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The finite sum of the squares of the Mie coefficients is very useful for addressing problems of classical light scattering. An 

approximate formula available in the literature, and still in use today, has been developed to determine a priori the number of 

the most significant terms needed to evaluate the scattering cross section. Here we obtain an improved formula, which 

includes the number of terms needed for determining the scattering cross section within a prescribed relative error. This is 

accomplished using extended precision computation, for a wide range of commonly used size parameters and indexes of 

refraction. The revised formula for the finite number of terms can be a promising and valuable approach for efficient 

modeling light scattering phenomena. © 2012 Optical Society of America 
OCIS Codes: 290.0290, 290.4020, 000.4430, 260.2110, 260.5740, 230.5750 

Light scattering today is still an important and active 
field, whose application has largely outgrown the field of 
atmospheric optics, affecting several issues in optical 
trapping [1,2], metamaterials and cloaking [3], plasmonics 
[4], and realistic physical based rendering [5]. In 
particular, the phenomenon of plane waves scattering by 
a spherical body is exactly described by Mie theory in 
terms of an infinite series [6]. For the purpose of 
numerical computation, only a finite number of terms are 
retained, based on the size of the scatterer in relation to 
the wavelength. The number of terms conserved is 
commonly determined by Wiscombe’s criterion [7]. This 
method has been initially proposed to compute the 
spherical functions by downward recursion, and to utilize 
the new vector processing technology of the time, which 
required a number of terms established a priori. 
Nowadays, with the increased computational power and 
capability of data storage, this is not an issue, hence the 
results from Mie simulations could be more effective, 
reaching an optimal compromise between computational 
time and precision. In this letter, we revisit the 
calculations and provide an adequate criterion for 
terminating the infinite sum in terms of the required 
precision. These approximations can offer valuable 
approaches to model light scattering phenomena. 

Besides the truncation error, in numerical computation 
one has to take into account also the round-off error, due 
to the finite precision of machine numbers as in floating-
point representation in use by computers. To avoid round-
off errors, the method herein proposes to use a 
computational tool (Mathematica 8, Wolfram Research 
Inc.) that allows an extended-precision computation to be 
evaluated. Working with a precision, that is orders 
greater than the truncation error, the round-off errors due 
to finite precision computation becomes negligible to our 
problem. Moreover, the needed spherical functions 
(including the functions having arbitrary complex 
argument and high order, say ≥ 100 or more depending on 

the scatterer size) can be readily obtained at the desired 
precision, and tracked during the computation. 

The theory that treats the scattering of a linearly 
polarized monochromatic plane electromagnetic wave by 
an arbitrary uniform sphere in a non-absorbing medium, 
known as the Mie-scattering formalism, is a rigorous 
solution of the Maxwell equations and contains all the 
effects that contribute to the scattering [8,9]. According to 
this theory, the normalized scattering efficiency is related 
to the partial-wave amplitudes by, 
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where na  and nb  are the Mie scattering coefficients. In 
the case of a homogeneous sphere, written in term of the 
logarithmic derivative the latter coefficients are [10], 
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In the previous expressions, the derivative is with 
respect to the argument,  nj x  are the spherical Bessel 
and  (1)

nh x  are the spherical Hankel function of the first 
kind. The ratio of the refractive index of the particle 
(which could be complex) to the medium is m , x  is the 
size parameter defined as 2 a   (where a  is the sphere 
radius and   is the wavelength in the medium outside 
the particle). One should notice that the only difference 
between Eq. (2) and Eq. (3) is the dependence on the index 
of refraction term ( m ) in the last term of the numerator 
and denominator. 

The problem of applying the expression reported in Eq. 
(1) directly in a computational scheme is the need for an 
infinite number of terms. In fact, the truncation of the 
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multipole expansion to a finite number of term, N , is 
generally adopted, which depends on the convergence of 
the Mie coefficients through the spherical functions. The 
terms responsible for the convergence of the Mie 
coefficients are emphasized, in Eq. (2) and Eq. (3) with the 
curly brackets, whose arguments are always real. As 
n , the modulus of the Mie coefficients tends to zero, 
due mainly to the terms in the curly brackets [11]. The 
relative error of the scattering efficiency due to truncating 
the infinite series, is: 
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The stopping criterion for the infinite sum (Eq. (1)), 
according to Wiscombe criterion, was chosen to be 

2 2 145 10n na b    , due to previous reported work [12]. 
Instead, here we adopt the relative error, which is 
normalized (Eq. (4)). As known, the Wiscombe’s criterion 
is an empirical fitting yielding a stepwise function, but in 
its absolute form, is the integer part of, 

  1 3  4.05 2N x x   .  (5) 

In Eq. (5), the first term on the right hand side ( x ) is 
related to the localization principle [13], and 
mathematically, it represents the region where the 
spherical function contributes the most. The second term 
( 1 3x ) corresponds to the contributions of the surface 
waves [14]. An equation with the same functional form as 
Eq. (5), but which depends on the truncation error is 
desired. 

The Mie coefficients depend on the spherical functions, 
and these can be approximated in different domains. In 
particular, many authors apply asymptotic formulae for 
values of x  such that x n . In our case, the domain of 
interest is right outside the spherical body, as suggested 
by Eq. (5), for x n , where the asymptotic formula 
converges slowly. In this transition region, a suitable 
approximation for the spherical functions can be 
expressed as asymptotic series and in terms of Airy 
functions [14,15,16], as: 
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where 1 2n    and 1 3x c   . Combining these 
approximations for the Mie coefficients in Eq. (4), and 
using 10s sQ Q   , after some algebraic manipulation, 
taking into account the dominant term, the following 
functional dependence is obtained: 

  2 3 1 3 N x x    .  (8) 

In the previous equation,   and   are numeric 
constants to be determined by fitting Eq. (8) to simulated 
runs of typical data. The truncating error of the scattering 
efficiency (Eq. (4)) is then generated as a function of the 
number of terms in the series, for a wide range of 
commonly used material refractive index, 

 1.1 Re 2.0m  . The chosen points for the size factor, 
within the range 1 1000x  , corresponds to the real 
part of the poles for the Mie scattering coefficient, thereby 

taking into account the spikes (ripple structure) in the 
scattering cross section due to the morphology dependent 
resonances (MDR). The center of a MDR (or whispering 
gallery modes) is conveniently determined from the 
position (size factor) where  Im na  (or  Im nb ) changes 
sign [17]. 

Fig. 1.  (Color online) Scattering cross section for different values 
of imaginary refractive index, for the 34b  resonance, centered 
near 40.32638x   as in Ref. 17. 

The known effects on the MDRs, for the case of 
increasing imaginary part of the refractive index (small 
absorption), is a rapid decrease in the height of the peak of 
the scattering cross section, with a concomitant increase 
in the resonance width. As a result, large imaginary 
refractive index has negligible contribution to the needed 
amount of term in the series, and the maximal value for 
the scattering cross section is given by the pure dielectric 
microsphere, evidenced for resonance 34b  (i.e. 34n  ) in 
Fig. 1. As for the role of the convergence, it shows little 
dependence on the dielectric refractive index, requiring a 
maximum of 2 extra terms when switched from 2.0m   
to 1.1m   in the investigated range. This is expected, 
since the convergence term, in Eqs. (2-3), does not depend 
on the relative refractive index, and this is why it is not 
included in the empirical Eq. (5).  

Fig. 2.  (Color online) Log-Log plot evidencing the functional 
dependence of the maximum number of terms ( N ) as a function 
of size factor ( x ). Each curve is plotted for different truncation 
errors from 10-5 to 10-155, from bottom to top respectively. Dashed 
and dot-dash blue lines represent trends while the dashed black 
line represents Wiscombe’s criterion Eq. (5). 



The main result of our simulations are presented in 
Figs. 2 and 3, which show the number of required terms 
as a function of size factor for different values of the 
truncation errors. The fitting of Eq. (8) would be done for 
the maximal number of terms in the investigated range, 
i.e. for 2m   and where the size factors are MDR points. 

Firstly, an important finding consists in the fact that 
the number of terms for smaller size factor deviates from 
the linear dependence, as the truncation error increases 
(higher curves). Actually for smaller size factor and 
smaller truncation error, the term proportional to the 
third power in Eq. (8) becomes more significant. As for the 
rate of increase in the number of terms considered in the 
series, with the reduction of the truncation error, it scales 
as  2 3  . 

Fig. 3.  (Color online) Contour plot of the number of terms ( N ) as 
a function of size factor ( x ) and relative error (10 

). First 
contour (left) corresponds to ( 50N  ), each successive contour 
adds another 50 terms to the series. 

Fitting of Eq. (8) to several generated data points (Fig. 
3) was done within a smaller range of investigated 
parameters, 1 200x   and 50  , a condition satisfied 
in most of the current applications, yielding: 

  2 3 1 3  0.76 4.1N x x   .  (9) 

Incidentally, we notice that a direct comparison of the 
expressions above with the original criterion, Eq. (5), is 
hard to be performed, since it depends on the size 
parameter, but within the examined range it would 
correspond for  15   (dashed line in Fig. 2). 

In summary, the work presented in this letter has 
investigated the number of terms needed as a function of 
the truncating error to determine the scattering efficiency 
of a homogeneous spherical scatterer by a plane wave. 
From the practical point of view, the proposed expression, 
(Eq. (9)), is clearly useful to facilitate fast simulations of 
light scattering phenomena within a predetermined 
maximal error. It should be noted that this termination 
criterion applies to homogeneous spheres only, whereas 
other shapes result in their own scattering coefficients 
and therefore in specific convergence criteria. For 
instance, these could be exploitable in various light 
scattering phenomena include optical trapping of free-
standing nanostructures, such as polymer nanofibers and 
other nanoparticles [18,19]. We anticipate that the here 
suggested, improved terminating approach will be helpful 

for researchers developing efficient light scattering code, 
balancing precision with computational time. 
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