

Cornell University Library We gratefully acknowledge support from the Simons Foundation and member institutions

arXiv.org > nucl-th > arXiv:1106.4612

Nuclear Theory

Nuclear collision in strong magnetic field

Gao-Chan Yong

(Submitted on 23 Jun 2011)

We studied nucleus-nucleus collision in strong magnetic field based on a transport model. It is found that neutrons and protons can be separated from a nucleus by strong magnetic field and neutron-rich high density nuclear matter and low density proton collectivity matter can be formed during nucleus-nucleus collision. The electric field produced by proton collectivity can accelerate proton and charged meson up to very high energies. Besides the studies of isospin physics such as symmetry energy, these results may help us to understand the acceleration mechanisms of high energy charged particles in the cosmic rays

Comments:	8 pages, 4 figs
Subjects:	Nuclear Theory (nucl-th) ; High Energy Astrophysical Phenomena (astro-ph.HE)
Journal reference:	Physics Letters B 700 (2011) 249253
DOI:	10.1016/j.physletb.2011.05.004
Cite as:	arXiv:1106.4612 [nucl-th]
	(or arXiv:1106.4612v1 [nucl-th] for this version)

Submission history

From: Gao-Chan Yong [view email] [v1] Thu, 23 Jun 2011 02:25:22 GMT (9kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Search or Article-id	(<u>Help</u> <u>Advanced search</u>)
	All papers 🗨 Go!
	Download: • PDF • PostScript • Other formats
	Current browse context: nucl-th < prev next > new recent 1106
n a ed from ear	Change to browse by: astro-ph astro-ph.HE
ivity can les the y help	 References & Citations INSPIRE HEP (refers to cited by) NASA ADS

