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A genuine gauge theory for the Poincaré, de Sitter or anti-de Sitter algebras can be constructed
in (2n− 1)-dimensional spacetime by means of the Chern–Simons form, yielding a gravitational
theory that differs from General Relativity but shares many of its properties, such as second order
field equations for the metric. The particular form of the Lagrangian is determined by a rank n,
symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant
tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma
matrices Γab in 2n-dimensional spacetime. While straightforward in principle, this calculation can
become extremely cumbersome in practice. For large enough n, existing computer algebra packages
take an inordinate long time to produce the answer or plainly fail having used up all available
memory. In this talk we show that the general formula for the trace of the symmetrized product
of 2n Gamma matrices Γab can be written as a certain sum over the integer partitions s of n, with
every term being multiplied by a numerical coefficient αs. We then give a general algorithm that
computes the α-coefficients as the solution of a linear system of equations generated by evaluating
the general formula for different sets of tensors Bab with random numerical entries. A recurrence
relation between different coefficients is shown to hold and is used in a second, “minimal” algorithm
to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a
typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the
trace formula.

I. INTRODUCTION

There’s more to higher-dimensional gravity than Ein-
stein and Hilbert [1–7].
Chern–Simons (CS) gravity in d = 2n−1 dimensions is

a gauge theory for the Poincaré, de Sitter or anti-de Sitter
(AdS) algebras, depending on the value of the cosmolog-
ical constant [8, 9].
Let us focus on the AdS algebra, so (d− 1, 2). A

convenient matrix representation is provided by ΓAB =
Γ[AΓB], where ΓA are Dirac matrices in D = d+ 1 = 2n

dimensions:1

Jab =
1

2
Γab, (1)

Pa =
1

2
Γa,d. (2)

The Lagrangian for CS gravity is shaped to a great
extent by a rank-n, AdS-invariant symmetric polynomial
〈· · · 〉.
This polynomial can be identified with any of the fol-

lowing traces:

• Tr {ΓA1B1
· · ·ΓAnBn

} (Lorentz scalar)

• Tr (Γ∗ {ΓA1B1
· · ·ΓAnBn

}) (Lorentz pseudoscalar),

∗ fizaurie@ucsc.cl
† ricramirez@ucsc.cl
‡ edurodriguez@ucsc.cl
1 The indices run as follows: A,B = 0, 1, . . . ,D − 1, a, b =
0, 1, . . . , d− 1.

where {· · · } denotes symmetrized matrix product.
The pseudoscalar trace reads

Tr (Γ∗ {ΓA1B1
· · ·ΓAnBn

}) = γǫA1B1···AnBn
, (3)

where γ is a numerical coefficient. Use of this invariant
polynomial brings in the Lanczos–Lovelock [2, 9] family
of Lagrangians into CS gravity.
The scalar trace, on the other hand, is more involved.
In this work we provide two algorithms that can be

used to efficiently compute the scalar trace for any n
and for any spacetime dimension d (without any implied
relation between n and d).

II. FORMULATION OF THE PROBLEM AND

RESULTS

Let us consider Dirac matrices Γa, a = 0, . . . , d− 1, in
d-dimensional Minkowski spacetime. By definition, they
satisfy the Clifford algebra [10]

ΓaΓb + ΓbΓa = 2ηab1, (4)

where ηab = (−+ · · ·+) is the usual Minkowski metric
and 1 stands for the m×m unit matrix, with m = 2⌊d/2⌋.
The Γ-matrices which are the subject of this work are

defined as

Γab = Γ[aΓb] =
1

2
(ΓaΓb − ΓbΓa) . (5)

For completeness, let us define the symmetrized prod-
uct of n matrices Mi, i = 1, . . . , n, as

{M1 · · ·Mn} =
1

n!

∑

π∈Sn

Mπ(1) · · ·Mπ(n), (6)
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where the sum extends over all permutations π in the
symmetric group Sn.
Experience shows that the trace is most efficiently writ-

ten with all matrices multiplied by arbitrary antisym-
metric tensors. Take, for instance, the trace of the sym-
metrized product of two Gamma matrices, and compare
the following equations:

Tr {ΓabΓcd} = m (ηadηbc − ηacηbd) , (7)

AabBcdTr {ΓabΓcd} = 2mAa
bB

b
a. (8)

The two terms on the right-hand side of eq. (7) have
collapsed into one in eq. (8). Greater simplifications are
achieved for more complicated cases. If desired, eq. (7)
can be recovered from eq. (8) by means of the formal
replacement Aab → δabcd , Bab → δabcd , where δabcd is the
generalized Kronecker delta.
Let Bab

i , i = 1, 2, 3, . . ., be arbitrary antisymmetric
tensors, and let us define

βi = Bab
i Γab. (9)

The symmetrized product of n β-matrices can be
written as a linear combination of matrices Γa1···ap

=
Γ[a1

· · ·Γap], with p = 0, 4, 8, . . . , 2n (for n even) or
p = 2, 6, 10, . . . , 2n (for n odd). The only term that con-
tributes to the trace is that proportional to the identity
matrix (p = 0). For odd d, however, the Γa1···ad

matrix
is also proportional to the identity and must be generi-
cally taken into account when computing the trace. The
expansion of the symmetrized product of the β-matrices
includes only Γ-matrices with an even number of indices,
so that the Γa1···ad

-term never actually shows up in our
case. In particular, this means that the trace of the sym-
metrized product of an odd number of β-matrices van-
ishes identically.
The trace of the symmetrized product of 2n β-

matrices, on the other hand, can be written as

Tr {β1 · · ·β2n} = m
∑

s⊢n

αsB
(s), (10)

where the notation s ⊢ n [11] indicates that the sum must
be performed over all integer partitions s of n, and B(s)

stands for the following sum of contractions of B-tensors:

B(s) =
∑

〈i1···i2n〉

r
∏

j=1

〈

Bi2s1+···+2sj−1+1
· · ·Bi2s1+···+2sj

〉

.

(11)
In eq. (11), the notation 〈i1 · · · i2n〉 is used to indicate
that the sum must be performed over all i1, . . . , i2n ∈
{1, . . . , 2n}, with the restriction that they be all differ-
ent. This implements the permutation of all β-matrices.
Every term in the sum contains the product of r factors
of the form 〈B1 · · ·Bq〉, where r is the length of the par-
tition s = (s1, . . . , sr), with n = s1 + · · · + sr. The j-th
factor in the product represents the trace of the product
of 2sj B-tensors, i.e.,

〈B1 · · ·Bq〉 = (B1)
c1

c2
(B2)

c2
c3
· · · (Bq)

cq
c1
, (12)

with q = 2sj.
To every term in eq. (10), i.e., to every partition s of

n, there corresponds an αs coefficient. Numerical values
for the α-coefficients corresponding to the partitions of
n = 1, . . . , 7 are given in Table I.
The following examples for n = 1, . . . , 4 should help

clarify the meaning of eqs. (10) and (11):

Tr {β1β2} = m
∑

〈ij〉

α1 〈BiBj〉 , (13)

Tr {β1 · · ·β4} = m
∑

〈ijkl〉

[α2 〈BiBjBkBl〉+

+α11 〈BiBj〉 〈BkBl〉] , (14)

Tr {β1 · · ·β6} = m
∑

〈i1···i6〉

[α3 〈Bi1 · · ·Bi6〉+

+ α21 〈Bi1 · · ·Bi4〉 〈Bi5Bi6〉+

+α111 〈Bi1Bi2〉 〈Bi3Bi4〉 〈Bi5Bi6〉] , (15)

Tr {β1 · · ·β8} = m
∑

〈i1···i8〉

[α4 〈Bi1 · · ·Bi8〉+

+ α31 〈Bi1 · · ·Bi6〉 〈Bi7Bi8〉+

+ α22 〈Bi1 · · ·Bi4〉 〈Bi5 · · ·Bi8〉+

+ α211 〈Bi1 · · ·Bi4〉 〈Bi5Bi6〉 〈Bi7Bi8〉+

+α1111 〈Bi1Bi2〉 〈Bi3Bi4〉 〈Bi5Bi6〉 〈Bi7Bi8〉] .
(16)

The proof of eq. (10) is by exhaustion; the right-hand
side includes all possible terms that may contribute to
the trace of the symmetrized product of 2n β-matrices.2

Our approach to the computation of the α-coefficients
is the subject of section III.

III. METHOD

A. General Algorithm

The central observation behind the algorithm used in
the computation of the α-coefficients shown in Table I is
the fact that eq. (10) is valid for arbitrary tensors Bab

i .
For illustration purposes, let us focus first on the n = 3

case. Eq. (15) simplifies greatly if we choose all B-tensors
to be equal, since in this case the sum over all different

2 The formula for Tr (Γ∗ {β1 · · ·βn}) includes pseudoscalar terms
that appear in certain dimensions d (e.g., ǫabcdB

ab
i Bcd

j for d = 4)

but are absent from Tr {β1 · · ·β2n}, where only Lorentz scalars
are allowed. Here Γ∗ = Γ0 · · ·Γd−1 is the d-dimensional gener-
alization of γ5 in d = 4.
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TABLE I. α-coefficients corresponding to the partitions of
n = 1, . . . , 7.

n s αs

1 1 1

2 1 + 1 1/2

2 −2/3

3 1 + 1 + 1 1/6

2 + 1 −2/3

3 32/45

4 1 + 1 + 1 + 1 1/24

2 + 1 + 1 −1/3

2 + 2 2/9

3 + 1 32/45

4 −272/315

5 1 + 1 + 1 + 1 + 1 1/120

2 + 1 + 1 + 1 −1/9

2 + 2 + 1 2/9

3 + 1 + 1 16/45

3 + 2 −64/135

4 + 1 −272/315

5 15872/14175

6 1 + 1 + 1 + 1 + 1 + 1 1/720

2 + 1 + 1 + 1 + 1 −1/36

2 + 2 + 1 + 1 1/9

2 + 2 + 2 −4/81

3 + 1 + 1 + 1 16/135

3 + 2 + 1 −64/135

3 + 3 512/2025

4 + 1 + 1 −136/315

4 + 2 544/945

5 + 1 15872/14175

6 −707584/467775

7 1 + 1 + 1 + 1 + 1 + 1 + 1 1/5040

2 + 1 + 1 + 1 + 1 + 1 −1/180

2 + 2 + 1 + 1 + 1 1/27

2 + 2 + 2 + 1 −4/81

3 + 1 + 1 + 1 + 1 4/135

3 + 2 + 1 + 1 −32/135

3 + 2 + 2 64/405

3 + 3 + 1 512/2025

4 + 1 + 1 + 1 −136/945

4 + 2 + 1 544/945

4 + 3 −8704/14175

5 + 1 + 1 7936/14175

5 + 2 −31744/42525

6 + 1 −707584/467775

7 89473024/42567525

permutations of i1, . . . , i6 ∈ {1, . . . , 6} is trivially per-
formed. The result reads

1

6!m
Tr

(

β6
)

= α3

〈

B6
〉

+ α21

〈

B4
〉 〈

B2
〉

+ α111

〈

B2
〉3

.

(17)

We wish to cast eq. (17) as a linear equation with three
unknowns, namely, α3, α21 and α111. To do this we need
to be able to assign numerical values to the left-hand
side and to the various 〈Bq〉-terms that appear on the
right-hand side. We accomplish this by (i) picking some
antisymmetric tensor Bab with random numerical entries
and (ii) choosing an explicit representation for the Γ-
matrices.3 We emphasize that the possibility of choosing
the B-tensors at will relies upon the fact that eq. (10) is
valid for arbitrary Bi’s.
To be able to solve for the α-coefficients we need two

more equations. These are readily obtained by randomly
selecting two further B-tensors. Denoting the three dif-
ferent choices for the B-tensors by Bk, with k = 1, 2, 3,
we obtain the following 3× 3 linear system:

Z
(111)
1 α111 + Z

(21)
1 α21 + Z

(3)
1 α3 = T1, (18)

Z
(111)
2 α111 + Z

(21)
2 α21 + Z

(3)
2 α3 = T2, (19)

Z
(111)
3 α111 + Z

(21)
3 α21 + Z

(3)
3 α3 = T3, (20)

where

Tk =
1

6!m
Tr

(

β6
k

)

, (21)

Z
(111)
k =

〈

B2
k

〉3
, (22)

Z
(21)
k =

〈

B4
k

〉 〈

B2
k

〉

, (23)

Z
(3)
k =

〈

B6
k

〉

. (24)

The method to compute the α-coefficients for any value
of n is now clear and can be summarized in the following
sequence:

1. Let p = p (n) be the number of partitions of n.4

2. Choose an explicit representation for the Γ-
matrices (see, e.g., Ref. [12]).

3. For k = 1, . . . , p, do:

(a) Pick an antisymmetric tensor Bab
k with ran-

dom numerical entries.

(b) Compute

Tk =
1

(2n)!m
Tr

(

β2n
k

)

, (25)

where βk = Bab
k Γab.

3 See section IV for a discussion of the choice of spacetime dimen-
sion d in which to carry out the computation.

4 The function p (n) is called the “partition function” in the math-
ematical literature [11].



4

(c) For every partition s ⊢ n, with n = s1 + · · ·+
sr, compute

Z
(s)
k =

r
∏

j=1

〈

B
2sj
k

〉

. (26)

The notation 〈Bq
k〉 stands for [see eq. (12)]

〈Bq
k〉 = (Bk)

c1
c2
(Bk)

c2
c3
· · · (Bk)

cq
c1
. (27)

4. The α-coefficients are the solution to the p×p linear
system of equations

∑

s⊢n

Z
(s)
k αs = Tk (k = 1, . . . , p) . (28)

B. Minimal Algorithm

Careful inspection of the α-coefficients shown in Ta-
ble I shows that there exists a recurrence relation among
different coefficients.
Let s be a partition of n. The frequency representa-

tion [11] of s is the notation s = (1µ1 2µ2 · · · ), where µj

represents the multiplicity of j, i.e., the number of times
that a given integer j appears in s.
We find that the coefficient αs corresponding to the

partition s = (1µ1 2µ2 · · · ) can be written as

αs =

n
∏

j=1

α
µj

j

µj !
, (29)

where αj are the coefficients associated with the “elemen-
tary” partitions 1 = 1, 2 = 2, 3 = 3, etc.
For example, all coefficients associated with the non-

elementary partitions of n = 1, 2, 3 can be computed from
α1, α2 and α3 by means of the equations

α11 =
α2
1

2!

α0
2

0!
=

1

2
, (30)

α111 =
α3
1

3!

α0
2

0!

α0
3

0!
=

1

6
, (31)

α21 =
α1
1

1!

α1
2

1!

α0
3

0!
= −

2

3
. (32)

Of course, this recurrence relation also holds for more
complicated cases, such as

α3211 =
α2
1

2!

α1
2

1!

α1
3

1!

α0
4

0!

α0
5

0!

α0
6

0!

α0
7

0!
= −

32

135
. (33)

When applied to an elementary coefficient, eq. (29) yields
an identity.
The recurrence relation in eq. (29) can be used to com-

pute the values for the α-coefficients associated with all
the non-elementary partitions of n. Its use, however, re-
quires knowledge of the elementary coefficients, for which
no closed formula is available. This situation suggests a

“minimal” algorithm that (i) calculates elementary coef-
ficients in a manner analogous to that of the “general”
algorithm and (ii) computes non-elementary coefficients
from eq. (29).
The following sequence describes such an algorithm:

1. Let N be the maximum integer for which we wish
to calculate the α-coefficients.

2. Choose an explicit representation for the Γ-
matrices.

3. Pick an antisymmetric tensor Bab with random nu-
merical entries.5

4. For n = 1, . . . , N , do:

(a) Compute

T =
1

(2n)!m
Tr

(

β2n
)

, (34)

where β = BabΓab.

(b) For every partition s ⊢ n, with n = s1 + · · ·+
sr, compute

Z(s) =

r
∏

j=1

〈

B2sj
〉

. (35)

(c) Use the recurrence relation (29) to calculate
all non-elementary coefficients associated with
the partitions of n (this step is empty for n =
1).

(d) Solve

∑

s⊢n

Z(s)αs = T (36)

for αn (this is a linear equation with one un-
known).

IV. DISCUSSION AND CONCLUSIONS

The algorithms described in section III turn around
the problem of finding formulas for the trace of a prod-
uct of Gamma matrices. The usual textbook approach
starts with eq. (4) and deduces the required formulas
from there. Our approach here works the other way
around. We start by identifying the general form of the
equation for the trace of the symmetrized product of 2n
β-matrices. Eq. (10) amounts to such an identification,

5 We took d = 2 and B01 = +1, since a two-index antisymmet-
ric tensor has only one degree of freedom in two spacetime di-
mensions, and overall numerical factors are not significant for
the calculation. See section IV for a discussion of the choice of
spacetime dimension d in which to carry out the computation.
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since it contains all possible sums of B-contractions that
may contribute to the trace. The α-coefficients appear
as undetermined parameters, which are computed by de-
manding validity of eq. (10) in several nontrivial cases.
As stressed in section III, our method works because

eq. (10) holds for arbitrary antisymmetric tensors Bab
i .

We have used B-tensors with random numerical entries
to generate the linear system of equations whose solu-
tion provides the α-coefficients. In this sense our ap-
proach bears some resemblance to Monte Carlo methods,
where random numbers play a crucial role. The use of
random matrices,6 however, is not essential to our cal-
culation. All that is required for the general algorithm
to succeed is a set of B-tensors such that every iteration
produces an equation for the α-coefficients that is lin-
early independent from the rest, yielding a full-rank Z
matrix [cf. eq. (28)].
The solution we find is, of course, independent of the

choice of B-tensors; this is conceptually clear, but can
also be verified by running the algorithm several times
with different sets of (randomly generated) B-tensors.
The fact that the same solution is obtained every time
confirms both this independence and the correctness of
eq. (10), i.e., that no other terms can be added to the
trace.
The α-coefficients are also independent of the space-

time dimension d, which means that the algorithm should
in principle work for any d we choose. There is, however,
an important caveat. To produce a solvable system one
needs the B-tensors to have a sufficient number of inde-
pendent components, so that the successive iterations of
the algorithm yield linearly independent equations. We
find that there is a minimum spacetime dimension d = 2n
that allows the Z matrix to achieve full rank. This means
that the general algorithm must be run with d ≥ 2n in
order for a solution to be produced.
The minimal algorithm, with only one linear equation

to be solved, works even with a minimum spacetime di-
mension of d = 2.
Is our approach any better than the textbook method?

One way to probe into this question is to compare the
runtime of both. The textbook method can be imple-
mented in, e.g., Kasper Peeters’ excellent computer alge-
bra system “Cadabra” [13, 14]. We were able to deduce,
starting only from the definition of Dirac matrices, the
α-coefficients for n = 1, 2, 3. The n = 3 case took some
30 min to be solved on a typical desktop computer,7 while
the n = 4 case caused the program to crash. This ap-
proach, of course, requires hardly any input and produces
the full sought-after formula. Starting from eq. (10), we
programmed our general algorithm in the computer al-
gebra system “Maxima” [15] and were able to run it suc-

cessfully for n = 1, . . . , 7. The n = 8 case caused Maxima
to run out of memory. Runtime for n = 1, . . . , 4 was neg-
ligible, while the n = 7 case took under half an hour. The
minimal algorithm, which we also programmed in Max-
ima, had negligible runtime even for N = 25. Table II
summarizes runtime for these different scenarios.

Complexity for the general algorithm grows exponen-
tially with n. Complexity for the minimal algorithm, on
the other hand, grows linearly with p.8 All foreseeable
applications of the formula for the trace of a product
of 2n Gamma matrices are well covered by the minimal
algorithm with negligible runtime.

TABLE II. Approximate runtime for the textbook method
(as implemented in Cadabra) and the general and minimal
algorithms (as implemented in Maxima) on a typical desk-
top computer. For the minimal algorithm, the first column
is understood to mean N , the maximum integer for which
the α-coefficients are computed. The second column lists the
partition function of n, which corresponds to the number of
α-coefficients to be determined.

n p
Textbook General Minimal

Method Algorithm Algorithm

1 1 negligible negligible negligible

2 2 negligible negligible negligible

3 3 ∼ 30 min negligible negligible

4 5 crashed negligible negligible

5 7 negligible negligible

6 11 ∼ 1 min negligible

7 15 ∼ 24 min negligible

8 22 crashed negligible

9 30 negligible
...

...
...

26 2436 ∼ 1 min

28 3718 ∼ 2 min

30 5604 ∼ 5 min
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