient heuristics, such as the fast unfolding
method [42], instead of the stochastic quench procedure
used in this study.

IV. CONCLUSION

In this paper, we propose a new modularity optimiza-
tion method based on conformational space annealing
algorithm, Mod-CSA. Compared to SA, our method is
faster. Further, while it finds equivalent modularity
partitions for relatively small networks, for the larger
more challenging ones, it typically finds higher modu-
larity partitions. For small networks consisting up to 103
nodes, despite its stochastic nature, Mod-CSA solutions
converge to an identical solution, which appears to be
the best solution possible; this is not possible in other
stochastic algorithms. Mod-CSA can be implemented in
a highly parallel fashion and is thus applicable to large
networks where SA is not. In addition, Mod-CSA can
be extended to deal with large networks by using fast
heuristic methods as a local optimizer.
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