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Abstract 

We study and implement a simple method, based on the Perfectly Matched Layer 
approach, to treat non reflecting boundary conditions with the Smoothed Particles 
Hydrodynamics numerical algorithm. The method is based on the concept of physical 
damping. We illustrate how it works in the case of 1D and 2D time dependent waves 
propagating in a finite domain. 
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1. Introduction 

The problem of non reflecting boundary conditions  is an old subject of the study 
of wave propagation in limited domains. The so called radiation boundary conditions at 
infinity have been studied since 1912 by Sommerfeld, but its practical implementation in 
computational solutions of electromagnetic field propagation can be referred to Engquist 
and Majda (1977). It is obvious that the occurrence of  boundaries affects the evolution of 
a physical event that would otherwise propagate into open space. Many different 
strategies have bee adopted to circumvent the problem. Among numerous approaches the 
method of characteristics is well exploited in the fixed grid numerical methods (Poinsot 
and Lele, 1992). The perfectly matched layer (PML) approach, i.e. the use of an artificial 
absorbing layer, was devised by Berenger (1994) for simulations of electromagnetic 
waves and successively adopted in many wave field simulations: acoustics, seismic 
vibrations and fluids.  For recent advancements for non linear regime of the Euler 
equations see Lin et al. (2011).  

Recently Modave (2010) set up a simple and accurate method that is useful for 
linear and non linear shallow water simulations. The general idea is very simple. A 
sponge like absorbing layer is added to the physical domain. In this layer, sink or source 
terms are activated multiplied by a coefficient varying from zero, inside the physical 
domain, to a maximum at the outer edge of the sponge zone.  
In general, the governing equations are written as follows:  
 

( ), , out

dA A
f A x A A

dt x
σ

∂ = − − ∂ 
 (1.1) 
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Where A is a generic fluid variable, ( )outA Aσ− − is the corresponding sink or source 

term, outA  is the external boundary value,σ  is the damping coefficient different from zero 

only in the damping  region. With an appropriate choice of  the σ  spatial function this 
procedure produces extremely small reflection waves. 
All these techniques are used for fixed grids discretization of the equations. In the 
lagrangean approach the characteristics approach has been suggested by Lastiwka et al. 
(2009). The PML approach is by far simpler, but, as far as we know, it has not be studied 
in the context of a lagrangean approach. We adopted this strategy for the lagrangean 
Smoothed Particle Hydrodynamics scheme and we tested it in the case of waves 
propagating in a finite pool. We show that the results are fairly good. 
The Smoothed Hydrodynamics method (SPH) is a lagrangean mesh-free method based 
on a single basic interpolating function associated with each node of the moving mesh.  
Here we give the basic ideas. For an up to date detailed presentation of the SPH method 
see Colagrossi e Landrini (2003). A function f  is interpolated from its known values at 
points k , by the approximation of the Dirac function integral: 
 

 ( ) ( ) ( ) ( ) ( )' , ' 'k k k

k

f x f y x x dy f x f W x x xδ= − ⇒ = ∆∑∫ ɶ  (1.2) 

Where ( )f xɶ  is the approximated function. Exploiting the mass density ρ , we can 

attribute to each moving node a mass 'k k km xρ= ∆ and therefore the approximated 

function is given by:  

 ( ) ( ), 'k
k k

k k

f
f x m W x x

ρ
=∑ɶ  (1.3) 

Consequently the space derivative can be approximated as: 

 
( ) ( )

'
' '

'
k ik

k

k k i

f x m Wf
W x x dx f

x x xρ

∂ ∂∂
≈ − ≈

∂ ∂ ∂∑∫  (1.4) 

Many details on the SPH approach can be also found in the review of  Monaghan (2005). 
We give here the final formulae. 
The continuity equation is given by: 
 

 ( ) ( ),i
k i k i i k

k

dd
v m v v W r r

dt dt

ρρ
ρ= − ∇ ⇒ = − ⋅∇∑� � � � �

 (1.5) 

 
The momentum equation: 

 ( )2 2

1
,i i i k k

k i i k

k i k

dv P Pdv
P m W r r

dt dtρ ρ ρ
 +Π +Π

= − ∇ ⇒ = − ∇ 
 

∑
��

� �
 (1.6) 

 
P is the pressure to be given by an equation of state specific of the problem to be studied. 
It will be specified in the subsections. Π  is an artificial viscosity term needed to stabilize 
the equations (cfr. Monaghan 2005) and ( ),iW r r

� �
 is the interpolating function, named 

kernel, centered in the ir
�
 point. This interpolating function has a scale factor h and must 

have the properties to mimic the Dirac function, therefore: 
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The kernel  used for our 2D simulation is the Wendland kernel function 
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 (1.7) 

 The integration in time is carried out by the predictor corrector algorithm for low 
Mach number flows, accurate to second order in the time step, proposed by Monaghan 
(2006). The time step is limited by the usual Courant condition. 
 
2. The 1D shallow water case 

 The governing equations for shallow water waves, derived under the usual 
approximations of wave elevation much smaller than the full water depth, are well 
known. When written in the lagrangean form, and with constant water depth  we have for 
the wave height: 

 
dH v

H
dt x

∂
= −

∂
 (2.1) 

Where ... /d dt  is the comoving derivative, H is the full height of the water level and v is 
the fluid speed; the equation for the speed of the fluid is 

 
dv H

g
dt x

∂
= −

∂
 (2.2) 

Where g is the gravitational acceleration. 
These equations can be formally satisfied by an fictitious fluid having a density 

Hρ = and an equation of state supplying the formula for the pressure 21

2
P gρ= , so that 

the shallow water equation are fulfilled by this special fluid and therefore can be 
immediately approximated by the standard SPH formulae. 
To damp appropriately the waves in proximity of the domain edge an extra spatial layer 
is added to the domain and the equations in this damping layer are: 

 ( )( )0

dH v
H x H H

dt x
σ

∂
= − − −

∂
 (2.3) 

for the water level, and 

 ( )( )0

dv H
g x v v

dt x
σ

∂
= − − −

∂
 (2.4) 

for the speed of the fluid, 
where ( )xσ  is the damping coefficient, which is function of the position in the layer, 

having an appropriate spatial dependence (discussed below); 0v  is the outflow speed. In 

our study we impose 0 0v =  since in our case waves are propagating in a closed water 

pool. The 0ρ  is the reference density, it corresponds to 0H . 

To produce a damping layer we add the following terms: 



 4 

1. ( )( )0S x H Hσ= − − to the density equation 

2. ( ) ( )0Q x v vσ= − −  to each component of the momentum equation. 

We tested for the coefficient σ  the following functions suggested by Modave (2010) 

( )0
0

m

x x

L
σ σ

 −
=  

 
where m is a positive integer, and 

( )
0

0
0

x x

x L x
σ σ

 −
=  

+ −  
 where 0x  is 

the starting point of the sponge zone. L is the amplitude of the damping layer and m is an 
exponent to be tuned. 
Furthermore we tested also some ad hoc treatment, we call them switches, based on 
physical intuition:  

1. Decrease the horizontal pressure force, only in the damping layer, with 
particular functions f1 or f2. 

( )0
1f (x)  

x x L

L

− +
= −  

( )22
0

2 2
f (x)  

L x x

L

− −
=  

f1 is a linear function, f2 is a parabolic function with its maximum at x0. We call them, 
killing functions since they reduce to zero the horizontal force acting on particles close to 
the end of the damping layer. 

2. Use the damping friction: 0σ > only if 0xv < . 

In a domain of amplitude 500X =  we produce a Gaussian pulse in the density profile and 
a corresponding fluid speed according to the following prescription: 
 

 ( ) ( )20
0 2

1 0.01exp
x x

H x H
A

  −
 = + − 

    
 (2.5) 

 ( ) ( )( )0 0v x H x H gH= −  (2.6) 

So we have a 1D soliton traveling towards the right side of the domain. The following 
pulse parameters have been chosen 0 1H = , 0 3/ 4x X=  and A=9h. The interpolating 

particle size is 2h = , the particle spacing is 1x∆ = . 
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Fig. 1. Initial pulse profile chosen 0 1H = , 0 3/ 4x X=  and A=9h green dashed line; the perfectly 

reflected pulse: red dotted line and the infinity case: black line 
Fig. 1 shows the initial analytical configuration and both the totally reflected Gaussian 
and the infinity propagated one. The reflection ratio for this set of 1D simulations is 
computed following Modave (2010) formula, i.e. the ratio of the errors  

 ,

,

lay

refl

E
R

E

∞

∞

=  (2.7) 

given by: 

  ( ) ( ) ( )2 2

,

1 1

2 2refl refl reflE t g H H dx H v v dx∞ ∞ ∞= − + −∫ ∫  (2.8) 

Where the label ∞  identifies the values obtained with an extremely far right edge, i.e. no 
boundary condition (BC), the label lay refers to the quantities evaluated with a specific 
absorbing layer, the label refl refers to the quantities evaluated with a totally reflecting 
BC. Obviously the integrals have been replaced by a sum over the particles. Essentially 
we are measuring the differences of the flow variables and then we compute the relative 
energy, i.e. we are not computing the differences of the energies contained in the 
integration domain1. 
 
2.1. 1D Simulation Results 

 Fig. 2 shows the reflection ratio for the various damping functions obtained with 
different values of the exponent m and the hyperbolic function. For small layers the best 
performances are obtained for the linear and the hyperbolic functions. However we 
focused our study on the hyperbolic function since it shows better results when we add 
the ad hoc physical switches.  

                                                 

1 That would be ( ) ( )2 2 2 21 1

2 2l lg H H dx H v v dx∞ ∞− + −∫ ∫ . 
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Fig. 2. Reflection ratio as a function of the thickness of  the absorbing layer for different functions of the 
absorption coefficient. The parameters are identical to those used in Fig. 1. 
 Fig. 3 shows the reflection ratio as a function of the thickness of  the absorbing 
layer for two different functions of the absorption (left panel: m=1, right panel: 
hyperbolic). The red line identifies the case with the use of the function without any 
switch, we call it the pure function; the green line identifies the results obtained with the 
same pure function with added a further tool: attenuation of the pressure force with a 
linear function f1. The blue line identifies the case of attenuation of the pressure force 
with a quadratic function f2. The best results are obtained with the green line, i.e. linear 
killing function. 
 Fig. 4 shows the reflection ratio results obtained adding the velocity switch. The 
best results are displayed with a blue line, corresponding to a damping with the use of the 
killing function f1 and with the simultaneous use of unidirectional friction, i.e. use the 
damping friction σ only if 0xv < , so that the damping acts only if the speed of the 

particles (not of the wave) is negative. 
 Fig. 5 compares the best results obtained with the m=1 and the hyperbolic 
damping function using both the switches f1 and 0 0xif vσ ≠ < . The hyperbolic function 

works only moderately better, but in the 2D case we find a much better performance and 
therefore we focus on that function.   
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Fig. 3 Reflection ratio as a function of the thickness of  the absorbing layer for two different absorbing 
coefficient functions (left panel: m=1, right panel: hyperbolic). The red line identifies the case with the use 
only the pure function, the green line identifies pure function multiplied by f1. The blue line identifies the 
pure function multiplied by f2. The parameters are identical to those used in Fig.1 
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Fig. 4. Reflection ratio as a function of the thickness of the absorbing layer for two different distributions of 
the absorption coefficient (left panel: m=1, right panel: hyperbolic). The red line identifies the case with the 
use of the pure function, the green line identifies the same case with added the attenuation of the force with 
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a linear function f1 within the layer zone. The blue line identifies the previous case with a further switch on 
the speed. The parameters are identical to those used in Fig.1 
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Fig. 5. Reflection ratio as a function of the thickness of the absorbing layer for two different distributions of 
the absorption coefficient (red line m=1 and green line hyperbolic). With attenuation of the horizontal 
pressure force with a linear function f1 within the damping zone and use damping only if the speed of the 
particles (not of the wave) is negative vx <0 in the absorbing layer at. The parameters are identical to those 
used in Fig.1 
2.2. 1D Simulation Conclusion 

 Resuming the 1D case, we may say that the best results have been obtained with 

the hyperbolic damping function 
( )

0
0

0

x x

x L x
σ

 −
 

+ −  
 plus two further treatments: the 

decrease  of the horizontal pressure force with a linear function f1 only in the damping 
layer and the use of damping only if the speed of the particles in the absorbing layer is 
negative 0xv < . 

We have to comment that, since we are using a lagrangean approach (the particles are 
free to move), we added in the denominator an extra softening term 0.5h to avoid division 

by zero if a particle reaches the left edge
( )

0
0

0 0.5

x x

x L x h
σ σ

 −
=  

+ − +  
. So hereafter we 

report only the results obtained with the hyperbolic damping function. 
 Finally  Fig. 6 shows the values of the reflection coefficient versus the amplitude 
of the damping layer for different widths of the gaussian pulse. It shows the predictable 
result that the increase of the amplitude requires a larger damping layer to obtain the 
same reflection ratio. 
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Fig. 6. Reflection coefficients for increasing length of the damping layer. The results displayed with the 
red, green and blue lines are obtained with the pure hyperbolic damping function, f1 pressure factor , f1 and 
speed switch respectively. 
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3. Waves in pool: 2D case 

In this case we study the wavy motion produced by a wave maker palette in a 
water pool. The dynamics is truly two dimensional. To simulate incompressible water 
waves we use the weakly compressible approximation (Monaghan 2005), which consists 
essentially in the use of a sound speed an order of magnitude larger than the maximum 

typical speed of the water, we chose 20s typc v= , where typv gH= . The governing 

equations are the previous ones, but with the equation of state given by the Tait equation: 

 
2

0

0

1s
c

P

γ
ρ ρ
γ ρ

  
 = − 
   

 (3.1) 

with 7γ = .  
The oscillating palette is placed at the left side of the rectangular pool. A damping layer 
is added in the right side. Check points of the water level are defined at regular space 
intervals. The setup is shown in Fig. 7. 

 
Fig. 7. Pool with palette and mirror particles, with no layer added. 
 
The aim is to produce, in the finite pool of length X, a motion, unaffected by the right 
boundary, i.e. equal to the one obtained in the same zone but in an infinite pool. 
We added the same source terms used for the 1D case to the equations of motion and 
continuity, taking into account the dimensionality of the problem, so we added a term 

( )0Q v v
αα α ασ= − −  to each component of the momentum equation. In this study 0 0v

α
= . 

Also we explored some “ad hoc” terms, guided by the 1D experience and physical 
intuition:  
- a switch on the damping triggered by the speeds 

xv  and /or  
yv . 

-the use of killing functions to reduce the horizontal component of the forces due to the 
pressure. 
We examined the case of a continuous periodic wave and that of  a wave generated by a 
single sinusoidal oscillation.  
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3.1. Continuous periodic wave 

We made a pool of length X=6.061 meters and height 1 m. The particles have an 
intrinsic width h=0.1 and are placed at a regular spacing 0.05l∆ =  in X and Z. The 
number of particles in the pool is N=2570 (palette included). The boundaries are made 
with mirror particles procedure. The palette oscillates with a period P= 2.236969878 sec 
and with an angle amplitude of 5 degrees. With these values the water in the pools enters 
in a resonant state. Fig. 8 reports the levels of the water column, measured at five 
different positions (at x= 1,2,3,4,5 meters) along the pool, versus elapsed time, in the case 
of a very long “infinite” pool . 
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Fig. 8. Levels at x=1, 2, 3, 4, 5 m. in an “infinite pool” 
 
The levels are vertically shifted for clarity. It is clear that the waves propagates without 
disturbances. 
Fig. 9 shows the velocity field of the pool in resonant condition, with the palette and the 
mirror points.  
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Fig. 9. Velocity field of the water in the resonant case, no damping layer 
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Fig. 10 shows the levels for the resonant pool. The levels are shifted in the Z coordinate 
by a small amount dz = 0.01 for clarity. 
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Fig. 10. Water levels in the resonant case 
 
It is clear that the oscillations are larger and increasing with time. 
In Fig. 11 we show the resulting levels when a damping layer of  extension L=6.061 m  is 
added. That is, we are using a full simulation domain X=12.122m. In all these tests   the 

hyperbolic function 
( )

0
0

0 0.5

x x

x L x h
σ σ

 −
=  

+ − +  
 is adopted. The coefficient 0σ  has the 

dimension of 1/time and we chose its value as 0 /refv Lσ = . For this study the reference 

speed has been chosen equal to the sound speed: 
ref soundv c= (case with the label M0). 
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Fig. 11. Water levels for the case M0: plain hyperbolic absorption function. 
It is clear that the wave profiles are very similar to the ones of the infinity case.  
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The kinetic energy content can be used as an indicator of the similarity of the flows. The 
Fig. 12 shows the kinetic energy of the water (computed excluding the damping layer 
contribution) versus time for various cases. It is clearly shown the increase of the energy 
in the resonant condition, the steady oscillating energy for the infinity case, together with 
the very close values obtained with different damping layer cases. 
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Fig. 12. Kinetic energy versus time for resonance and for boundary layer with switches 
 
If we make a zoom of Fig. 12, on the values of the kinetic energy, we obtain the Fig. 13 
and we find some discrepancies between the infinite case and the M0 one.  
We made the same simulation to test the following set of switches: 
“Vx Vy”: the damping function works only if vx<0 and  vy<0  
“Vx”: the damping function works only if vx<0  
“Fx & Vx”: the damping function works only if fx<0 and vx<0 
If we look to the kinetic energy we find that performances better than M0 are obtained 
with each of the switch options mentioned, since for M0 the kinetic energy has 
oscillations larger than the ones of the infinity case. Qualitatively, the best result seems to 
be obtained with the simple “Vx” switch. However further investigations should be 
carried out to produce a numerical estimate.  
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Fig. 13. Zoom on the kinetic energy versus time 
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3.2. Sinusoidal single impulse wave 

We made also simulation of a single impulsive sinusoidal wave. In the same pool, 
the palette makes a single oscillation with the same angular amplitude and period of the 
previous simulation. In this case it is easy to see the effects of the reflected wave. To 
have a detailed information, in this case we chose ten elevation level points located at  
intervals of 0.6m, starting from 0.3m from the left side. Fig. 14 shows the particles and 
their velocity field for the water in the pool at time =25 sec; this is the configuration 
without any damping layer, i.e. pure reflection conditions at the right side. The vertical 
lines identify the points of level measurement. The particles distribution and the speed 
arrows show that the water level is still oscillating. 

 
Fig. 14. The particles configuration and their speed (enlarged by a factor 2.5)  for the water in a reflecting 
pool 

 
Fig. 15. Ten levels for reflecting BC pool compared to the levels of the infinity case 
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Fig. 15 shows in the same panel the levels when the pool has a simple reflecting 
boundary on the right side; together are plotted the levels obtained for the infinite pool 
(the thicker and straighter horizontal lines). It is obviously clear that oscillations are 
present even after long time the pulse had to be outside the pool. 
In Fig. 16 are shown the levels obtained with the M0 prescription compared with the 
infinity case. 

 
Fig. 16. Comparison of levels obtained with the M0 prescription and the infinity case 
 
In Fig. 17 the M0 levels are plotted together with the ones obtained with the “Vx Vy” 

switch. The M0 lines show a small bump around time 5 6t = ↔  sec, while the thick lines 
are more straight, they correspond to the use of  the “Vx Vy” switch. 

 
Fig. 17. Comparison of  levels obtained with M0 and with the switch Vx&Vy (thick lines) 
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We studied also the same two problems using smaller damping layers. The results 
are similar to the one presented here with the obvious difference that the damping effects 
diminish as the sponge layer decreases.  We show the results of the single sinusoidal 
impulse. Fig. 18 shows the kinetic energy of the pool versus time when the length of the 
damping zone is L=6.06. 
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Fig. 18. Kinetic energy  for different damping actions in the case of  a 6.06 m large damping zone 
 

Fig. 19 shows the kinetic energy of the water in the pool for a shorter damping layer 
L=3.03 m. We tested also the use of killing functions, but the improvements are very 
small to be appreciated in the figure. From this Fig. 19 it is clear the reducing action of 
the residual oscillations due to the velocity switch when added to the plain damping 
function. 
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Fig. 19. Kinetic energy of the water in the case of  damping layer L=3.03 m 
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Fig. 20 shows a zoom on the Fig. 19, to show clearly the different effects of the damping 
criteria. It shows that for the 2D problem the killing function improves the results over 
the plain damping, but not better than the simple velocity switch. The joint action of the 
velocity switch and of the killing function does not improve the result. 
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Fig. 20. Zoom on Fig. 19 to better show the results of the different damping algorithms 
 
4 Conclusion 

The use of using a damping layer is successful to avoid boundary reflections into the 
computational domain. An obvious requirement is that the absorbing layer must be 
greater or equal to the maximum significant wavelength produced by the physical 
simulation. Both in the 1D and 2D cases the basic procedure can be improved by the use 
of appropriate switches. A simple and efficient switch is the one that makes the damping 
to operate only for negative speeds, i. e.  0xv < . The switch that reduces the horizontal 

component of the force, 
xF , is efficient in 1D, but not so much for the 2D problem we 

studied. Further work is in progress to make a quantitative evaluation of the 2D 
simulations and verify the affordability of the method in the case of highly compressible 
fluid dynamics. 
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