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Abstract

This paper examines the inhomogeneous Einstein equation for a static

spherically symmetric metric with a source term corresponding to perfect

fluid with p = −ρ. By a careful treatment of the equation near the origin

we find an analytic solution for the metric, dependent on a small param-

eter ε, which can be made arbitrarily close to the Schwarzschild solution

as ε → 0 and which in that same limit can be viewed as arising from a

point-like source structure.

1 Introduction

This paper examines solutions of the inhomogeneous Einstein equation for static
spherically symmetric metrics corresponding to a perfect fluid at rest with
p = −ρ. Our aim is to develope an analytic solution for the metric that can be
made arbitrarily close to the Schwarzschild solution but yet retains a nonvanish-
ing contribution to the source term, unlike the Schwarzschild solution. At the
same time we find that the second solution with the same source term is arbi-
trarily close to the de Sitter solution. The Einstein equations for the metric are
second order and highly nonlinear. This implies that if one has two independent
solutions, then their linear combination will not be a solution. Nevertheless, as
we emphasize in the first section, under those special circumstances for the
source term in the Einstein equation, the metric can be written in terms of the
logarithm of a potential-like function which satisfies a very simple linear differ-
ential equation, with two linear independent solutions. One of the potential-like
functions is the Newtonian gravitational potential which through the logarithm
we associate with the Schwarzschild solution while the other is a harmonic os-
cillator potential associated with the de Sitter solution. The contibution of the
latter to the source term is a constant while that of the Schwarzschild solution
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has a vanishing contribution to the source term. In order to accomplish our
aim, we recast the inhomogeneous Einstein equation as the limiting case of a
closely related inhomogeneous equation dependent on a small parameter ε. A
careful treatment of this problem near the origin leads to source terms with two
separate non-vanishing contributions

2 Solutions of the Inhomogeneous Einstein Equa-

tion

2.1 Static Spherically Symmetric Solutions of the Inho-

mogeneous Einstein Equation for Perfect Fluid with

p = −ρ.

In this section we first review the static spherically symmetric standard solution
of the vacuum Einstein equation. The equation is second order and has two
solutions with one being the Schwarzschild solution while the other is a constant.
We then remind the reader how if one adds a source term corresponding to a
perfect fluid at rest with p = −ρ a second nonconstant solution emerges in
addition to the Schwarzschild one. If the pressure and density are constants
the second solution is one found originally by de Sitter for the Einstein equation
with a cosmological constant[3]-[6] and is a static form of the time dependent
one used in models of inflation and dark energy in modern cosmology.

For a spherically symmetric solution one chooses the coordinates coordinates

x0 = t,

x1 = r,

x2 = θ,

x3 = φ. (1)

In a vacuum with static conditions as well as spherical symmetry, we use Dirac’s
exponential parametrization of the metric,[1],

dτ2 = e2ν(r)dt2 − e2λ(r)dr2 − r2(dθ2 + sin2 θdφ2),

g00 = −e2ν(r) = 1/g00

g11 = e2λ(r) = 1/g11,

g22 = r2 = 1/g22,

g33 = r2 sin2 θ = 1/g33.

gµν = 0, µ 6= ν. (2)

With

Γκ
µν =

gκσ

2
(gνσ,µ + gµσ,ν − gµν,σ) = Γκ

νµ, (3)
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the only nonzero Γ′s are [1]

Γ1
00 = ν′e2ν−2λ, Γ0

10 = ν′,

Γ1
11 = λ′, Γ2

12 = Γ3
13 = r−1,

Γ1
22 = −re−2λ, Γ3

23 = cot θ,

Γ1
33 = −r sin2 θe−2λ, Γ2

33 = − sin θ cos θ. (4)

With
Rνσ = Γλ

νλ,σ −Γλ
νσ,λ +Γκ

νσΓ
λ
κλ − Γκ

νκΓ
λ
σλ, (5)

the diagonal elements of the Ricci tensor are

R00 =

(

−ν′′ + λ′ν′ − ν′2 −
2ν′

r

)

e2ν−2λ,

R11 = ν ′′ − λ′ν ′ + ν ′2 −
2λ′

r
,

R22 = (1 + rν ′ − rλ′)e−2λ − 1,

R33 = R22 sin
2 θ. (6)

From this we have that the scalar curvature is

R = gµνRµν = −

(

−ν′′ + λ′ν′ − ν′2 −
2ν′

r

)

e−2λ +

(

ν′′ − λ′ν′ + ν′2 −
2λ′

r

)

e−2λ

+
2(1 + rν ′ − rλ′)e−2λ − 2

r2

=

(

2ν′′ − 2λ′ν′ + 2ν′2 −
4λ′ − 4ν′

r
+

2

r2

)

e−2λ −
2

r2
(7)

For our model for Tµν we take that of a perfect fluid, [2]

Tµν = pgµν + (p+ ρ)uµuν ,

gµνu
µuν = −1. (8)

Consider the fluid at rest, for which u = 0 and so

g00u
02 = −1,

u0 = g00u
0 = g00(−g00)

−1/2,

u2
0 = −g00. (9)

Thus, the only nonzero elements of Tµν are

T00 = pg00 − g00(p+ ρ) = −g00ρ,

T11 = pg11,

T22 = pg22,

T33 = pg33. (10)
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Now, the Einstein equations Gµν = Tµν become

G00 = R00 −
1

2
g00R = −g00ρ

G00 =

(

−ν′′ + λ′ν′ − ν′2 −
2ν′

r

)

e2ν−2λ +

(

ν′′ − λ′ν′ + ν′2 −
2λ′ − 2ν′

r
+

1

r2

)

e2ν−2λ −
e2ν

r2

=

(

−
2λ′

r
+

1

r2

)

e2ν−2λ −
e2ν

r2
= e2νρ,

ρ = e−2λ

(

−
2λ′

r
+

1

r2

)

−
1

r2
, (11)

and

G11 = R11 −
1

2
g11R = pg11,

pe2λ = ν ′′ − λ′ν ′ + ν ′2 −
2λ′

r
−

1

2
e2λ(

(

2ν′′ − 2λ′ν ′ + 2ν′2 −
4λ′ − 4ν′

r
+

2

r2

)

e−2λ −
2

r2
)

= −
1

2
e2λ(

(

+
4ν′

r
+

2

r2

)

e−2λ −
2

r2
),

p = e−2λ

(

−
2ν′

r
−

1

r2

)

+
1

r2
, (12)

and

G22 = R22 −
1

2
g22R = pg22,

pr2 = (1 + rν ′ − rλ′)e−2λ − 1−
1

2
r2(

(

2ν′′ − 2λ′ν ′ + 2ν′2 −
4λ′ − 4ν′

r
+

2

r2

)

e−2λ −
2

r2
)

p = (
ν ′

r
−

λ′

r
)e−2λ − (

(

ν ′′ − λ′ν′ + ν′2 −
2λ′ − 2ν′

r

)

e−2λ)

= −

(

ν ′′ − λ′ν ′ + ν ′2 −
λ′ − ν′

r

)

e−2λ, (13)

and the fourth equation, the one for G33, gives nothing new beyond that for
G22. Hence, the above three simultaneous equations become

ρ = e−2λ

(

−
2λ′

r
+

1

r2

)

−
1

r2
,

p = e−2λ

(

−
2ν′

r
−

1

r2

)

+
1

r2
,

p = −

(

ν′′ − λ′ν′ + ν′2 −
λ′ − ν′

r

)

e−2λ. (14)

These are three nonlinear inhomogeneous equations for two unknown functions
of r.
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For empty space (ρ = p = 0) these equations become those originally solved
by Schwarzschild, that is.

e−2λ

(

−
2λ′

r
+

1

r2

)

−
1

r2
= 0

e−2λ

(

−
2ν′

r
−

1

r2

)

+
1

r2
= 0,

−

(

ν′′ − λ′ν′ + ν′2 −
λ′ − ν ′

r

)

e−2λ = 0. (15)

Combining the first two equations implies that

λ′ = −ν′,

λ = −ν + λ0(t). (16)

The third equation then leads

ν′′ + 2ν′2 +
2ν′

r
= 0. (17)

We parametrize the exponential metric function ν by introducing a potential-like
function V ,

ν =
1

2
ln(1 + V ),

ν′ =
1

2
V ′

1

1 + V

ν′′ =
1

2
V ′′

1

1 + V
−

1

2
V ′2 1

(1 + V )
2 =

1

2
V ′′

1

1 + V
− 2ν′2. (18)

Thus, using
e2ν = (1 + V ),

Eq. (17) becomes

V ′′ +
2V ′

r
= 0. (19)

This second order equation is an equidimensional one and has the general solu-
tion of

V =
k1
r

+ k2. (20)

Our metric is thus

e2ν = 1 +
k1
r

+ k2,

e2λ = e−2ν+2λ0 =
e−2ν+2λ0

1 + k1

r + k2
. (21)
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In order for the metric to become Minkowskian at r → ∞ we must have

k2 = 0 = λ0. (22)

Matching g00 to −1− 2φ where for large r where φ is the Newtonian potential
−MG/r gives

k1 = −2MG ≡ −rs, (23)

the Schwarzschild radius.
Another set of exact solutions is found by assuming that

p = −ρ 6= 0. (24)

Just as with the Schwarzschild solution with ρ = p = 0, combining the first two
equations of (14) implies that

ν′ = −λ′,

ν = −λ+ ν0(t). (25)

In this case we absorb the factor ν0(t) into a redinition of the time scale used
in the metric. Thus we have ν = −λ and the last two equations of (14) become

p = −e2ν
(

2ν′

r
+

1

r2

)

+
1

r2

p = −

(

ν′′ + 2ν′2 +
2ν′

r

)

e2ν . (26)

Note that these two equations both determine the metric function ν(r) and the
pressure (and density) so that one does not a freedom of choice for the pressure.

We parametrize the exponential metric function ν by introducing a potential-
like function V just as in Eq. (18) and in that case the last of the two crucial
Einstein equations in (26) become

p = −

(

ν′′ + 2ν′2 +
2ν′

r

)

e2ν = p = −
1

2
(V ′′ +

2V ′

r
). (27)

Substituting this in the first of Eqs. (26) we obtain

−
1

2
(V ′′ +

2V ′

r
) = p = −(1 + V )

(

2(1/2)V ′

(1 + V )r
+

1

r2

)

+
1

r2

= −
V ′

r
−

V

r2
(28)

This leads to the linear equation

V ′′ =
2V

r2
. (29)
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Note the difference between this equidimensional equation and (19) for the ho-
mogeneous case. This one has the general solution of a linear combination of a
harmonic oscillator with a Newtonian potential,

V (r) = kr2 −
rs
r
. (30)

Use of the Schwarzschild radius in this case would impy that we are at distances
at which the harmonic term is completely negligible. Our metric is thus

g00 = −e2ν = −
1

1 + kr2 − rs/r
= 1/g00

g11 = e2λ = e−2ν = 1 + kr2 − rs/r = 1/g11,

g22 = r2 = 1/g22,

g33 = r2 sin2 θ = 1/g33.

gµν = 0, µ 6= ν. (31)

This corresponds, without the Newtonian term, to the solution obtained by de
Sitter for the Einstein equation with a cosmological constant[3]-[6].

The pressure and density terms are thus required to be by the equations
respectively

p = −
1

2
(V ′′ +

2V ′

r
) = −3k,

ρ = −p = 3k. (32)

Note that the contributions to the energy density and pressure from the New-
tonian part of the potential vanishes.

It is of interest that in the nonrelativistic limit this vanishing of the source
term for that portion of the metric is contrary to what occurs in the Poisson
equation for a point mass density

∇2Φ = 4πGMδ3(r),

Φ = −
GM

r
. (33)

Is there a point mass at the origin in the case of the Einstein equation? This
would seem to be implied by the Newtonian-Poisson connection. One may be
tempted to replace V ′′+ 2V ′

r with ∇2V and proclaim that ρ = −p = − 1
2∇

2V =

2πrsδ
3(r)+3k but this is not consistent with the other expression for the pressure

of ρ = −p = V ′

r + V
r2 = 3k. This calls for a more careful treatment of the Einstein

equation near the origin.

2.2 The Schwarzschild Solution as a Valid Approximation

for a Nonlinear Solution of the Full Non-homogeneous

Einstein Equation

In order to treat the problem at the origin more carefully and achieve the aim
of this paper, we view the Einstein equations in their reduced forms given in
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(26) as the limit for small ε of the following

p = −e2ν
(

2ν′

r̄
+

1

r̄2

)

+
1

r̄2
,

p = −

(

ν′′ + 2ν′2 +
2ν′

r̄

)

e2ν . (34)

where
r̄ ≡

(

r2 + ε2
)1/2

. (35)

We shall solve these equations instead of the reduced forms (26) of the Einstein
equations and view the proper solutions of the Einstein equation as the limit
of small ε of the modified equations. Thus, as before, using Eq. (??) the two
crucial Einstein equations in (26) become

p = −
1

2
(V ′′ +

2V ′

r̄
) = −e2ν

(

V ′

(1 + V ) r̄
+

1

r̄2

)

+
1

r̄2

= −
V ′

r̄
−

V

r̄2
, (36)

and this leads to

V ′′ =
2V

r̄2
=

2V

(r2 + ε2)
. (37)

Clearly, one solution is
V1(r, ε) = k1(r

2 + ε2). (38)

Using the connection

V2 = V1

∫

dr

V 2
1

, (39)

between the first and second solution of a homogeneous second order differential
equation, the second solution is

V2(r, ε) = k2(r
2 + ε2)

∫ r dr′

(r′2 + ε2)2
. (40)

We choose the lower limit to be r = ∞ so that (see Appendix)

V2(r, ε) = −k2
(r2 + ε2)

2ε3
[arctan ε/r −

ε/r

(1 + (ε/r)
2
)
]. (41)

If we let ε → 0, we should get (to match with the Newtonian solution for
large r)

V2(r, 0) = −k2r
2

∫

∞

r

dr′

r′4
= −

k2r
2

3r3
= −

k2
3r

= −
rs
r
, (42)

so we take
k2 = 3rs. (43)
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As a check, let us check that our integrated result (41) before we take ε → 0
has this same limit

−3rs
(r2 + ε2)

2ε3
[arctan ε/r −

ε/r

(1 + (ε/r)
2
)
)

→ −3rs(
r2

2ε3
+

1

2ε
)(
ε

r
−

1

3

(ε

r

)3

−
ε

r
(1− (ε/r)

2
)

→ −3rs(
r2

2ε3
+

1

2ε
)(
ε

r
−

ε3

3r3
−

ε

r
+

ε3

r3
) = −3rs(

r2

2ε3
+

1

2ε
)(
2ε3

3r3
)

→ −
rs
r
. (44)

Thus, our general solution to Eq. (37) is

V (r, ε) = k1(r
2 + ε2) + 3rs

(r2 + ε2)

2ε3
[

εr

(r2 + ε2)
− arctan ε/r]. (45)

with the corresponding metric given by

g00 = −e2ν = −
1

1 + V (r, ε)
= 1/g00

g11 = e2λ = e−2ν = 1 + V (r, ε) = 1/g11,

g22 = r2 = 1/g22,

g33 = r2 sin2 θ = 1/g33.

gµν = 0, µ 6= ν. (46)

Now, let us determine what the density and pressure are for the limit of
small ε. This will provide us with insight into the nature of the source terms.
The simplest way is to evaluate p = −V ′

r̄ − V
r̄2 . Details omitted here are given

in the Appendix. There we obtain

p(r, ε)

= p1(r, ε) + p2(r, ε)

= −k1(
2r

(r2 + ε2)1/2
+ 1)− 3rs[

1

(r2 + ε2)1/2
r

ε3
(
ε

r
− arctan ε/r) +

1

2ε3
(

εr

(r2 + ε2)
− arctan ε/r)],(47)

where p1 is the pressure term that arises from the oscillator-like part of the
solution while p2 is the pressure term that arises from the Newtonian-like part
of the solution. For r 6= 0 and ε → 0

p2 → −(1− ε2/2r2)
k2
3r3

+ 3rs
1

3r3

→ 0, (48)

while for r = 0 and ε → 0 this becomes

p2 → −
1

ε

k2
ε3

(ε− 0)− 3rs
1

2ε3
[0−

π

2
]

=
3rs
ε3

(
π

4
− 1). (49)
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These two limits taken together have the appearance an attractive delta func-
tion. To complete the verification let us check by integrating the Newtonian
term for the density, using the divergence theorem, that we obtain the appro-
priate constant (independent of ε)
∫

d3rρ2(r, ε) = −

∫

d3r p2(r, ε)

= 3rs

∫

d3r[
1

(r2 + ε2)1/2
r

ε3
(
ε

r
− arctan ε/r) +

1

2ε3
[

εr

(r2 + ε2)
− arctan ε/r]

= −

∫

d3r[−
V ′

r̄
−

V

r̄2
] =

1

2

∫

d3r(V ′′ +
2V ′

r̄
)

→
1

2

∫

d3r(V ′′ +
2V ′

r
) =

1

2

∫

d3r∇2V =
1

2
lim

R→∞

R24πV ′(R)

= 2π lim
R→∞

R2R3rs
ε3

(
ε

R
− arctan ε/R) = 2π lim

R→∞

R33rs
ε3

(
ε

R
−

ε

R
+

1

3

( ε

R

)3

)

= 2πrs = 4πGM. (50)

Such would not be the case for the homogeneous equation which would give
zero for the integrated density (see below Eq. (32)). Thus, in the limit ε → 0
where our ε−modified Einstein equations become the actual Einstein equation,
the integral of the density over an arbitrarily small volume remains a constant
independents of ε. So, defining (rearranged)

δ3(r,ε) ≡
ρ2(r, ε)

4πGM
= −

3

2πε3
[

ε/r

(1 + (ε/r)
2
)1/2

(1+
1

2

1

(1 + (ε/r)
2
)1/2

)−arctan ε/r(
1

(1 + (ε/r)
2
)1/2

+
1

2
)],

(51)
we have

∫

d3rδ3(r,ε) = 1. (52)

Our δ3(r,ε) therefore has the requisite properties for a distribution that in
the limit represents a Dirac delta function. Its value for r 6= 0 tends to zero
as ε → 0 and its integral over all space is unity. This establishes that for
k1 = 0, the source term is non-zero and has the property of a sharply confined
distribution. What makes this source distinct from others[7], beginning with
the matching solution of Schwarzschild[8] to an incompressible fluid confined
within a finite spherical surface, is that within this sharply confined region, the
pressure is negative.

2.2.1 The Schwarzschild Limit

We consider in this section the potential-like function V (r, ε) given in Eq. (45).
We wish to determine in what sense that, if we choose k1 = 0, the second
portion of V (r, ε) for ε > 0 sufficiently small agrees with the Schwarzschild
solution Vs(r) = −rs/r for a given range of r. Let us make this statement
precise. We show that for a positive δ > 0 that if,

ε

rs
≡ ǫ < δ. (53)
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then
(

r

rs

)3

|V (r, ε)− Vs(r)| <
δ2

5
. (54)

for r in the range ε < r < ∞. If δ < 1, then the range for r of agreement between
the potentials in the above sense would extend down below the Schwarzschild
radius with no upper bound.

To show this we consider the Taylor series for V (r, ε) − Vs(r) in ε about
ε = 0.

V (r, ε)− (−)
rs
r

=
3rs
2ε3

[εr − (r2 + ε2) arctan ε/r] +
rs
r

(55)

The series for arctan ε/r converges for r > ε. Expanding we find that

V (r, ε)− (−)
rs
r

=
3rs
2ε3

[εr − r2(1 +
ε2

r2
)

∞
∑

n=0

(−)n

2n+ 1

(ε

r

)2n+1

] +
rs
r

=
3rs
2ε3

[εr − r2(

∞
∑

n=0

(−)n

2n+ 1

(ε

r

)2n+1

+

∞
∑

n=0

(−)n

2n+ 1

(ε

r

)2n+3

)] +
rs
r

=
3rs
2ε3

[−r2(

∞
∑

n=2

(−)n

2n+ 1

(ε

r

)2n+1

−

∞
∑

n=2

(−)n

2n− 1

(ε

r

)2n+1

)]

=
3rs
r3

[
(ε

r

)2

(

∞
∑

n=0

(
1

(2n+ 5) (2n+ 3)
)(−)n

(ε

r

)2n

]

Thus, with ε
rs

= ǫ < δ, we have since ǫ rsr < 1

(

r

rs

)3 ∣
∣

∣

∣

r

rs
V (r, ε) + 1

∣

∣

∣

∣

=
3ε2

r2s
[(

∞
∑

n=0

(
1

(2n+ 5) (2n+ 3)
)(−)n

(ε

r

)2n

]

= ǫ2[(

∞
∑

n=0

(
3

(2n+ 5) (2n+ 3)
)(−)n

(

ǫ
rs
r

)2n

]

=
ǫ2

5

(

1 +
∞
∑

n=1

(
15

(2n+ 5) (2n+ 3)
)(−)n

(

ǫ
rs
r

)2n
)

<
ǫ2

5
<

δ2

5
.

So, in the above sense, we have demonstrated how the Schwarzschild solution
can be viewed as a valid approximation for a bona fide nonlinear solution of the
full non-homogeneous Einstein equation.

3 Discussion

We have found that the general solution of the Einstein equation for the special
case of p = −ρ to yield a metric governed by a linear combination of a New-
tonian and simple harmonic oscillator potential, two independent solution of a
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linear second order differential equation for the potential-like function V . If the
behavior about the origin is not handled carefully, the simple harmonic contri-
bution gives a constant density and pressure while the Newtonian contribution
gives rise to no point-like (delta function) source. With k1 = 0, this is the usual
no source or vacuum solution. Handled more carefully by the method indicated
we obtain a density and pressure terms sharply peaked about the origin, with
a unit volume integral. The density corresponding to the elastic portion of the
metric ranges from k1 for to 3k1.

Do our mathematical solutions of the inhomogeneous Einstein equation have
any physical significance? Superimposed on our point-like density is a density
ranging between two constants, the source of the harmonic oscillator potential-
like function V1(r, ε) which behaves like k1r

2 for sufficiently small r. The static
and spherically symmetric metric we started with is distinct from the standard
time-dependent Friedmann-Lematre-Robertson-Walker (FLRW) metric. It is
not intended to relate to the universe as a whole but rather to the field produced
by a single source. There is some superficial similarity between our solution
and the so-called dark energy and inflation solutions of modern cosmology since
both involve a pressure with an opposite sign of the density . It may be of
just academic interest that such potential-like functions not only proportional
respectively to 1/r but also to the otherwise ubiquitous r2 potential correspond
to the solution of the Einstein equation under these circumstances. A positive or
negative sign of k1 would give a negative or positive pressure and an attractive or
repulsive force that would increase in magnitude with distance. Obviously since
there is no evidence for such long range and static increasing forces, k1 must
be virtually infinitesimal if not zero. Note that in nonrelativistic potential
theory a constant density would give rise to an attractive Hooke’s law force.
However, that follows from Gauss’ law applied to an inverse square field. The
r2 potential like function discussed here is completely independent from the
1/r potential. Another factor to point out is that the functional form of the
density or pressure due to the harmonic oscillator potential is fixed by our
solution to the Einstein equations themselves, it is not imposed. The only
imposition we made on the density and pressure is that they be the negative of
one another. From a mathematical point of view there is no distinction between
the solutions discussed here for the inhomogeneous Einstein equation and the
one we would have obtained by adding a term −pgµν to the left hand side of the
Einstein equation and viewing it as an addition to the equation, in analogy to
the alternative explanation of dark energy. The difference here is that p being
a constant would be an outcome of the modified Einstein equations and not an
imposed functional form.

It was one of Einstein’s early goals, although he never succeeded, to incor-
porate Mach’s principle in his general theory of relativity. It has been generally
regarded that general relativity does not embody Mach’s principle, that is that
geometry can exist independent of matter. It was the Schwarzschild solution
that seemed to bring this idea its early but reluctant acceptance. That is, a ge-
ometry arises from the absence of a source term, from the vacuum. Of course, in
the practical applications of the Schwarzschild solution to the precession prob-

12



lem of Mercury and the bending of light, it was always assumed that looming
behind the formal sourceless equation was a real sun. Nevertheless, a possible
formal interpretation is that a curved space exists without an identifiable source,
thus obviating the need for Mach’s principle

Our result has been to replace the Schwarzschild solution to the sourceless
spherically symmetric static environment, which then, as now seems to allow
the existence of non-trivial spacetime curvature in absence of any matter, with
a solution that does not correspond to a sourceless environment but yet leads
nevertheless to a metric that can approach the Schwarzschild with arbitrary
accuracy in an asymptotic way. In doing so, for this particular case at least,
Mach’s principle, the idea that geometry emerges as an interaction between an
identifiable matter term and geometry is preserved[9].

A Details of Solution V2(r, ε) of ε−Modified Ein-

stein Equations

Here we consider some details omitted from the text. The expression for V2(r, ε)
is obtained below,

V2(r, ε) = = −k2(r
2 + ε2)

∫

∞

r

dr′

(r′2 + ε2)2
= (r′ = xε)

= −k2
(r2 + ε2)

ε3

∫

∞

r/ε

dx

(x2 + 1)2
= (x = 1/y, dx = −dy/y2)

= −k2
(r2 + ε2)

ε3

∫ ε/r

0

y2dy

(y2 + 1)2

= −k2
(r2 + ε2)

ε3
[

∫ ε/r

0

dy

(y2 + 1)
−

∫ ε/r

0

dy

(y2 + 1)2
]

= −k2
(r2 + ε2)

ε3
[arctan ε/r − [

ε/r

2(1 + (ε/r)
2
)
+

1

2

∫ ε/r

0

dy

(y2 + 1)
]

= −k2
(r2 + ε2)

2ε3
[arctan ε/r −

ε/r

(1 + (ε/r)
2
)
] (A.1)
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Next we combine terms to determine the expression for the pressure given in
Eq. (??)

p = −
V ′

r̄
−

V

r̄2
,

V

r̄2
= k1 + k2

1

2ε3
[

εr

(r2 + ε2)
− arctan ε/r],

V ′ = 2k1r + k2
2r

2ε3
[

εr

(r2 + ε2)
− arctan ε/r] + k2

(r2 + ε2)

2ε3
[

ε

(r2 + ε2)
−

2εr2

(r2 + ε2)2
+

ε

(r2 + ε2)
]

= 2k1r + k2
r

ε3
[

εr

(r2 + ε2)
− arctan ε/r] + k2

(r2 + ε2)

ε2
[

ε2

(r2 + ε2)2
]

= 2k1r + k2
r

ε3
(

εr

(r2 + ε2)
− arctan ε/r) +

k2
(r2 + ε2)

= 2k1r + k2(
r2/ε2

(r2 + ε2)
−

r

ε3
arctan ε/r +

1

(r2 + ε2)
)

= 2k1r + k2(
1

ε2
−

r

ε3
arctan ε/r) = 2k1r +

rk2
ε3

(
ε

r
− arctan ε/r) (A.2)
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