

核技术勘查

核技术勘查课程组

核技术勘查

第二章放射性及其衰变规律

射线与物质的相互作用

教学内容:

- 1、带电粒子与物质的相互作用
- 2、γ射线与物质的相互作用

射线与物质的相互作用重要包括

- 1、重带电粒子与物质相互作用
- 2、β 射线与物质相互作用
- 3、γ射线与物质相互作用
- 4、中子与物质相互作用

带电粒子与物质的相互作用

放射性核素衰变过程中放出的带电粒子(α、β) 穿过空气、岩石以及机体组织时,与这些物质相互 作用。主要的作用过程有电离、激发、散射、轫致 辐射等,最后被吸收。

几种射线的性质

射线	速度	电荷	静止质量 (amu)	能谱
a	1/20C	2	4.0027	单值
β	1/3C	1	0.00549	连续值
Y	∾C	0	0	单值

一、 α 粒子与物质的相互作用

α粒子与物质主要作用过程是

电离

激发

1、电离

当具有一定动能的带电粒子与原子的轨道电子 发生库伦作用时,把本身的部分能量传递给轨道 电子。如果轨道电子获得的动能足以克服原子核 的束缚,逃出原子壳层而成为自由电子。

2、激发:

如果轨道电子获得的能量不足以摆脱原子核的束缚,而是从低能级跃迁到高能级,使原子处于激发态,此过程称为激发。

离子对 直接电离 间接电离

- (1)、直接电离:由入射带电粒子与物质直接作用产生的电离称为直接电离或初级电离。
- (2)、间接电离:由电离产生的某些电子,具有足够的动能,能进一步引起物质电离,这些电子称为次级电子或δ射线。由δ射线产生的电离称为间接电离或次级电离。

3、α粒子电离能量损失率

$$\left(-\frac{dE}{dx}\right)_{ion} = \frac{4\pi z^2 e^4}{m_0 v^2} NZ \left[\ln(\frac{2m_0 v^2}{I}) + \ln\frac{1}{1-\beta^2} - \beta^2 \right]$$

Ε为α粒子能量,

ν为α粒子运行速度;

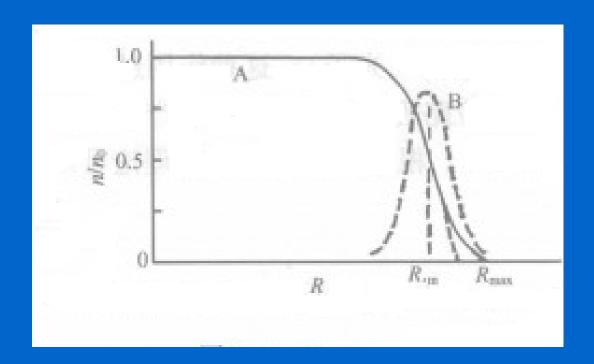
Ζ为α粒子的电荷数

C光速

Z、N为介质的原子序数和单位体积内的原子数 m_0 和e为电子质量和电荷

$$\beta = v/c$$

能量损失率,又称为电子阻止本领 (量子理论)从能量损失率的公式得到以下 结论


- 1、只与入射粒子的速度有关,与质量无关
- 2、正比于入射粒子的电荷的平方和NZ

4、α粒子在物质中的射程 射程射程表示为

$$R = \int_{E_0}^0 dE / (-dE / dx)$$

式可以看出:速度越大(能量E大)射程越大。

a 粒子射程

天然放射性核素放出α粒子的能量在

4~8MeV,在空气中的射程计算的经验公式

(1)
$$R_0 = 0.318E^{\frac{3}{2}}$$

(2)
$$R = 3.2 \times 10^{-4} \frac{\sqrt{A}}{\rho} \cdot R_0$$

二、β射线与物质的相互作用

- 1、电离
- 2、激发

引起能量损失:

$$\left(-\frac{dE}{dx}\right) = \frac{4\pi e^4}{m_0 v^2} NZ \left[\ln \frac{2m_0 v^2}{I} - 1.2329 \right]$$

3、轫致辐射

轫致辐射:库仑场对电子加速导致的电磁波

辐射

产生轫致辐射的能量损失率

$$(-\frac{dE}{dx})_{rab} \propto \frac{Z^2 NE}{m_0^2}$$

得出结论: (1)、与原子序数的平方成正比

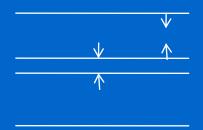
(2) 、与β粒子能量成正比

(3)、能量的分配

4、β射线的散射

β 粒子在物质中与原子核库仑场作用,发生不 损失能量只改变运动方向的弹射散射。

(1)、β射线的射程和衰减


一定能量的 β 射线,穿过物质几乎完全被吸收时的物质厚度,称为 β 射线的射程。

实验证明,物质对 β 射线的吸收过程比较复杂,可近似地用指数规律来表示为:

$$I = I_0 e^{-\mu d}$$

(2)、放射性物质层的自吸收

自吸收计算示意图

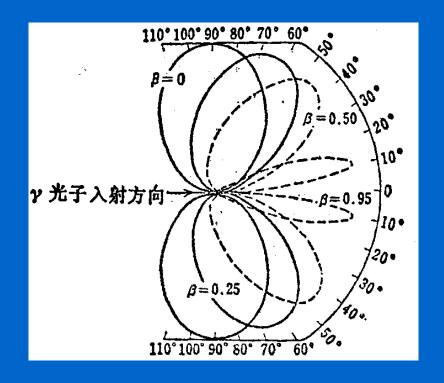
$$dI = I_0 dx \cdot e^{-\mu x}$$

到达放射层表面时射线强度为:

$$I = \int_0^h dI = \int_0^h I_0 dx \cdot e^{-\mu_{\parallel} x} = \frac{I}{\mu_{\parallel}} (1 - e^{-\mu_{\parallel} h})$$

μ_自为放射层的自吸收系数,h为放射层厚

当h~∞ 时I。为放射性层的饱和强度。


度。

三、γ射线与物质相互作用的主要过程: 1、光电效应

v射线通过物质,与物质原子相碰撞, 可能使全部能量传递给原子,入射的v射线 (光子)全部消失。能量在原子中分配,使 结合能适当的电子获得能量克服原子核的束 缚(结合能)发射出去,并使原子受到反冲。 这样的作用过程称为光电效应,发射的电子 称为光电子。

不同y光子能量时光电子分布

(1)、光电子的动能:入射的γ射线的能量为 hv, 若轨道电子的结合能为En,则光电子的动能为

$$E = hv - E_n$$

- (2)、 发生光电效应的条件是:入射光子的能量必须大于某壳层电子的结合能。
- (3)、光电吸收(效应)截面(又称光电吸收系数)(τ):表示γ光子束垂直穿过1cm物质层时产生光电效率的几率,单位为cm⁻¹。

Ta表示每个原子截住γ光子产生光电效应的截面

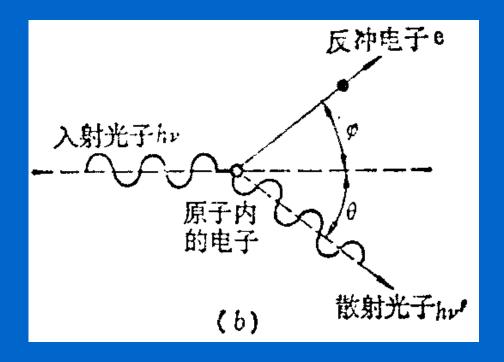
$$\tau = \tau_a N$$

$$\tau = \tau_a \cdot \rho \cdot L_0 / A$$

$$| au_m = au/
ho|$$

 $\tau_{\scriptscriptstyle m}$

称为质量光电吸系数



2、γ射线的散射作用

产生两种方式的散射:

- (1)、散射后能量不变的,仅改变运动方向 的称为弹性散射(又称相干散射);
- (2)、散射后能量和运动方向都发生变化的 散射,称为康普顿散射(又称非相干散射)。

康普顿效应示意图

入射 γ 射线与原子的壳层电子相碰撞,将一部分能量 传给电子,使获得的能量的电子沿 γ 射线入射方向成 ϕ 角 射出原子之外。损失能量之后的光子成 θ 角方向散射出 去。

如果入射γ射线能量为Eγ,散射能量为Eγ′,反冲电子能量为E0。根据能量和动量守恒定律,三者关系为:

$$E_{\gamma} = E_{\gamma'} + E_{0}$$

$$\frac{E_{\gamma}}{c} = \frac{E_{\gamma'}}{c} \cos \theta + mv \cos \varphi$$

$$\frac{E_{\gamma'}}{c} \sin \theta = mv \sin \varphi$$

式中:m为反冲电子以速度v运动时具有的质量;

c为光速; $\langle \frac{E_{\gamma}}{c} \rangle \langle \frac{E_{\gamma}}{c} \rangle$ 为 γ 射线、散射射线和反冲电子的动能。

通过上式解得

$$E_{\gamma'} = \frac{0.51}{1 + \frac{0.51}{E_{\gamma}} - \cos \theta}$$

$$E_{0} = \frac{E_{\gamma}^{0}(1 - \cos \theta)}{1 + \frac{0.51}{E_{\gamma}} - \cos \theta}$$

$$c \tan \varphi = \left(1 + \frac{E_{\gamma}}{m_0 c^2}\right) \tan \frac{\theta}{2}$$

得出如下的结论:

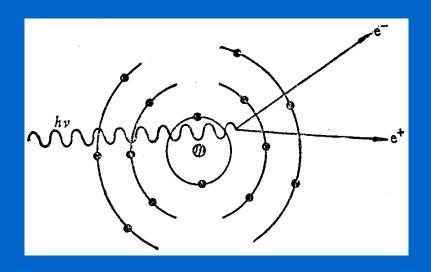
(1)、当 θ =0°时,
$$E_{\gamma'}=E_{\gamma'}$$
,散射能量达

到最大值;反冲电子能量E₀=0。

(2) 、入射y光子能量Ey<m0c2时,

$$\sigma_e = \sigma_{\%$$
姆逊 $= \frac{8\pi}{3} r_0^2 = \frac{8\pi}{3} \Box \frac{Ze^4}{(m_0c^2)}$

与原子序数成正比


(3)、入射γ光子能量E_γ》m₀c²时,康普顿散射截面与原子序数Z成正比。

$$\sigma_e = Z \Box \pi r_0^2 \frac{m_0 c^2}{E_{\gamma}} \left(\ln \frac{Z E_{\gamma}}{m_0 c^2} + \frac{1}{2} \right)$$

与原子序数成正比,近似与入射光子能量成反比。

3、电子对效应

当入射光子的能量大于2m₀v²时,入射 γ 光子 在库仑场作用下能量完全被吸收,电子从负能级跃 迁到正能级,同时放出一对正、负电子,这就是电 子对效应。

电子对效应示意图

能量关系为:

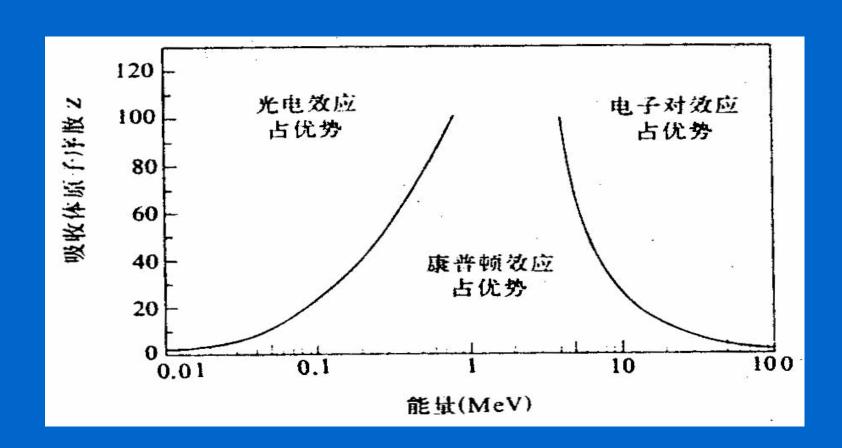
$$E_e + E_e^+ + 2m_0 c^2 = E_{\gamma}$$

式中:
$$2m_0c^2 = 1.022MeV$$

$$E_e$$
 、 E_e^+ 、 E_{γ} 分别为电子、

正电子、入射γ射线的能量。

电子对效应的原子截面为


$$k_{\rm a} = c_1 Z^2 (E_{\gamma} - 1.002)$$

上述三种效应的截面,都是射线与作用物质整个原子的作用几率,总的原子吸收截,可写为

$$\mu_{a} = \tau_{a} + \sigma_{a} + k_{a}$$

三种效应与原子序数和光子能量的关系

四、γ射线在物质中的衰减

光子在物质中穿行一段距离时,有的与物质发生了相互作用,有的则没有发生。经过相互作用的 光子数可用发生相互作用的几率来表示。线衰减系 数就是入射光子在物质中穿行单位距离时,平均发 生总的相互作用的几率。

若吸收物质单位体积中原子数为N,密度为ρ, 入射初始γ射线强度(照射量率)为I₀,在物质厚 度为x处,测得γ射线强度为I;则通过dx厚度, γ射线强度的变化为dI,可用下式表示:

$$dI = -\mu_a \cdot N \cdot I_0 dx$$

$$I = I_0 e^{-\mu x}$$

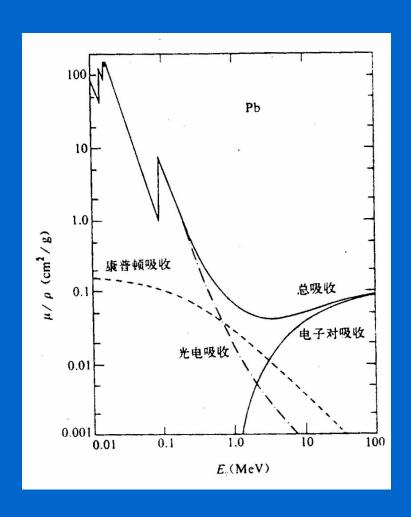
$$I = I_0 e^{-N_x \mu_\alpha} = I_0 e^{-\mu x}$$

$$\sigma_{\gamma} = \sigma_{ph} + \sigma_c + \sigma_p$$

$$\mu = \mu_{ph} + \mu_c + \mu_p$$

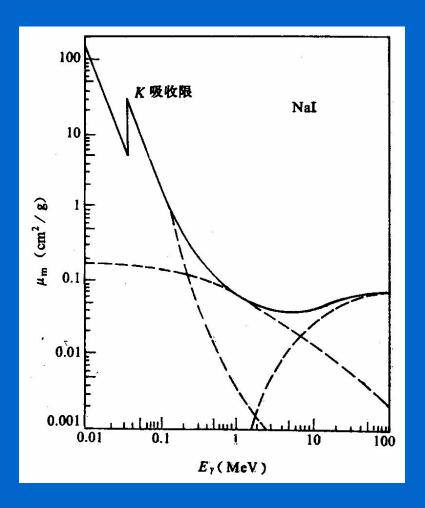
化合物和混合物中的质量吸收系数:

$$\frac{\mu}{\rho} = \sum_{i} (W_i \frac{\mu_i}{\rho_i})$$



在一些情况下为避免密度的影响,公式表示为:

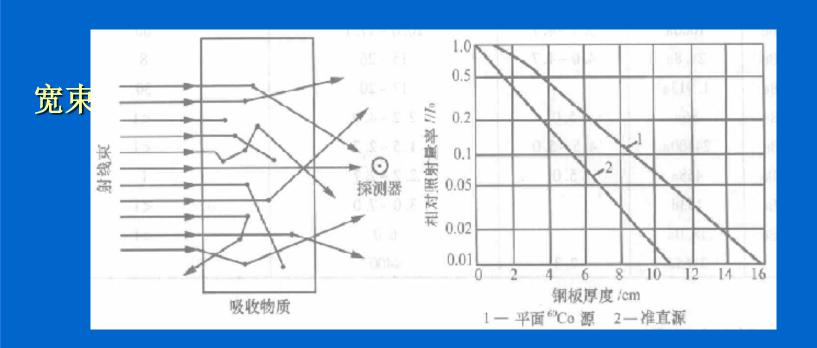
$$I = I_0 e^{-\mu_m \cdot d_m}$$


式中: d_M= pd 称质量厚度,单位为g/cm²。

μ_m=μ/ρ 称质量衰减系数,单位为cm²/g。

质量率减系数与能量的关系

质量率减系数与能量的关系


宽束γ射线

窄束γ射线 (经过准直的射线)

宽束情况下测得的率减系数比窄束的小,即射

线率减变慢。

五、中子与物质相互作用

核反应: 中子可以与所有原子核发生核反应

弹性散射:中子与原子核发生弹性散射-中子慢化

核裂变:将重核裂变为轻核

中子活化:原来稳定的原子核,经俘获中子后变

成具有放射性的原子核的过程。

$$n+^{115}\text{In} \rightarrow^{116}\text{In}^* \rightarrow^{116}\text{In} + \gamma \xrightarrow{\beta^-})^{116}\text{Sn} + \gamma$$

中子弹爆炸

六、 中子与物质的相互作用

1、中子:

冷中子: En<5-10⁻³ev

热中子: En=0.025ev

过热中子: En: 0.1ev-0.5Kev

中能中子: En: 0.5Kev-0.2Mev

快中子: En: 0.25Mev-20Mev

超快中子: En>20Mev

2、中子源

(a,n) 中子源

裂变中子源

中子发生器

地质工作中常用的中子源,有同位素中子源和中子发生器。

(1)、(a,n)中子源

提供 粒子的主要是: Po、Ra、Am、Pu和 Cm等辐射同位素。发射中子的能量都在4—8Mev。使用的靶原子核都是铍。所有同位素中子源发射的中子都是连续的能量谱

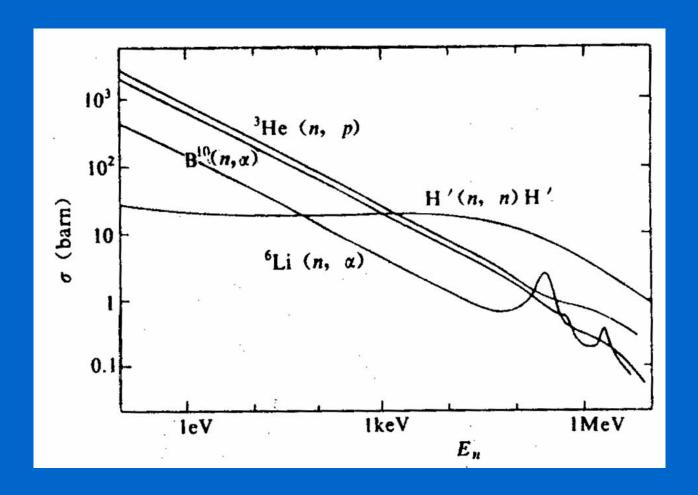
表 2-3-1 常用的 (α, n) 中子源

济 题 (d <u>X</u>)	半衰期	中子平均能量 MeV	中子产额 2.7×10 ⁻⁵ 中子・s ⁻¹ ・Bq ⁻¹	γ强度 3. 17×10 ⁻¹⁴ C/kg・m ⁻¹ ・中子		
²¹⁰ Pb— ⁹ Be	22a	4.5~5.0	□ 量 2.3 ~2.5 页 介 列	因此在平6元限介质或力		
²¹⁰ Po— ⁹ Be	128.4 天	4. 2	2.3~3.0	(2-2-17)1.0<利 (2-2-		
²²⁶ Ra— ⁹ Be	1600a	3.9 ~4.7	10.0 ~ 17.1	60		
²²⁷ Ac— ⁹ Be	21. 8a	4.0~4.7	15 ~ 26	8		
²²⁸ Th— ⁹ Be	1. 913a	1//	17 ~20	30		
²³⁸ Pu— ⁹ Be	86a	5.0	2.2~4.0	<1		
²³⁹ Pu— ⁹ Be	24400a	4.5 ~ 5.0	1.5~2.7	<1 ;		
²⁴¹ Am— ⁹ Be	458a	5.0	2.2~2.7	1		
242 Cm $-^{9}$ Be	163d		3.0~7.0	<1		
²⁴⁴ Cm— ⁹ Be	18. 0a		6.0	<1		
²⁵² Cf	2. 65a	2.3	4400			
	m	人 到 的 计	Page 1 and 1			

(2) 裂变中子源

重核素²⁵²Cf是理想的裂变中子源

(3) 中子发生器


是石油测井的快中子源

中子通过物质与原子核碰撞作用.主要引起的作用(反应)有:

- ①弹性散射
- ②非弹性散射
- ③有带电子发射的核反应,如(n,P),
 - (n.)等
- ④辐射俘获反应(n,)
- ⑤核裂变反应(n, f)等

不同中子作用的截面

3、中子散射与核反应

中子与物质相互作用决定于中子与原子核之间的核力。中子与电子之间的磁(矩)作用非常小,一般可以忽略。中子与原子核之间的核力主要由中子与核内质子之间以及中子与核内中子之间作用力组成。作用力的强或弱,首先决定于作用距离。

中子被原子核俘获后,形成具有复合核的激发能

$$E_{k\bar{k}} = \frac{M}{M - e}E + \varepsilon_n$$

式中: M为碰撞核的质量;

m为中子质量;

 $\frac{\varepsilon_n}{\varepsilon_n}$ 为中子在复核内的结合能;

E为碰撞前中子的动能。

发生哪种核反应的几率都与能量特征有关

例如,当发射粒子 (p, α, n) 的结合能 (E_{k}) 小 于复核的激发能(\mathcal{E}_n)时,原子核才有可能在俘获 中子后发生发射粒子的核反应。

$$E_{\overline{k}} = \frac{M}{M+e}E + \varepsilon_n > \varepsilon_x \qquad \boxed{\frac{M}{M+e}E} > \varepsilon_n - \varepsilon_x = Q$$

$$\frac{M}{M+e}E > \varepsilon_n - \varepsilon_x = Q$$

(一)散射作用

能量适当的中子和原子核碰撞后,发射的仍然是 中子称为散射作用。

根据能量和动量守恒原理,碰撞后反冲核能量

$$E_{M} = E_{n} - E_{n}' = \frac{4Mm}{\left(M + m\right)^{2}} \Box E_{n} \Box \cos^{2} \varphi$$

(二)辐射俘获

原子核俘获中子后形成的激发态的复核系统,在 极短时间内放出一个或几个 光子的辐射衰变回到基 态,这样的反应过程叫辐射俘获

Cf中子源经过慢化使中子能量降低,作为辐射俘获的中子源是非常有利的。用于辐射俘获能谱测井,可以一次测量多种元素,成为元素测井的主要方法。

(三)发射带电粒子的核反应

从快中子到热中子与原子核发生碰撞,使稳定原子 核发射带电粒子,最主要的核反应有(n,p),

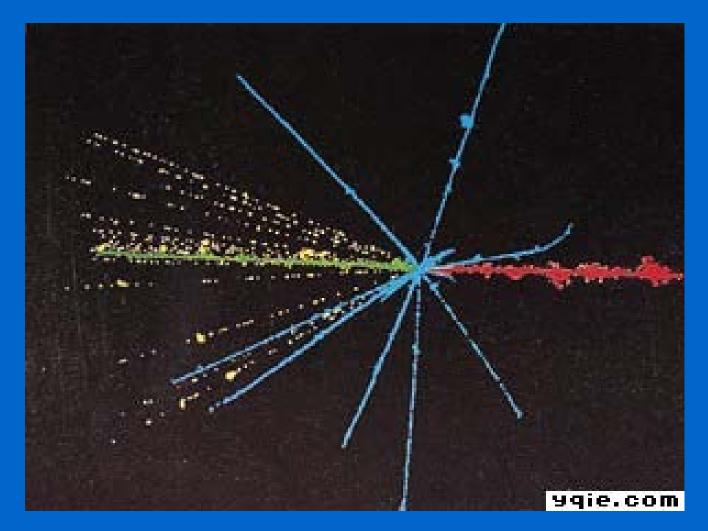
(n,)。这些核反应都伴随有 射线发射,是中子活化分析和中子活化测井的基本依据。

(四)核裂变反应

中子与重原子核碰撞, 使重原子核分裂(n, f), 释放出中子(几个中子),绝大多数为瞬发(s)中子; 也有极少数(0.7%)重核,经过一段时间之后发射中 子,称缓发中子。如快中子(>1Mev)和热中子作用 下 U和 U产生裂变反应,产生流组不同能量不同半 衰期的缓发中子可以来直接探测矿石中铀和钍的含 量。

七、宇宙射线与物质的相互作用

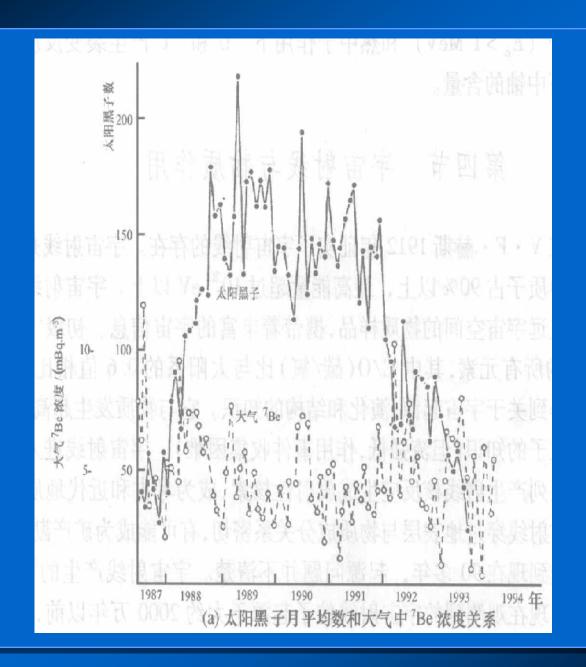
宇宙线 (cosmic ray)


1、发现

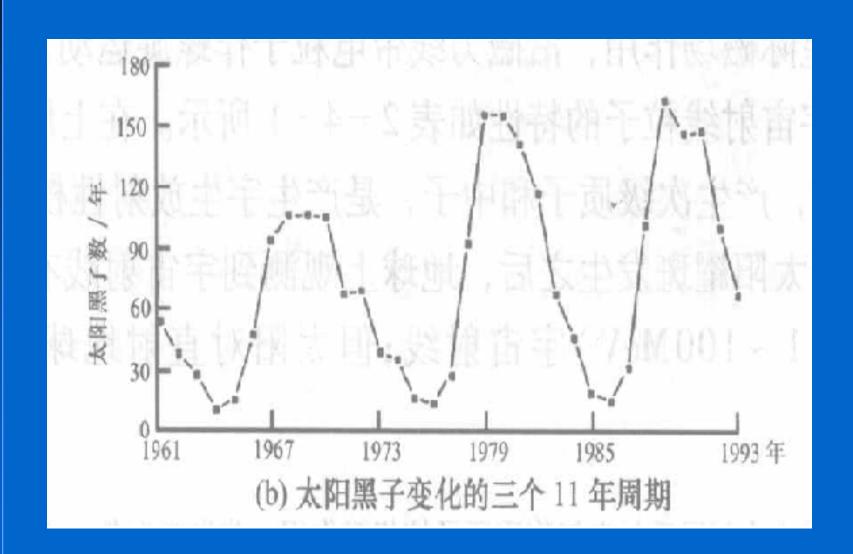
宇宙线是在研究大气的电导率时偶然发现的。早在1900年 J. 艾尔斯特、H. 盖特尔和C. T. R. 威尔逊等人在使用验电器时就注意到无论如何绝缘,验电器总有些漏电,猜测可能是由某种未知的辐射源导致空气电离,这种源具有比当时已知的放射性有更大的穿透本领。

1911~1912年V. F. 赫斯利用气球将高压电离室 带到5千米高空,发现随着气球的上升,电离度持续 增加,推断这种射线来源于宇宙空间。通过其他人 多方面的研究,排除了大气层和地球内部产生射线 来源的可能性,更加证实了赫斯的结论,故称之为 宇宙线。

宇宙线


2、宇宙射线产生

太阳系是在圆盘状的银河系中运行的,运行过 程中会发生相对于银河系中心位置的位移,每隔 6200万年就会到达距离银河系中心的最远点。而整 个"银河盘"又是在包裹着它的热气体中以每秒200 公里的速度运行。"银河盘并不像飞盘那样圆滑," 科学家称, "它是扁平的。"当银河系的"北面" 或前面与周围的热气摩擦时就会产生宇宙射线。



短山市干中縣常出 显视表214-	1 大气层中一些	宇宙射线粒子特性	中于辐射俘获很
类型名称	能 量/MeV	平均寿命/s	主要衰变方式
	强	子	划器。可以微量级。
质子 (p) 中子 (n)	938. 2 939. 5	稳 定 1.01×10 ³	稳 定 p+e+y _e
介 子 π介子(π')	139.6	2.55×10^{-8}	灵健度 _{第4} 4月灵嫩系
(π^0)	134.9	-1.78×10^{-10}	
K介子(K ⁺) (K ₁)	493.7	1.23×10^{-8} 0.91×10^{-10}	(1) 共平 [1] 共平 中
(K_2)	497.7	5.7×10^{-8}	列量 第4页储存的
	轻	立子的核反应 そ	集申替模录 (三)
μ子 (μ') 电子 (e')	105. 6 0. 511	2.2×10 ⁻⁶ 稳 定	e' + γ _e + γ _μ 稳 定
中微子(γ _e)	图 0 册数双型	稳定	稳定
(γ_{μ})	0	稳定	稳定
光子 (γ)	光 0	子 稳 定	是

宇宙射线和大气以及地表物质作用 产生的宇生放射性核素

放射性核素	半衰期	存在地
¹⁰ Be	$2.7 \times 10^{5} \mathrm{a}$	深海沉积、岩土
²⁶ Al		岩土
³⁶ Cl	3. 1 × 10 ⁵ a	岩土、雨水
¹⁴ C	5692a	有机物, CO ₂
³² Si	500a	海水
²² Na	2. 6a	水、空气
³⁵ S	88 d	雨水、空气、有机物
⁷ Be	53 d	雨水、空气
^{33}P	25 d	雨水、空气、有机物
²⁷ Na	15h	雨水

