Nuclear Theory

System size dependence of intermediate mass fragments in heavy-ion collisions

Sukhjit Kaur
(Submitted on 8 Jun 2011)

We simulate the central reactions of $\$^{\wedge}\{20\} \$ \mathrm{Ne}+\$^{\wedge}\{20\} \$ \mathrm{Ne}, \$^{\wedge}\{40\} \$ \mathrm{Ar}+\$^{\wedge}\{45\}$ \$Sc, \$^\{58\}\$Ni+\$^\{58\}\$Ni, \$^\{86\}\$Kr+\$^\{93\}\$Nb, \$^\{129\}\$Xe+\$^\{118\}\$Sn, \$^ $\{86\} \$ \mathrm{Kr}+\$^{\wedge}\{197\} \$ \mathrm{Au}$ and $\$^{\wedge}\{197\} \$ \mathrm{Au}+\$^{\wedge}\{197\} \$$ Au at different incident energies for different equations of state (EOS), binary cross sections and different widths of Gaussians. A rise and fall behaviour of the multiplicity of intermediate mass fragments (IMFs) is observed. The system size dependence of peak center-of-mass energy E\$_\{c.m.\} ^\{max\}\$ and peak IMF multiplicity $\$<\$ N \$ _\{I M F\}>^{\wedge}\{\max \} \$$ is also studied, where it is observed that E\$_\{c.m. $\}^{\wedge}\{\max \}$ \$ follows a linear behaviour and \$<\$N\$_\{IMF\}>^\{max\}\$ shows a power law dependence. A comparison between two clusterization methods, the minimum spanning tree and the minimum spanning tree method with binding energy check (MSTB) is also made. We find that MSTB method reduces the \$<\$N\$_\{IMF\}>^\{max\}\$ especially in heavy systems. The power law dependence is also observed for fragments of different sizes at $E \$$ \{c.m. ${ }^{\wedge}\{\max \} \$$ and power law parameter \$ltau\$ is found to be close to unity in all cases except $A \$^{\wedge}\{\max \} \$$.

Comments: Accepted as a poster presentation in Rutherford Centennial Conference August 8-12, 2011, University of Manchester, UK
Subjects: Nuclear Theory (nucl-th)
Cite as: arXiv:1106.1537v1 [nucl-th]

Submission history

From: Aman Sood [view email]
[v1] Wed, 8 Jun 2011 11:00:33 GMT (146kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context:
nucl-th
< prev | next >
new | recent | 1106
References \& Citations

- INSPIRE HEP (refers to | cited by)
- NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

