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We discuss a candidate solution for the controlled trapping and manipulation of two individual
Rydberg atoms by means of a magnetic Ioffe-Pritchard trap that is superimposed by a constant
electric field. In such a trap Rydberg atoms experience a permanent electric dipole moment that
can be of the order of several hundred Debye. The interplay of electric dipolar repulsion and three
dimensional magnetic confinement leads to a well controllable equilibrium configuration with tunable
trap frequency and atomic distance. We thoroughly investigate the trapping potentials and analyze
the interaction-induced stabilization of two such trapped Rydberg atoms. Possible limitations and
collapse scenarios are discussed.
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I. INTRODUCTION

Among the many fascinating systems encountered in
ultracold atomic and molecular physics are Rydberg
atoms, i.e., highly excited atoms with large principal
quantum number n. Their size can easily exceed that
of ground state atoms by several orders of magnitude
and at the same time is the origin of many extraordinary
properties such as their massively enhanced response to
external fields and, therewith, for their enormous polariz-
ability [1]. In ultracold gases, the resulting strong dipole-
dipole interaction among Rydberg atoms has been found
to give rise to a non-linear excitation behavior: Ryd-
berg atoms strongly inhibit excitation of their neighbors
entailing a state dependent local excitation blockade [2–
6], which on its part results in a collective excitation of
many atoms [7–9]. Two recent experiments even demon-
strated the blockade between two single atoms a few mi-
crometers apart [10, 11]. From an application oriented
point of view, the strong dipole blockade effect renders
Rydberg atoms promising candidates for quantum in-
formation processing [12] and allows the determination
of the interaction potential of Rydberg atoms in a one-
dimensional lattice [13]. The large size of Rydberg atoms
can also give rise to bonding interactions between Ryd-
berg and ground state atoms. The scattering-induced
attractive interaction binds the ground state atom to the
Rydberg atom at a well-localized position within the Ry-
dberg electron wave function and thereby yields giant ul-
tra long-range molecules that can have internuclear sepa-
rations of several thousand Bohr radii [14]. The spectro-
scopic characterization of such exotic molecular states,
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named trilobite and butterfly states on account of their
particular electronic density, has succeeded recently [15]
and has triggered a revived theoretical and experimental
activities [16–19].

Most of the experiments with Rydberg atoms still in-
volve a large ensemble of atoms. They can therefore un-
avoidably solely investigate effective and averaged prop-
erties since individual atoms are typically not resolved.
It is hence of great interest to study only a small number
of Rydberg atoms that are preferably individually con-
trollable and arrangeable with respect to one another. It
is furthermore necessary to stabilize these Rydberg atom
configurations against autoionization. An essential step
in this direction is the trapping of electronically highly
excited atoms. Several works have focused on trapping
Rydberg atoms, based on electric [20], optical [21–23],
or magnetic fields [24–27]. Due to the high level den-
sity and the strong spectral fluctuations with spatially
varying fields, trapping or manipulation in general is a
delicate task. This is particularly the case when both the
center of mass and the internal motion are of quantum
nature and the inhomogeneous external fields lead to an
inherent coupling of these motions.

In the present work we provide a candidate solution for
the controlled trapping and manipulation of two individ-
ual Rydberg atoms by means of a magneto-electric trap.
Specifically, we consider a magnetic Ioffe-Pritchard trap
that is superimposed by a constant electric field which
induces a permanent electric dipole moment for the Ry-
dberg atoms that can be of the order of several hun-
dred Debye. As has been shown in a previous work, the
resulting dipole-dipole interaction in conjunction with
the tight radial confinement of the Ioffe-Pritchard trap
gives rise to an effectively one-dimensional ultracold Ry-
dberg gas with a macroscopic interparticle distance [28].
Here, we consider in addition the longitudinal confine-
ment that arises for a non-Helmholtz configuration of the
Ioffe-Pritchard trap. In contrast to our previous work fo-
cusing on the trapping of individual Rydberg atoms in
two dimensions [25–27], this allows the controlled con-

ar
X

iv
:1

10
6.

62
75

v2
  [

ph
ys

ic
s.

at
om

-p
h]

  9
 D

ec
 2

01
1

mailto:peter.schmelcher@physnet.uni-hamburg.de


2

finement of two single Rydberg atoms in three dimen-
sions with variable trapping parameters and distance.
We thoroughly investigate the resulting trapping poten-
tials and analyze the interaction-induced stabilization of
two such trapped Rydberg atoms. Possible limitations
and collapse scenarios are discussed.

In detail, we proceed as follows. In Section II the
Hamiltonian of a single Rydberg atom in the magnetic
Ioffe-Pritchard trap superimposed by a constant electric
field is derived and the corresponding adiabatic potential
surfaces for the center of mass motion of the Rydberg
atom are provided, as well as analytic expressions for the
electric dipole moment of the Rydberg atom induced by
the external electric field. In Section III we consider the
interaction of two Rydberg atoms in the same trapping
environment. In the regime of strong transversal con-
finements, analytic expression for the equilibrium config-
uration of the two atoms are derived. Weakening this
restriction leads to three-dimensional potential surfaces
and possible loss mechanisms that are investigated in
the remainder of the section. Section IV outlines several
routes to experimentally realize the proposed system. A
brief summary is provided in Sec. V. In the Appendix we
present a detailed derivation of the perturbative results
for the induced dipole moment of the Rydberg atoms in
the considered trap.

II. THREE-DIMENSIONAL
IOFFE-PRITCHARD CONFINEMENT FOR A

RYDBERG ATOM

A. Two-body Hamiltonian for a single alkali
Rydberg atom

In a highly anisotropic magnetic field configuration like
that of a Ioffe-Pritchard trap, the strength of the mag-
netic field can vary significantly over the extension of a
Rydberg atom. The large size of Rydberg atoms can
therefore modify the way they couple to the magnetic
field compared to the coupling of ground state atoms.
We incorporate the large extension of the atoms into our
description by modeling a Rydberg atom by two parti-
cles, namely, a valence electron (particle 1) and an ionic
core (particle 2). This is particularly appropriate for al-
kali atoms that are commonly used in Rydberg experi-
ments. We include into our model the coupling of the
electronic and the center of mass motion of the atom and
hence do not resort to the infinitely heavy mass approx-
imation. While the inclusion of the fine-structure and
quantum defects can be readily done, it turns out not to
be necessary for high angular momentum electronic state
which we will be focusing on [29]. The coupling of the
charged particles to the external magnetic field is intro-
duced via the substitution, pi → pi − qiA(ri); qi is the
charge of the i-th particle and A(x) is the vector poten-
tial belonging to the magnetic field B(x). Including the
coupling of the magnetic moments due to the spins to the

external field, our initial Hamiltonian in the laboratory
frame reads (atomic units are used except when stated
otherwise)

HL =
1

2M1
[p1 − q1A(r1)]2 +

1

2M2
[p2 − q2A(r2)]2

+ V (|r1 − r2|)− µ1 ·B(r1)− µ2 ·B(r2) . (1)

The magnetic moments of the particles are connected to
the electronic spin S and the nuclear spin Σ according
to µ1 = −S and µ2 = − gN

2M2
Σ, with gN being the nu-

clear g-factor; because of the large nuclear mass, the term
involving µ2 is neglected in the following.

The vector potential and the magnetic field of the Ioffe-
Pritchard configuration read

A =
B

2

−yx
0


︸ ︷︷ ︸

=Ac

+G

 0
0
xy


︸ ︷︷ ︸

=Al

+
Q

4

 y(x2 + y2 − 4z2)
−x(x2 + y2 − 4z2)

0


︸ ︷︷ ︸

=Aq

,

B = B

0
0
1


︸ ︷︷ ︸

=Bc

+G

 x
−y
0


︸ ︷︷ ︸

=Bl

+Q

 −2xz
−2yz

−x2 − y2 + 2z2


︸ ︷︷ ︸

=Bq

.

(2)

The “traditional” macroscopic realization of the Ioffe-
Pritchard trap uses four parallel current carrying Ioffe
bars which generate the two-dimensional quadrupole field
Bl that depends on the field gradient G. Encompassing
Helmholtz coils create the additional constant field Bc

where B denotes the Ioffe field strength [30]. Bq des-
ignates the quadratic term generated by the Helmholtz
coils whose magnitude, compared to the first Helmholtz
term, can be varied by changing the geometry of the trap,

Q = B · 3

2

4D2 −R2

(D2 +R2)2
=: B · Q̃(D,R). (3)

R is the radius of the Helmholtz coils, and 2D is their dis-
tance from each other. The geometry factor Q̃(D,R) van-
ishes for 2D = R, which is known as the Helmholtz con-
figuration. Exposing Rydberg atoms to a Ioffe-Pritchard
trap in a Helmholtz configuration has been extensively
studied in Ref. [29]. Here, we assume Q̃ to be non-
zero and positive, 2D > R. In this case, the absolute
value of the magnetic field on the Z-axis, |B(0, 0, Z)| =

B|1 + 2Q̃Z2|, increases quadratically with |Z|. The ge-

ometry factor reaches its maximal value, Q̃max = 9
10D

−2,

when 2D =
√

6R, i.e., the smaller R, the larger Q̃.
Along the lines of Ref. [29] we employ the unitary

transformation U = exp
{
i
2 Bc × r ·R

}
, introduce rela-

tive and center of mass coordinates (r = r1−r2 and R =
(M1r1 +M2r2)/M with the total mass M = M1 +M2),
and omit the diamagnetic contributions. The Hamilto-
nian describing the Rydberg atom in the Ioffe-Pritchard
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trap becomes

H =
P 2

2M
+HA +

1

2
Lr ·Bc + S ·B(R+ r)

+Al(R+ r) · p+Aq(R+ r) · p, (4)

where we named the electronic hydrogenic Hamiltonian
in field-free space HA = p2/2 − 1/r. In Hamiltonian
(4) we neglect any contributions arising from the trans-
formation of Aq(R + r) which is justified as long as
|X|, |Y | � 2

Bn . As usual, the principal quantum number
of the Rydberg state is denoted as n.

For all relevant laboratory field strengths the spectrum
of the Hamiltonian (4) is dominated by the field-free en-
ergies EnA = −1/2n2 that are n2-fold degenerate. It has
been shown in [29] that the inter-n-manifold couplings
originating from the constant and the linear term in the
magnetic field, Bc and Bl, are negligible. The quadratic
contribution µ|Bq(R)| does not further constrain the pa-
rameter regime where this approximation is valid. We
can therefore restrict our study to a single sub-manifold
with a given principal quantum number n. Considering
the expressions 2〈α′|xipj |α〉 = εijk〈α′|Lk|α〉, we find

H ≈ P 2

2M
+ µ ·B(R) +Hγ +HQ +H ′ (5)

where we named HQ := 2QZ(zLz − xSx − ySy + 2zSz),
µ := 1

2Lr + S, and Hγ = G(xypz + xSx − ySy) as in
Ref. [29]. The terms

H ′ = S ·Bq(r)− 2Q(zXSx + zY Sy + (xX + yY )Sz)

+
Q

4
[(x2y + y3 − 4yz2)px + (−xy2 − x3 + 4xz2)py

+ (−y2py − 3x2py + 4z2py + 2xypx)X

+ ( x2px + 3y2px − 4z2px − 2xypy)Y ] (6)

are small corrections as long as 4 |Q|G n2 � 1. For

B = 10 G, G = 1 Tm−1 and n = 30 this condition reads
Q̃ � 1.5 × 10−11. To reach geometric parameters Q̃ as
large as 10−11, the coils of the Ioffe-Pritchard trap would
have to be as close as 12µm. For a macroscopic trap,
the above condition is therefore always valid. In con-
trast to the finite-size term Hγ , the term HQ depends on
the center of mass position. Since Lz and Si are diag-
onal in the hydrogen basis, the latter is proportional to
a dipole matrix element and hence has only off-diagonal
matrix elements. Comparing its second order energetic
contribution with |QLzZ2| (which is a part of µ · B),
and assuming the energetic gap of adjacent surfaces to
be B/2, cf. Ref. [29], we find it to be negligible as soon

as 4n5Q̃ � 1. In macroscopic traps this restriction can
only be broken with principal quantum numbers n of the
order of several hundreds.

Our working Hamiltonian thus reads

HIP =
P 2

2M
+ µ ·B(R) +Hγ =:

P 2

2M
+He. (7)

In order to solve the remaining coupled Schrödinger equa-
tion, we adiabatically separate the relative and the center
of mass dynamics by projecting Eq. (7) on the electronic
eigenfunctions ϕκ that parametrically depend on the cen-
ter of mass coordinates:

He |ϕκ(r;R)〉 = Eκ(R) |ϕκ(r;R)〉. (8)

We are thereby led to a set of decoupled differential
equations governing the adiabatic center of mass motion
within the individual three-dimensional energy surfaces
Eκ(R), i.e., the surfaces Eκ(R) serve as potentials for the
center of mass motion of the atom. The non-adiabatic
(off-diagonal) coupling terms that arise within this pro-
cedure in the kinetic energy term can be neglected in
our parameter regime since they are suppressed by the
splitting between adjacent energy surfaces [29].

B. Electronic potential energy surfaces

Approximate expressions for the potential energy sur-
faces Eκ(R) can be found analytically when the ratio of
the magnetic field gradient and the Ioffe field is small,
more specifically if n2G/B � 1. In this case, the finite
size term Hγ is negligible compared to the contribution
of µ ·B(R). The latter can be diagonalized by applying
the spatially dependent unitary transformation

U = e−iα(Lx+Sx)e−iβ(Ly+Sy), (9)

where tanα = By(B2
x +B2

y)−1/2 and tanβ = −Bx/Bz.
The spatial dependence is introduced by evaluating the
magnetic field components Bi at the Rydberg atom’s cen-
ter of mass position, i.e., Bi ≡ Bi(R). We note that the
field-free Hamiltonian HA is invariant under the trans-
formation U . Moreover,

UµU†B =
1

2
(Lz + 2Sz)|B|, (10)

where Lz and Sz are now defined with respect to the
local quantization axis. This procedure is equivalent to
rotating the system into the local magnetic field direc-
tion. The adiabatic potential energy surfaces hence read

Eκ(R) ≈(
ml

2
+ms)|B(R)|. (11)

Expanding the absolute value of the magnetic field
around its minimum in the trap center,

|B(0, 0, Z)| ≈ 2QZ2 = B(1 + 2Q̃Z2) ,

|B(X,Y, 0)| ≈ B +

(
G2

2B
−Q

)
ρ2 +O(ρ4) , (12)

yields the harmonic confinement known from ground
state atoms in a Ioffe-Pritchard trap (ρ =

√
X2 + Y 2).

In the considered limit, n2G/B → 0, the energetically
uppermost electronic adiabatic potential energy surface
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is the only non-degenerate one. The electronic state that
corresponds to the uppermost surface is (in the rotated
frame of reference) the circular one whose angular mo-
mentum projection quantum number ml = l = n − 1 is
maximal within the given n-manifold. Hence, the trap
frequency experienced in this surface exceeds the one of
a ground state atom by a factor n − 1. This entails ex-
tremely large transversal trap frequencies for the external
motion such that the extension of the center of mass wave
function can become even smaller than the extension of
the electronic cloud of the Rydberg atom [29]. Since the
uppermost surface additionally suffers from the smallest
non-adiabatic couplings and due to its non-degeneracy,
it is best suited for a controlled confinement.

In the derivation of Eq. (11) we neglected the finite
size term Hγ since it only involves relative coordinates
and therefore constitutes to first order solely a constant
energy offset to the surfaces. Because of the coupling of
the relative and the center of mass motion, however, its
contribution to the electronic energy and the electronic
wave function will ultimately depend on the center of
mass coordinates. The resultant admixture of other hy-
drogenic states to the circular state entails a non-zero
permanent electric dipole moment outside the trap cen-
ter, which will be discussed below. The corresponding
energy surface itself, on the other hand, hardly shows
any deformation even for large magnetic field gradients.

C. Electric dipole moments

Let us proceed by studying the expectation value of
the electric dipole moment of the Rydberg state in the
uppermost adiabatic energy surface. A non-zero dipole
moment arises from parity symmetry breaking terms in
the Hamiltonian. The only such term in the working
Hamiltonian (7) is the finite-size term Hγ , whose im-
plicit R-dependence will eventually entail a spatially de-
pendent dipole moment. In the following, we pursue a
perturbative treatment of Hγ that gives rise to an ex-
plicit expression of the resulting dipole moment. To this
end, the off-diagonal matrix elements of the perturbation
operator Hγ ∼ G need to be much smaller than the corre-
sponding unperturbed energy level spacings ∆E ∼ |B|.
This yields the requirement B/G � n2 which is easily
satisfied for typical Ioffe field strengths.

The perturbative treatment is detailed in Appendix A.
It results in the expression for the permanent electric

dipole moment

dγ(R) =λχ
[
− cosα sinβ cosβ

 cosβ
0

sinβ


− sinα cosα(1 + sin2 β)

 sinα sinβ
cosα

− sinα cosβ

]

=
λχ

|B|3

 Bx(2B2
y +B2

z )
−By(2B2

x +B2
z )

(−B2
x +B2

y)Bz

 ∼ n4 G

|B|
, (13)

where χ := 9n2(2n2− 3n−
√

4n2 − 10n+ 6 + 1)/(8∆E),
λ = G/3, and ∆E ≈ |B|/2 is the energetic gap between
the uppermost surfaces at the trap center. As can be de-
duced from Eq. (13), the electric dipole moment is per-
pendicular to the local direction of the magnetic field,
dγ ·B = 0. It vanishes on the Z-axis.

Further control of the electric dipole moment, both re-
garding the magnitude as well as the steric properties,
can be gained by applying an additional electric field. In
the following, we thus consider a modified Ioffe-Pritchard
trap with an additional electric field F = (Fx, 0, 0) point-
ing in the x-direction as in Ref. [28]. The latter can be
treated perturbatively as long as Fx � B/n. The elab-
oration of the perturbative treatment (presented in Ap-
pendix A) shows that the energetic contribution of the
electric field Hamiltonian is of second order,

λ2F ε
(2,Fx) =

9

4

F 2
x

∆E
n2(n− 1)(cosβ2 + sinα2 sinβ2), (14)

where λF = |F|/|B|. For vanishing Q and with the
approximate expression for the energetic separation be-
tween the coupling surfaces, ∆E ≈ |B|/2, this simplifies
to

λ2F ε
(2,Fx) ≈ 9

4
F 2
xn

2(n− 1)
B2 +G2Y 2

B2 +G2Y 2 +G2X2
. (15)

The perturbative contribution to the uppermost surface
due to an external electric field is thus positive and it is
maximal on the Z axis. For small atomic displacements
|R| � B/G, it can be considered a mere offset to the
uppermost surface.

The electric field induces an electric dipole moment

dF =
9

4

Fx
∆E

n2(n− 1)
1

B2

 B2
y +B2

z

−BxBy
−BxBz

 ∼ n3 Fx
|B|

, (16)

that depends on the ratio of the field strengths, as ex-
pected, and on the cubed principal quantum number.
Surprisingly, however, only on the Z-axis it points along
the direction of the generating electric field. Similar to
dγ , dF is in general perpendicular to the local quanti-
zation axis, which is set by the magnetic field direction,
i.e., dF · B = dγ · B = 0. In addition, dγ and dF are
perpendicular to each other on the Y -axis; on the posi-
tive X-axis they are parallel while being anti-parallel on
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the negative X-axis. These properties only apply as long
as the perturbative treatment is applicable. Our numer-
ical results show that the dipole moment aligns with the
electric field for a larger electric field strength.

Analyzing the symmetry properties of the combined
electric dipole moment d = dγ + dF reveals that even in
case of a longitudinal confinement an approximate sym-
metry in Z remains, d(X,Y, Z) ≈ −d(X,Y,−Z). Much
stronger than the Z-dependence of the electric dipole mo-
ment is its dependence on the transversal coordinates X
and Y . If no electric field is present, the relevant electric
dipole moment is dγ , generated by the finite size term
Hγ . The symmetry properties of its components in the
XY -plane read dγx

dγy
dγz

 (X,Y ) =

 ±dγx∓dγy
dγz

 (±X,∓Y )

=

 −dγx−dγy
dγz

 (−X,−Y ). (17)

We have furthermore dγ,z(X,Y ) = −dγ,z(±Y,±X) and
dγ,x(X,Y ) = dγ,y(Y,X). The dipole moment induced by
the external electric field, dF , exhibits different symme-
tries, dFx

dFy
dFz

 (X,Y ) =

 +dFx
−dFy
±dFz

 (±X,∓Y )

=

 +dFx
+dFy
−dFz

 (−X,−Y ) . (18)

The sum of the contributions is therefore only symmetric
with respect to a reflection about the X-axis (Y → −Y ):

d =

dxdy
dz

 (X,Y ) =

 dx
−dy
dz

 (X,−Y ) . (19)

This can be seen in Fig. 1 where the components and
the absolute value of d are depicted. The parameters
are chosen such that dγ and dF are of the same order
of magnitude. Already for moderate electric fields, how-
ever, dγ is a mere perturbation to d and the symme-
try properties of d are approximately those of dF , cf.
Eq. (18). We note that the correct procedure in the com-
bined magneto-electric trap is to consider the perturba-
tion operator consisting of the sum of the electric field
term HF and the finite size term Hγ , rather than adding
up the dipole moments dγ and dF generated by the in-
dividual contributions. However, as elucidated in Ap-
pendix A, the latter approach is exact in first order. We
found very good agreement of the perturbatively com-
puted expectation values for d with the numerically cal-
culated values, both for vanishing as well as for (small)
finite electric field strengths.

III. INTERACTION-INDUCED
STABILIZATION

In this section, we extend our studies by considering
two Rydberg atoms A and B that are trapped in a Ioffe-
Pritchard trap and that interact via their electric dipole
moments. The adiabatic Schrödinger equation for the
two-atom center of mass wave function, |ΨAB〉, for this
situation reads[

TA + TB + VA(RA) + VB(RB)

+ Vint(RA,RB)
]
|ΨAB〉 = E|ΨAB〉 , (20)

where Vint contains the interaction energy that depends
on the positions of both atoms. The one-atom potential
for the atoms A and B, VA(R) = VB(R), can be approx-
imated for high-Ioffe-configurations by the analytically
diagonalized term (10). The interaction potential Vint
will be discussed in detail in subsection III A. Because
of the strong transversal confinement in the considered
Ioffe-Pritchard trap, we restrict our considerations in a
first step to the Z-axis in subsection III B. In this simpli-
fied geometry we analytically find a stable configuration
of the atoms in which their distance is easily tunable
without affecting neither stability nor trap frequencies.
In subsection III C we extend our considerations to three
dimensions and dwell on the question of stability. The
last subsection is dedicated to experimental implementa-
tions suggesting different ways of realizing the system.

A. Rydberg-Rydberg interaction

The interaction energy Vint of two Rydberg atoms –
each modeled by a core and an electron – can be formu-
lated using the electric dipole moments of the individual
atoms as long as the inter-atomic distance is large com-
pared to the distance of the electrons to their respective
cores. To this end, we write the Coulomb interaction
between the charges of the different atoms,

Vint(rA, rB ,RAB)

e2/4πε0
=

1

|RAB |
− 1

|RAB − rB |

− 1

|RAB + rA|
+

1

|RAB − (rB − rA)|
, (21)

as a multipole expansion in the small parameter λint =
〈rA,B〉/RAB . Here, we abbreviated the vector connecting
the ionic cores byRAB := RA−RB and rA/B denotes the
electronic relative vectors with respect to the cores A,B.
Due to the neutrality of the interacting constituents, the
only non-vanishing term up to third order in the expan-
sion of Vint is the dipole-dipole term Vdd. If we abbre-
viate the projections of the electronic coordinates onto
the vector connecting the cores as rPi := ri · R̂AB and

rPAB := (rA − rB) · R̂AB = rPA − rPB , R̂AB = RAB/RAB ,
the multipole terms up to fourth order in the expansion
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FIG. 1. (color online) Components dx, dy, dz and absolute value |d| (from left to right) of the electric dipole moment d at
Z = 0. The only symmetry that survives when a small electric field is present is the symmetry with respect to the X-axis,
see Eq. 19. Parameters: B = 0.1 G, G = 10 Tm−1, F = 10−14 a.u.= 5.14 · 10−5Vcm−1. Electric dipole moments are given in
atomic units ea0 = 2.54 Debye.

of the interaction potential,

Vint(rA, rB ,RAB) = Vdd + Vdq +O(λ5int), (22)

can be rewritten as follows:

VddR
3
AB

e2/4πε0
=
(
rA · rB − 3rPAr

P
B

)
,

VdqR
4
AB

e2/4πε0
=

3

2

(
r2Br

P
A − r2ArPB + (5rPBr

P
A − 2rA · rB)rPAB

)
≈ 3

2

(
(r2 + 5rPBr

P
A − 2rA · rB)rPAB

)
. (23)

The last line in (23) holds if r2A ≈ r2B , e.g., for two circular
Rydberg atoms in the same n-manifold. In this case the
dipole-quadrupole interaction Vdq vanishes if rPAB van-
ishes, that is when the electric dipole moment expecta-
tion values for both atoms are identical.

If the interaction operator Vint is treated as a pertur-
bation to the electronic Hamiltonians of the individual
Rydberg atoms, HA and HB , it is favorable to repre-
sent Vint in single-atom electronic eigenstates. We hence
use the two-electron basis {|ϕAi ;ϕBj 〉} ≡ {|ij〉}, where i
and j number the single-atom adiabatic electronic wave
functions in the rotated frame of reference:

(HA +HB)|ϕAi ;ϕBj 〉 = (Ei + Ej)|ϕAi ;ϕBj 〉 . (24)

Note that we omitted the antisymmetrization of the two
electrons, which is valid in the asymptotic region we are
considering where the electrons are well localized at the
respective Rydberg atoms. The leading order of Vint is
given by the dipole-dipole interaction operator which can
be represented in the above basis as

R3
AB〈i′j′|Vdd|ij〉
e2/4πε0

= 〈i′|r|i〉 · 〈j′|r|j〉 − 3〈i′|rPA |i〉〈j′|rPB |j〉

= di′i(RA) · dj′j(RB)− 3dPi′i(RA,RAB)dPj′j(RB ,RAB),

(25)

where dPij := 〈i|r|j〉 · R̂AB . For configurations

close to the Z-axis, i.e., when R̂AB ≈ (0, 0, 1), the

last term can be approximately written involving the
z-components of the electric dipole moments only,
dPi′i(RA,RAB)dPj′j(RB ,RAB) ≈ di′i,z(RA)dj′j,z(RB).

For finite interaction between the atoms, the two-atom
basis states |ij〉 are no longer eigenstates of the sys-
tem. Looking at the state where both atoms are circular,
|ψc;ψc〉 = |11〉, the only non-vanishing transition dipole
matrix elements are

〈11|Vdd|33〉 =
9

4

n2(n− 1)

R3
AB

. (26)

where |3〉 denotes the state with l = ml = n − 2 in the
rotated frame of reference. This coupling is small as long
as

〈11|Vdd|33〉 � δ ⇔ RAB � n

(
9

4|B|

)1/3

= Rc (27)

where δ ≈ |B| is the energetic separation of the surfaces.
For the parameters B = 10 G and n = 30 this yields
RAB � 1.3 µm, which allows us to use the form (25) in
first order in the following, i.e., only considering diagonal
elements.

B. One-dimensional stable configuration

A Ioffe-Pritchard trap can provide an extremely strong
confinement for Rydberg atoms in the transversal, i.e.,
XY -direction [29]. We now want to take advantage of
this peculiarity in order to restrict the study of the total
potential Vtot := VA+VB +Vdd to the Z-axis. In Section
III C we investigate the requirements on the magnetic
field parameters to guarantee that this simplification is
permitted. There we find that for large enough gradi-
ents G this is always the case since they entail strong
transversal confinement. To simplify the situation even
further we impose an external electric field pointing in
the X-direction that keeps the atoms away from each
other and prevents autoionization [28]. As before, the
following discussion focuses on the uppermost potential
surface, emanating from the circular state.
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Small oscillations of generalized coordinates

In order to study the one-dimensional configuration we
set the coordinates X and Y to zero and assume Q to be
non-zero and positive which generates the confining po-
tential in the Z-direction. Please note that in this case
rPi ≡ ri · R̂AB = zi in Eq. (23), since the atomic sep-
aration vector coincides with the Z-axis. We calculate
the expectation value of the electric dipole moment of
the single-atom eigenstate |ψc〉 via Eq. (25). Addition-
ally inserting the trapping potential Eq. (12), naming the
atoms such that ZA > ZB , and omitting the constant po-
tential offset 2nB, the two-atom potential represented in
the single-atom electronic eigenfunctions reads (again in
the rotated frame of reference; 4πε0/e

2 = 1 a.u.)

V
|ψc〉
tot (ZA, ZB) := 〈ψc, ψc|Vtot(ZA, ZB)|ψc, ψc〉

=2nQ(Z2
A + Z2

B)

+
81F 2

xn
4(n− 1)2

4(B + 2QZ2
A)(|ZA − ZB |)3(B + 2QZ2

B)
. (28)

Utilizing generalized coordinates for the distance of the
atoms and for their center of mass, ZD = ZA − ZB > 0
and ZS = (ZA + ZB)/2, respectively, the total potential
(28) translates to

V
|ψc〉
tot (ZD, ZS) ≈ 81

4
n4(n−1)2

F 2
x

B2

1

Z3
D

+nQ
(
Z2
D + 4Z2

S

)
.

(29)
Here we approximated B + 2QZ2

A,B ≈ B, which is valid
as long as

|ZS |+ ZD/2�
√
B/(2Q) . (30)

The first term in Eq. (29) is the approximate version
of the dipole-dipole interaction operator. It only depends
on the distance of the atoms. Higher order terms orig-
inate in the quadratic Z-dependence of the interacting
electric dipole moments. They become significant only
for very large Z or exceptionally strong parameters Q
reachable on atoms chips. The coordinate for the cen-
ter of mass of both atoms, ZS , appears as the quadratic
shift 4nQZ2

S . An equilibrium configuration of the atoms
is therefore bound to be symmetric around the origin, i.e.,
ZS = 0. Minimizing the energy of the two-atom poten-
tial within this approximation, we find the equilibrium
position at

ZS,min = 0 ,

ZD,min = 3 5

√
F 2
x (n− 1)2n3

8B2Q
≈ 3

23/5
n 5

√
F 2
x

B2Q
. (31)

The expression for the equilibrium distance, ZD,min, can
hence be readily controlled by the electric field strength
Fx. The condition of validity of our approximation (30)
at the equilibrium position (31) reads

cD :=
3

2
5
√
F 2
x (n− 1)2n3

10

√
Q3

2B9
≈ 3n

2

10

√
F 4
xQ

3

2B9
� 1 .

(32)

TABLE I. Explicit values for cD, Eq. (32), which measures
the quality of the approximation (30) at the equilibrium po-
sition (31). The values are computed for the geometry pa-

rameter Q̃ = 6 × 10−16 which is around the highest values
reachable with macroscopic Ioffe-Pritchard traps [31]. The re-
striction cD � 1 is violated only for very low Ioffe fields paired
with electric fields that would ionize the Rydberg atoms.
(10−11 a.u.= 5.142 206 32 V/cm).

F 10−12 a.u. 10−11 a.u. 10−10 a.u.

B = 0.1 G 0.0297 0.0747 0.1877

B = 1 G 0.0075 0.0188 0.0471

B = 10 G 0.0019 0.0047 0.0118

B = 100 G 0.0005 0.0012 0.0030

See Tab. I for explicit values.
Since we are interested in the motion of the system

around a stable equilibrium configuration, we expand
the potential in a Taylor series around that equilibrium
and solve the corresponding classical eigenvalue problem.
The resulting frequency for the center of mass and rela-
tive motion read in the harmonic approximation

ω2
D =

20nQ

2M
, ω2

S =
4nQ

2M
, (33)

where 2M is the total mass of the system. It is worth
noting that within the approximation (30) the eigenfre-
quencies are independent of the electric field strength Fx.
They indirectly depend on the Ioffe field strength since
Q = BQ̃.

Tuning the distance of the atoms

The fact that the equilibrium distance ZD,min of the
atoms, Eq. (31), can be increased without changing
the trap frequency by just increasing the electric field
strength F is depicted in Fig. 2(a). The two-atom poten-
tial and its harmonic expansion around the equilibrium
position are drawn for different electric field strengths.
In subfigure 2(b) a magnified view of the minimum is
provided, demonstrating the validity of the harmonic ap-
proximation. The figure shows that we can safely assume
the center of mass ground state to be a Gaussian with
the corresponding trap frequency ωD. Subfigure 2(c)
in addition shows expansion coefficients of the potential
around the equilibrium position (computed without as-
suming the approximation (32) to be valid). It is evi-
dent from the plot that the harmonic description of the
potential around the equilibrium position is a good ap-
proximation for small Ioffe field strengths. Therefore,
not only the trap frequency but also the center of mass
ground state remains the same for different values of ZD.
To give a numerical example, the variation of the trap
frequency ωD does not exceed 10−3 for a Ioffe field of 1
Gauss as long as the electric field strength is smaller than
F ≈ 2.3 V/cm.
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FIG. 2. (color online) (a) Two-atom potential energy,
Eq. (28) (solid), the harmonic approximation (dotted) and
the 1D ground state energy along ZD for ZS = 0 and dif-
ferent electric field strengths F . Parameters: B = 10 G,
Q = 6 × 10−16B, n = 30, F = 0.0514 V/cm (black),
0.257 V/cm (blue/gray), 0.514 V/cm (yellow/light gray). (b,
c) Quality of the harmonic approximation for the first set
of parameters. Subfigure (b) depicts the harmonic approxi-
mation (dotted) of the two-atom potential Vtot,circ (solid) in
a region around the local minimum (filled: Gaussian). The
double-logarithmic plot in subfigure (c) shows the quadratic
(dotted), cubic (dashed) and the quartic (dot-dashed) coeffi-
cient of the expansion of the potential around the equilibrium
position as a function of the Ioffe field strength.

Quadrupole-quadrupole repulsion

In this subsection we study the influence of higher or-
der multipole interactions and answer the question in
which situations they can change the behavior of the sys-
tem. We do this on the Z-axis for vanishing electric field
and consider – as throughout the present work – the cir-
cular Rydberg state.

When no electric field is present, circular Rydberg
atoms located on the Z-axis of a Ioffe-Pritchard trap do
not exhibit a permanent electric dipole moment. They
are hence neither subject to dipole-dipole interaction nor
to dipole-quadrupole interaction. Since the circular elec-
tronic wave function is not spherically symmetric, they
feature a quadrupole moment, however. This is a first-
order effect and the repulsive quadrupole-quadrupole in-
teraction is hence the leading order of the interaction
potential. For the special configuration we are consider-
ing, it can be calculated using the simplified expression

[32]

Vqq =
3

4Z5
D

[
r2Ar

2
B − 5(z2Ar

2
B + r2Az

2
B)− 15z2Az

2
B

+ 2(xAxB + yAyB − 4zAzB)2
]
. (34)

With the matrix elements 〈ψc|r2|ψc〉 = 1
4n

2(n+1)(n+ 1
2 ),

〈ψc|x2|ψc〉 = 〈ψc|y2|ψc〉 = 1
2n

3(n + 1), and 〈ψc|z2|ψc〉 =
1
2n

2(n+ 1), we find

Vqq =
1

Z5
D

3

2
n4(n+ 1)2(n+

1

2
)2 ≈ 1

Z5
D

3

2
n8 . (35)

For low enough center of mass kinetic energy, the re-
pulsion of the atoms due to the quadrupole-quadrupole
interaction could in principle stabilize Rydberg atoms on
the Z-axis against auto-ionization. We must not forget,
however, that the van-der-Waals coupling as a second
order contribution to the multipole interaction can be of
similar strength for low enough distances in the consid-
ered parameter regime.

The situation changes completely when an electric field
is applied. The induced dipole moments scale linearly
with the field strength and the dipole-dipole interaction
then depends quadratically on F . From the first term in
Eq. (29) its magnitude can be estimated to be

Vdd,Z-axis ≈
1

Z3
D

(
9

2
n3
F

B

)2

. (36)

The dipole-quadrupole interaction happens to be zero on
the Z-axis even for finite electric field strength. In or-
der for the dipole-dipole interaction, |Vdd| ∼ |d|2/Z3

D, to
dominate the quadrupole-quadrupole interaction, |Vqq| ∼
3
2n

8/Z5
D, the condition∣∣∣Vdd

Vqq

∣∣∣ =
27

2

(
ZDF

nB

)2

� 1⇔ ZD �
1

3

√
2

3
n
B

F
(37)

must be fulfilled. For a Ioffe field strength B = 10 G and
an electric field strength as low as F = 10−12 a.u. (and
n = 30) this reads ZD � 35000 a.u.= 1.7µm. Increas-
ing the electric field strength to F = 2 × 10−11 a.u. al-
ready yields ZD � 1700 a.u.= 90 nm. For the examples
above it is therefore legitimate to neglect the quadrupole-
quadrupole interaction. Around the equilibrium config-
uration ZD,min of the atoms, Eq. (31), condition (37) is
even easier to fulfill.

C. Three-dimensional stable configuration and
collapse

Very strong transversal confinement leads to the one-
dimensional situation discussed in the preceding Chap-
ter III B. Since the magnetic field gradient G only influ-
ences the transversal but not the longitudinal confine-
ment, the respective trap frequencies can be altered in-
dependently. If the transversal confinement is decreased
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FIG. 3. (color online) Sections through the six-dimensional two-atom potential around the local minimum. The ZD-coordinate
of the minimum is indicated by the vertical lines. The thick black contours are plotted at the energy of the two-atom harmonic
center of mass ground state which corresponds to half the sum of all six trap frequencies, E0 = 26 kHz. The contour plots are
clipped at energies 125 kHz higher than the minimal energy configuration. The dashed and dotted lines in the plots on the left
hand side indicate the quality of the single-atom-surfaces-approximation introduced in Sec. III A. They are drawn where the
ratio of dipole-dipole interaction energy and energetic distance of adjacent single-atom electronic surfaces, Edd/∆E, equals 0.1
(dotted) and 0.01 (dashed). Parameters: B = 30 G, G = 10 Tm−1, Q = 6× 10−16B, F = 2× 10−11 a.u.= 10.28 V/m, n = 30.

and/or if the longitudinal confinement is increased the
local minimum of the potential mentioned above turns
into a saddle point: The tendency of the dipole-dipole
interaction to force the atoms to step out of the Z-axis
wins against the confining nature of the transversal mag-
netic field gradient. The atoms then attract each other
and most probably eventually ionize. These statements
are substantiated and refined in the following.

The two-atom interaction potential exhibits an approx-
imate longitudinal symmetry as can be justified on ac-
count of the smallness of Q̃ = Q/B. More precisely,

the conditions 2Q̃Z2 � 1 [Eq. (30)] and 4Q̃|Z| � G/B
have to be met. Then, the dipole-dipole interaction Vdd
between two atoms in the circular state exhibits a depen-
dency on ZS that is negligibly small. The confinement
due to the Ioffe-Pritchard magnetic field configuration,
on the other hand, is harmonic around the origin in all
directions. Within the range of validity of the above ap-
proximations, we can thus conclude that minimizing the
total energy of the two atoms always leads to a symmet-
ric configuration, ZS = 0. We therefore set ZS = 0 for
the following analysis.

In order to characterize the six-dimensional adiabatic
two-atom potential around the local stable minimum we
first keep a strong transversal confinement which is quan-
tified by the trap frequencies in X- and Y -direction. For
a single atom in a Ioffe-Pritchard trap and for finite Q
they read

ω2
X =

2n

M

G2 − 2Q(B + 2GZ)

B + 2QZ2
,

ω2
Y =

2n

M

G2 − 2Q(B − 2GZ)

B + 2QZ2
. (38)

Corrections due to the dipole-dipole interaction energy
when two atoms are considered are proportional to
n3

M
F
BZ
−5/2
D for a dominating Ioffe field.

In what follows, let us investigate the exemplary pa-
rameter set B = 30 G, G = 10 Tm−1, Q = 6 × 10−16B,
F = 2×10−11 a.u., and n = 30. All the inequalities, that
have been formulated up to now in order to measure the
quality of the applied approximations, hold with a con-
fidence factor of at least 102. The only exception is the
quality of the perturbative approach to determine the
electric dipole moment. The corresponding requirement
explicitly reads nFx/B = 0.047 � 1 for the chosen pa-
rameters which is still satisfactory.

Diagonalizing the Hesse matrix [∂2Vtot/(∂Ri∂Rj)] at
the local minimum position of the total, i.e., two-atom
potential and extracting the trap frequencies along the
principal axes from the eigenvalues and its eigenvectors,
respectively, yields

11.1kHz, (YA = YB),

11.1kHz, (XA = XB),

10.7kHz, (YA = −YB),

9.7kHz, (XA = −XB),

5.0kHz, (ZD),

4.5kHz, (ZS), (39)

where the equations in brackets define the directions of
the principal axis. It is convenient to introduce appro-
priate generalized coordinates for all three spatial dimen-
sions, namely, RD = RA −RB and RS = 1

2 (RA +RB).
Sections of the total potential around its minimum are
shown in Fig. 3.
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The trap frequencies in (39) have to be compared to
the radiative lifetime of the interacting atoms. The field-
free lifetime of the electronic state corresponding to the

uppermost surface is τ(n, n − 1) ≈ 3
2c2

(
n
α

)5
= 2.3 ms

[33]. Even the reduction of the lifetime due to admix-
tures to the pure circular state originating from the fi-
nite size term and due to the coupling to the electric
field leaves it close to the field-free value [28]. We hence
expect more than 10 oscillations of the atomic motion to
be observable within the lifetime of the Rydberg state.
Since ω2 ∼ nQ = nBQ̃ the trap frequencies ω can ob-
viously be increased by the choice of a larger principal
quantum number n, with higher Ioffe field strengths B
and by allowing for a stronger longitudinal confinement.
The latter can be achieved by shrinking the trap onto
an atom chip [34]. We emphasize that the stable two-
atom configuration is not immediately lost when one of
the atoms decays to the circular state of the adjacent
n-manifold since the electronic properties of that state
are very similar and, therefore, so are the electric dipole
moment and the adiabatic surface.

Loss of confinement and collapse

We now study mechanisms that endanger the stabil-
ity of the equilibrium position on the Z-axis when the
transversal confinement is relaxed. We identify two sit-
uations in which this happens. One of them is the loss
of the confining property of the Ioffe-Pritchard field con-
figuration for a single atom for large ratios B/G. Fur-
thermore, the stability of the equilibrium configuration is
also lost as soon as the transversal confinement becomes
smaller than the transversal anti-confinement due to the
dipole-dipole interaction.

Regarding the first mechanism, the transversal mag-
netic confinement for a single atom is only guaranteed as
long as the respective curvature is positive. This yields
the restriction

G2

B2
> 2Q̃ (1 + 4

G

B
|Z|) . (40)

In order for this condition to be broken at the origin of
the trap, the ratio G/B must be extremely small since
the highest reachable values for the geometry parameter
Q̃ in macroscopic Ioffe-Pritchard traps are around 10−15

(we use Q̃ = 6 × 10−16 for all presented examples [31]).
For large enough displacements in Z-direction, however,
the condition can always be broken. To give a sense of
the numbers, we insert the exemplary parameter set B =
10 G, G = 2 Tm−1 and Q̃ = 6 × 10−16 to find that the
displacement |Z| must be as large 2×107 a.u. = 1 mm to
break the condition (40). We do not consider such large
atomic distances from the trap center for any example.

The second reason for the loss of the stable equilibrium
configuration on the Z-axis is the dipole-dipole interac-
tion between the two atoms. Besides being the interac-
tion of longest range between neutral atoms, the major

FIG. 4. (color online) Spatial dependence of the direction of
the electric dipole moments dγ and dF (for Q = 0). (a) The
electric dipole moment dγ that originates from the finite size
of the Rydberg atom. It is perpendicular to the local magnetic
magnetic field direction (yellow arrows) and it vanishes on the
Z-axis. On the positive (negative) X-axis it is parallel (anti-
parallel) to the electric dipole moment dF that is induced
by the electric field and depicted in the subfigure (b). (c)
Orientation of dF with respect to the vector RAB connecting
the interacting atoms A and B when they are displaced in
the same X-direction, XS 6= 0 (solid line), or in different X-
directions, XD 6= 0, (dashed lines).

property of the dipole-dipole interaction is its anisotropic
character. This comes into play when the atoms can
step out of the Z-axis and the angles between the elec-
tric dipole moments and the connecting vector change
(Fig. 4).

Polarized case: In order to simplify our considera-
tions let us first assume that the external electric field
F = (Fx, 0, 0) fully polarizes the atoms. This happens
for relatively large electric field strengths as discussed
in App. A 2. Then all dipole moments point in the X-
direction. For the sake of clarity we now additionally
assume that the magnitude of the dipole moments does
not depend on the position of the atom in the trap. Then
a displacement of both atoms A and B from the Z-axis
in the same direction, XS 6= 0 and/or YS 6= 0, does not
change the interaction energy since the angle θ between
the two dipoles does not change. The angle also stays
the same for a displacement of the atoms in opposite Y -
directions, YD 6= 0. Here the interaction energy decreases
only slightly due to the increase of the distance RAB
of the atoms. A displacement of the atoms in opposite
X-directions, XD 6= 0, however, changes θ and thereby
decreases the interaction strength considerably. For a de-
creasing transversal confinement we therefore expect the
stable configuration to collapse by a displacement of the
atoms in opposite X-directions in the polarized case.

Tilted moments: The reasoning above is based on the
assumption that the atoms are polarized, meaning that
their dipole moments point in the direction of the electric
field independent of the position of the atom. This is an
oversimplification in case of Rydberg atoms in a strongly
confining magnetic field configuration. In Section II C
it has been shown that the application of a moderate
electric field induces a dipole moment dF that is per-
pendicular to the local direction of the magnetic field.
In the Y -Z-plane dF points in the X-direction (we ne-
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glect here marginal dependences on Q). For finite X, by
contrast, it has a finite Z-component, see App. A 2. We
thus concentrate once more on displacements in X and
set YS = XD = 0 in the following. The non-polarized
case is illustrated in Fig. 4.

In case of a displacement of the atoms in opposite di-
rections, XD > 0, the dipole moments of the two atoms
include different angles with their connecting axis. They
differ from the angles in the fully polarized case, θP , by
the additional tilt due to the local magnetic field direc-
tion, ±∆θ. The interaction energy no longer depends
on 1 − cos2(θP ) but on 1 − cos(θP + ∆θ) cos(θP − ∆θ)
which is smaller than the former for 0 ≤ θP ±∆θ ≤ π/2.
For electric dipole moments perpendicular to the local
magnetic field axis, as considered here, the reduction of
the dipole-dipole interaction energy for displacements in
XD is therefore smaller than in the fully polarized case
discussed above. The curvature in that direction is thus
expected to be still positive for shallower transversal con-
finements.

Symmetric displacements of the atoms in the same X
direction, XS 6= 0, do not change the dipole-dipole inter-
action energy in the fully polarized case as stated above.
For tilted dipole moments, however, the energy is reduced
since the moments are no longer perpendicular to their
connecting axis. This can be seen from the illustration in
Fig. 4. The additional angle due to the orientation of the
moments perpendicular to the local magnetic field axis
(for Q = 0) explicitly reads

∆θ = arctan

(
G

B
X

)
. (41)

The effects due to ∆θ described above are therefore weak
for typical parameter sets since for typical parameters the
ratio G/B is small. A strong effect on the dipole-dipole
interaction energy is expected for large ratios G/B. In
this case, however, the transversal confinement is strong
and the curvature in X-direction is positive on the Z-axis
nonetheless.

In order to verify the predictions above on how the sta-
bility of the equilibrium configuration of the atoms gets
lost, and the predictions for the configuration the atoms
take when they step out of the Z-axis, we minimize the
total two-atom potential for the coordinates XS , XD, YS
and YD for fixed symmetric displacements of the atoms
in Z, ZD > 0 and ZS = 0. As discussed above we expect
the atoms to align on the Z-axis as long as the transver-
sal confinement dominates the interaction. When the
longitudinal confinement increases and/or the transver-
sal confinement decreases, the atoms are expected to step
out of the Z-axis in different X-directions, i.e., XD 6= 0,
XS = YD = YS = 0, since the negative transversal gradi-
ent at the equilibrium position due to the dipole-dipole
interaction is largest in the XD-direction. This change
of the atoms’ configuration is depicted in Fig. 5 where
we show the computed XD positions that yield minimal
energy for fixed distances ZD as black dots into the two-
dimensional section through the two-atom potential for

different parameter sets (left plots). The series of plots
in Fig. 5 shows the loss of the local minimum position for
relaxing transversal confinement due to decreasing field
gradients G (from top to bottom). The vertical lines indi-
cate the position of the equilibrium configuration on the
Z-axis. The bar graphs on the right hand side show the
minimal potential energy of the two atoms depending on
the atomic distance in Z-direction, ZD (we still assume
symmetric displacements in Z, i.e., ZS = 0). As long as
the equilibrium position on the Z-axis is a local potential
minimum, the minimal energy concordantly exhibits an
energetic barrier towards smaller distances of the atoms.
The peak of this energetic barrier is located at one of the
two saddle points of the potential that are located sym-
metrically with respect to the longitudinal axis. When
the local potential minimum is lost, these saddle points
collapse into a single saddle point at the equilibrium po-
sition on the Z-axis where the local minimum simultane-
ously vanishes. This can be seen in the series of plots on
the left hand side. The energy plots on the right hand
side show that the energetic barrier also simultaneously
vanishes.

We find the minimal values of the potential energy at
positions for which XS is two orders of magnitude smaller
than XD, but nonzero. This is due to the permanent elec-
tric dipole moments dγ for vanishing electric field, which
in turn are a signature of the finite size of Rydberg atoms.
The origin of these moments dγ is described in App. A 1
and their properties in the X-Z-plane are depicted in the
left subfigure of Fig. 4. The illustration shows that they
point in the same direction as the electric dipole moments
induced by the electric field (dF , middle plot) for positive
displacements of the atoms in X. They are anti-parallel
for negative X and they vanish on the Z-axis. Since dγ
is significantly smaller than dF for all considered electric
fields in this chapter, dγ can be considered a correction
to dF and their sum d is parallel to dF but larger or
smaller in magnitude than dF for positive or negative X,
respectively. This introduces an asymmetry in XS and
XD into the dipole-dipole interaction energy and is hence
responsible for the nonzero values of XS for the position
of minimal potential energy. This asymmetry is also re-
sponsible for the negative values of XD for the positions
of minimal potential energy shown in Figs. 5.

The stability of the equilibrium configuration is insen-
sitive to changes in the electric field strength. The same
is true for the transversal part of the center of mass wave
function of the atoms. We also note that changing the
principal quantum number n has no considerable effect
on the stability of the equilibrium position as long as the
requirements involving n can be met. The stability of
the equilibrium configuration of the two atoms hence de-
pends essentially on the magnetic field parameters B, G
and Q but not significantly on F and n.

In order to find an analytical stability condition involv-
ing the magnetic field parameters we examine the curva-
ture of the potential in XD-direction at the equilibrium
position. For small ratios G/B (which is the case when
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FIG. 5. (color online) Loss of the local minimum for decreasing magnetic field gradient G of the Ioffe-Pritchard trap. (a-c)
Two-dimensional sections of the six-dimensional two-atom potential through the XD-ZD plane, XS = YS = YD = ZS = 0.
The plot range of all three contour plots is ±150 kHz. (d-f) Minimal energy of the two-atom potential against ZD. Each point
is computed minimizing the total potential for fixed ZD with the other center of mass coordinates as parameters. The XD

positions are shown as black dots in the sections on the left. Parameters: B = 10 G, Q = 6× 10−16B, F = 10−10 a.u., n = 30,
G = 3 Tm−1 [first row, (a,d)], G = 2 Tm−1 [second row, (b,e)], G = 1.5 Tm−1 [third row, (c,f)].

the system is close to collapse), and assuming F � nG,
we find the approximate expression for the curvature of
the dipole-dipole interaction energy in XD-direction(

∂2

∂X2
D

Vdd

) ∣∣∣∣
Z-axis

≈
(
Fx
B

)2
n6

Z5
D

, (42)

which strongly depends on the distance of the atoms.
Inserting the equilibrium distance ZD,min from Eq. (31),
where the dipole-dipole repulsion and the longitudinal
confinement add to zero, we find(

∂2

∂X2
D

Vdd

) ∣∣∣∣
equilibrium

≈ −6nQ . (43)

For a stable configuration this anti-confinement has to
be weaker than the transversal confinement due to the
magnetic field at the equilibrium position, yielding the
condition

G2

B2
> 14Q̃ . (44)

As soon as the right-hand side of this inequality becomes
as large as the left-hand side the two saddle points at
the potential barriers join on the Z-axis and the local
minimum is lost. Inserting the geometry parameter for
the millimeter trap in Ref. [31], Q̃ = 6 × 10−16, the
stability condition takes the explicit form G [Tm−1] >
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0.17B [Gauss].
The previously derived condition (40) is less restrictive

than (44) for all presented examples. This means that
the collapse is interaction-induced and it is not due to
the loss of magnetic confinement.

For the existence of a stable configuration of the two
atoms it does, in fact, not suffice to have a local mini-
mum on the Z-axis, i.e., to meet the requirement (44).
The potential around the local minimum must addition-
ally be deep enough to accommodate at least the two-
atom center of mass ground state. The height of the
deciding potential barrier can be increased by tighten-
ing the transversal confinement. For the exemplary pa-
rameter set B = 1 G, G = 1 Tm−1, F = 10−10 a.u.,
Q = 6 × 10−16B, the center of mass ground state en-
ergy is E0 = 13.9 kHz, and the barrier height is 2140 kHz
=̂ 51.4µK. This temperature can typically be reached in
a magneto-optical trap without further cooling.

IV. EXCITATION SCHEMES

The techniques that have been suggested and used to
excite atoms into circular Rydberg states range from the
microwave transfer method of Hulet and Kleppner [35],
the crossed-fields method proposed by Delande and Gay
[36], and the RF field method proposed by Molander et
al. [37]. The concern of this section, however, is not the
excitation of single atoms into circular states but the ex-
citation of two atoms in a Ioffe-Pritchard trap with an
additional electric field directly into the equilibrium con-
figuration that is stabilized by the dipolar interaction of
the atoms. Solutions to this complication include (i) ex-
ternally forcing the excitation to happen at the desired
positions only, or (ii) changing the single-atom potential
such that its minima coincide with the two-atom poten-
tial minimum, or even (iii) adiabatically transferring the
system to the desired state by varying the detuning of the
laser during the excitation process. A possible implemen-
tation of each of the options is described in the following.
In principle all schemes are extendable to more than two
atoms.

The only coordinates that have to be externally im-
posed are the Z-coordinates of the atoms since zero
transversal displacement minimizes the energy for both
the single-atom as well as the two-atom potential. The
cleanest way to do this is to trap individual ground
state atoms in two optical dipole traps at the desired
Z-positions. The trapping volume of such optical tweez-
ers [38] can be made small enough (less than a µm in
diameter) that only one atom can be captured in each
trap [39]. These two atoms can then be excited using
one of the methods described in Ref. [35].

Another way of forcing the Rydberg atoms to be pro-
duced at the desired Z-positions is to excite them from a
cold ground state atomic cloud by two laser beams per-
pendicular to the Z-axis that are focused next to each
other to the desired equilibrium positions of the Ryd-

berg atoms. This is possible if the equilibrium distance
is considerably larger than the waist of the focused laser
beams, which can be as small as one µm. Due to the
strong Rydberg-Rydberg interaction, which yields an en-
ergy shift within the excitation volume that is larger than
the linewidth of the laser, only one atom can be excited
within one of the laser beams. As the excitation can be
located at any of the atoms in that region, however, the
ensemble of atoms is excited collectively into a superpo-
sition state called superatom [40].

The second solution involves the modification of the
single Rydberg atom potential. This can be done by
adding an extra wire on the X-axis to the Z-trap on a
chip or, correspondingly, by adding an extra coil between
the coils of a macroscopic Ioffe-Pritchard trap that are
responsible for the Ioffe field. Both setups yield a dou-
ble well potential with a variable barrier height and a
variable distance of the potential minima. For vanishing
electric field two Rydberg atoms can be excited indepen-
dently from each other, one in the bottom of each well, by
tuning the laser just under the energy of the minimum.
In order to keep heating as low as possible, the magnetic
barrier can now be substituted by the dipolar repulsion
between the atoms by decreasing the current through the
extra coil or wire and simultaneously increasing the elec-
tric field strength.

The circularization of the Rydberg atoms with a mod-
ified adiabatic rapid passage method [41], for example,
can be completed within 5µs. The timescale of changing
the magnetic field strongly depends on the configuration.
If it is small enough, the described excitation scheme is
scalable to produce more than two excitations, i.e., a Ry-
dberg atom chain. This can be done by applying a mag-
netic field gradient in Z-direction which tilts the trap
and moves the stable Rydberg atom pair in Z-direction.
The magnetic barrier can be ramped up again as to con-
fine the pair in one of the wells. At the minimum of the
other well an additional circular Rydberg atom can be
produced. The two atoms in the first well mutually tune
themselves out of resonance of the exciting laser due to
their interaction. By ramping the magnetic barrier up
and down, and exciting a Rydberg atom in the empty
well every time as described, a stable chain of atoms can
be produced in the trap. The procedure is restricted
by the timescales of excitation, magnetic field switching
and by the lifetime of the circular Rydberg atoms which
is about 2 ms for n = 30 in the field-free case and scales
with n5.

With both schemes mentioned above, the atoms are ex-
cited into single-atom potential minima whose positions
have to match the minimum of the two-atom potential
that includes the interaction. Instead of artificially creat-
ing single-atom potential minima outside the origin, one
can adiabatically transfer a cloud of ground state atoms
from the state with no excitation via the state with one
excited atom at the origin to the stable equilibrium state
for two atoms relying on the structuring effect of the
dipole-dipole repulsion. The electric field must thus be
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switched on at the beginning of the procedure.
The idea is based on the dynamical crystallization ap-

proach of Pohl et al. [42]. The starting point is a cold
gas of ground state atoms that can be modeled as con-
sisting of two-level systems. The two levels considered
in Ref. [42] are the ground and the low angular momen-
tum nS1/2 Rydberg state. Here, of course, we need the
excited level to be the circular Rydberg state, which can
be achieved by utilizing the rf-optical excitation tech-
nique described by Cheng et al. [43]. Within the dynam-
ical crystallization scheme, the coupling laser is detuned
against the two-photon resonance. For large negative
detunings the many-body ground state in the rotating
frame of reference coincides with the initial state where
all atoms are in the ground state. Increasing the detun-
ings to positive values effectively lowers the energy levels
of many-body states with one and two and more exci-
tations. They cross at critical detunings ∆0

1, ∆1
2, . . . ,

and states with 1, 2 and more Rydberg atoms are pop-
ulated. The detuning is hence a control parameter that
decreases the energy difference of adjacent number states
|0〉, |1〉, |2〉,. . . with zero, one, two. . . excitations, respec-
tively [44]. Since the laser couples the different number
states, their energies undergo avoided crossings of sepa-
rations δ01 , δ12 ,. . . at the critical detunings. An adiabatic
preparation of the states |1〉, |2〉,. . . is possible as long
as the time in which the detuning of the laser changes is
large compared to 1/δ01 , 1/δ12 ,. . . .

At the first crossing the initial state |0〉, with all atoms
in the ground state, is directly coupled to the first excited
state |1〉, with one Rydberg atom at the origin, which
yields δ01 ∼ Ω. From |1〉 to |2〉, however, there is no
direct laser coupling since the energetically lowest state
with two Rydberg atoms, |2〉, is the stable equilibrium
configuration described in Sec. III B with two Rydberg
atoms symmetrically displaced from the origin. To go
from |1〉 to |2〉, two off-resonant intermediate steps are
required. First the central atom is de-excited and subse-
quently the two Rydberg atoms at their equilibrium posi-
tion are excited. A three-photon process is hence needed
to come from |1〉 to |2〉. Assuming that |1〉 and |2〉 are
resonant at time t, then the intermediate states are de-
tuned by ∆Ωi. For the parameters used in Section III B
(e.g., in Fig. 3; B = 30 G, G = 10 Tm−1, Q = 6×10−16B,
F = 2× 10−11 a.u., n = 30) all detunings ∆Ωi are of the
order of∼ 100 kHz. If the Rabi frequency is much smaller
than the intermediate state detunings ∆Ωi, then the in-
termediate states that couple |1〉 and |2〉 act as virtual
levels for a resonant multi-photon transition. For larger
Rabi frequencies, however, Ω(t) > ∆Ωi, power broad-
ening exceeds the intermediate state detunings and the
states are coupled by consecutive one photon transitions.

V. BRIEF SUMMARY

In the present work we investigated the controlled trap-
ping of two individual Rydberg atoms by means of a

magnetic Ioffe-Pritchard trap that is superimposed by a
constant electric field. The single-atom adiabatic poten-
tials for such a field configuration have been derived and
discussed. Including the interaction of the two Rydberg
atoms, analytic expressions for the equilibrium positions
of the two involved Rydberg atoms could be derived in
the regime of a strong transversal confinement. As an in-
teresting result, it turned out that the distance between
the two atoms can be easily tuned without altering the
involved trap frequencies by changing the applied elec-
tric field. Loosening the restriction of a strong transver-
sal confinement, on the other hand, leads to truly three-
dimensional potential surfaces that, in principle, allow for
the collapse of the system. The regime of stable trapping
has been identified and the resulting adiabatic potentials
were discussed. Possible routes to experimentally realize
the proposed system have been outlined.
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Appendix A: Computing electric dipole moment
expectation values perturbatively

In order to be able to base the perturbative treatment
in the uppermost surface on the circular Rydberg state,
the perturbation operator has to be rotated into the local
direction of the magnetic field.

1. Permanent electric dipole moments as finite size
effect

In the analytically diagonalizable case of high Ioffe field
the electronic state corresponding to the uppermost elec-
tronic adiabatic energy surface is the circular state with
respect to the local field direction as quantization axis.
For a finite gradient G the purely electronic finite-size
term Hγ admixes states to the circular state that have
opposite parity. The total wave function thus looses its
definite parity and the matrix elements of the odd dipole
operator er no longer vanish identically due to symmetry.
This can result in a permanent electric dipole moment.

Because the unperturbed state vector is analytically
given in the rotated system, i.e., with the local mag-
netic field axis as the quantization axis, the perturba-
tion operator has to be rotated into this local frame, too.
It is convenient to additionally replace the momentum
operator in Hγ by angular momentum operators. This
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can be done exploiting the energetic degeneracy of an n-
manifold in a field-free environment. The commutator
[xyz,HA] vanishes within an n-manifold, it is therefore
〈ϕ|xypz|ϕ〉 = 1

3 〈ϕ|(xLx − yLy)|ϕ〉, and the perturbation
operator in the transformed frame becomes

W = UHγU† = Uλ(xLx − yLy + 3xSx − 3ySy)U†

= λ{(R−1αβr)x · (R−1αβL)x − (R−1αβr)y · (R−1αβL)y

+ 3(R−1αβr)x · (R−1αβS)x − 3(R−1αβr)y · (R−1αβS)y}
=: λ cij(R, B,G,Q) ri(Lj + 3Sj) , (A1)

where λ = G/3 a.u. and Rαβ is the rotation associated

with the transformation U , cf. Eq. (9). We write R−1αβ in

Eq. (A1) instead of Rαβ to recall the fact that the com-
ponents of a vector operator transform in the rotation R
like those of a vector in the rotation R−1 [45]. Both the
coordinate vector r and the angular momentum opera-
tors L and S are vector operators.

We note that the perturbation operator, which is of
purely electronic nature in the laboratory frame, now de-
pends on the center of mass coordinates R through the
coefficients cij(R, B,G,Q) in the rotated frame.

The first order energy correction to the uppermost cir-
cular state |ψc〉 vanishes,

λε1 = 〈ψc|λcijri(Lj + 3Sj)|ψc〉 = 0 . (A2)

The first order correction in the wave function reads

|λϕ(1)
1 〉 =

∑
p 6=1

〈ϕp|λcij ri(Lj + 3Sj)|ϕ1〉
E0

1 − E0
p

|ϕp〉

=:
∑
p 6=1

Wp1

E1p
|ϕp〉 =:

∑
p 6=1

fp|ϕp〉 . (A3)

Here we introduced the abbreviations Epq = E0
p−E0

q and
Wpq = 〈ϕp|λcijri(Lj + 3Sj)|ϕq〉, and we use the symbols
|ϕ〉 = |n, l,m,ms〉 for the unperturbed hydrogenic elec-
tronic states in energetic order, starting with the circular
state constituting the uppermost surface,

|ψc〉 = |ϕ1〉 =|n, n− 1, n− 1, 1/2〉 ,
|ϕ2〉 =|n, n− 1, n− 2, 1/2〉 ,
|ϕ3〉 =|n, n− 2, n− 2, 1/2〉 ,
|ϕ4〉 =|n, n− 1, n− 3, 1/2〉 ,
|ϕ5〉 =|n, n− 2, n− 3, 1/2〉 ,
|ϕ6〉 =|n, n− 3, n− 3, 1/2〉 ,
|ϕ7〉 =|n, n− 1, n− 1,−1/2〉 ,
...

|ϕ13〉 =|n, n− 2, n− 2,−1/2〉 . (A4)

The states {|ϕ2〉, |ϕ3〉}, the states {|ϕ4〉, . . . , |ϕ7〉} and
the states {|ϕ8〉, . . . , |ϕ13〉} are energetically degenerate
in the limit B/G→∞. The quantum numbers are given
with respect to the local quantization axis which is the
direction of the magnetic field.

In order to compute the matrix elements Wp1 = Wp,ψc

defined in Eq. (A3) we rewrite the angular momentum
operators with ladder operators,

Lx|ψc〉 =
1

2
(L+ + L−)|ψc〉 =

1

2
L−|ψc〉, (A5)

Ly|ψc〉 =
1

2i
(L+ − L−)|ψc〉 = iLx|ψc〉, (A6)

where L−|l,m〉 =
√
l(l + 1)−m(m− 1) |l,m− 1〉, (~ =

1 atomic unit). The only non-vanishing matrix elements
in (A3) are

〈ϕ3
ϕ5
|cixriLx|ψc〉 =

1

2

√
2n− 3〈ϕ3

ϕ5
|cixri|ϕ2〉 , (A7)

〈ϕ3
ϕ5
|ciyriLy|ψc〉 = i

1

2

√
2n− 3〈ϕ3

ϕ5
|ciyri|ϕ2〉 , (A8)

〈ϕ3|cizriLz|ψcψ〉 = (n− 1)〈ϕ3|cizri|ψc〉 (A9)

due to the dipole selection rules ∆l = ±1, ∆ml = 0,±1,
and ∆ms = 0. We proceed similarly with the spin oper-
ators,

Sx|ms = ±1

2
〉 =

1

2
|ms = ∓1

2
〉 and (A10)

Sy|ms = ±1

2
〉 = ± i

2
|ms = ∓1

2
〉 . (A11)

The only non-vanishing matrix elements involving the
spin operators are

〈ϕ13|cixriSx|ψc〉 =
1

2
〈ϕ13|cixri|ϕ7〉 , (A12)

〈ϕ13|ciyriSy|ψc〉 =
i

2
〈ϕ13|ciyri|ϕ7〉 , (A13)

〈ϕ3|cizriSz|ψc〉 =
1

2
〈ϕ3|cizri|ψc〉 . (A14)

Considering the following relations between the dipole
matrix elements,

〈l′,m′|y|l,m〉 = ±i 〈l′,m′|x|l,m〉 for m′ =m∓ 1

〈l′,m′|y|l,m〉 = 0 = 〈l′,m′|x|l,m〉 for m′ =m

〈l′,m′|z|l,m〉 ∼ δm,m′ , (A15)

we find the first order correction to the wave function,

|λϕ(1)
1 〉=

{
(cxz + icyz)

|ϕ3〉
E13

(
(n− 1

2
)x31 +

1

2

√
2n− 3z32

)
+
|ϕ5〉
E15

(cxx − cyy + 2icxy)
1

2

√
2n− 3x52

+
|ϕ13〉
E13,5

(cxx − cyy + 2icxy)
3

2
x13,7

}
λ . (A16)

Here we introduced the notation xij = 〈ϕi|x|ϕj〉, yij =
〈ϕi|y|ϕj〉 and zij = 〈ϕi|z|ϕj〉. The following explicit ex-
pressions for the matrix elements can be deduced from
the formulas for the radial and angular integrals involving
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hydrogenic wave functions in [46],

z32 = −3

2
n , (A17)

x13 =
3

2
√

2
n
√
n− 1 , (A18)

x52 =
3

2
√

2
n
√
n− 2 , (A19)

x13,7 =
3

2
√

2
n

√
(n− 1/2)(n− 3/2)

n− 2
. (A20)

Note that the correction |λϕ(1)
1 〉 to the circular wave func-

tion |ϕ1〉 = |ψc〉 has definite parity since |ϕ3〉, |ϕ5〉 and
|ϕ13〉 have the same l quantum number. It is opposite
to the parity of |ψc〉, however. The involved coefficients
cij(R, B,G,Q), defined in Eq. (A1), come from the in-
verse rotation of r, L and S withRαβ . Expressed via the
rotation angles α and β, the coefficients read explicitly

cxx = cos2 β ,

cyx = sinα sinβ cosβ ,

czx =− cosα sinβ cosβ ,

cxy = sinα sinβ cosβ ,

cyy =(sin2 α sin2 β − cos2 α) ,

czy =− sinα cosα(1 + sin2 β) ,

ciz =− cosα sinβ cosβ ,

cyz =− sinα cosα(1 + sin2 β) ,

czz =(cos2 α sin2 β − sin2 α) , (A21)

where cij = cji. This is a general expression for the per-
turbation operator (A1). The particular magnetic field
configuration only enters via the explicit expressions for
the angles α and β. On the Z-axis (α = β = 0, U = 1)
all the coefficients but cxx = 1 and cyy = −1 vanish. The
correction to the circular state in first order reduces to

|λϕ(1)
1 〉(O) ≈λ3

2
n
√
n

(√
n
|ϕ5〉
E51

+
3√
2

|ϕ13〉
E13,5

)
(A22)

for large n. The electric dipole moment expectation value
therefore vanishes at the origin due to the dipole selection
rules as will be described in the following.

The electric dipole moment of the electronic state to
second order in perturbation theory is found by comput-
ing the expectation value of the dipole operator rotated
into the local direction of the magnetic field, U†rU , for

the perturbed state in the rotated frame, |ϕ1 + λϕ
(1)
1 〉,

dγ =〈ϕ1 + λϕ
(1)
1 |U†rU |ϕ1 + λϕ

(1)
1 〉

=〈ϕ1|U†rU |ϕ1〉+ 〈λϕ(1)
1 |U†rU |λϕ

(1)
1 〉

+ 2 Re(〈ϕ1|U†rU |λϕ(1)
1 〉) . (A23)

The second line in Eq. (A23) vanishes due to the defi-

nite parity of |ϕ1〉 and |λϕ(1)
1 〉 and the matrix element

in the third term simplifies due to the dipole selection
rules (since ∆m = 2 for 〈ϕ1|UrU†|ϕ5〉 and ∆ms = 1 for
〈ϕ1|UrU†|ϕ13〉),

〈ϕ1|U†rU |λϕ(1)
1 〉 = f3U

†〈ϕ1|r|ϕ3〉U = f3R−1αβ

 x13
−ix13

0

 ,

and it is

dγ = 2 Re

f3R−1αβ
 x13
−ix13

0


= λχR−1αβ

cxzcyz
0

 , (A24)

where χ := 9n2(2n2 − 3n−
√

4n2 − 10n+ 6 + 1)/(8∆E)
and λ = G/3. We can find the explicit spatial depen-
dence of the electric dipole moment by expressing the
angles α and β with the magnetic field components Bi,
to find the expression (13). For a Ioffe-Pritchard mag-
netic field configuration, dγ vanishes on the Z-axis be-
cause the magnetic field components Bx and By are zero
there. It is convenient for the symmetry analysis to also
write down the explicit form of dγ for Q = 0,

dγ(Q = 0) = λχ
G3

|B|3

 X
(
2Y 2 +B2/G2

)
Y
(
2X2 +B2/G2

)(
Y 2 −X2

)
(B/G)

 . (A25)

As can be deduced from Eq. (A24), the electric dipole
moment expectation value is perpendicular to the local
direction of the magnetic field,

dγ ·B ∼ R−1αβ

 cxz
cyz
0

 ·B = 0 . (A26)

2. Non-parallel moments in an electric field

The Hamiltonian for the additional external electric
field is HF = qφ = (xFx+yFy+zFz) since F = −grad φ
and q = −e (= −1 in atomic units). According to the
considerations in the preceding chapter the perturbation
operator therefore reads

WF = U(r · F )U† = UrU† · F =: cF,ijFirj , (A27)

where the small parameter in the operator WF is the
modulus of the electric field, λF = |F |. Consider-
ing the Zeeman term dependence, µB ∼ |B|, the per-
turbation parameter is the ratio of the field strengths,
λF = |F |/|B|.

The first order energy correction due to WF vanishes
due to the dipole selection rules since ∆l = 0,

λF ε
(1,F ) = 〈ψc|cF,ijFirj |ψc〉 = 0 . (A28)
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The first order correction to the circular state is

|λFϕ(1,F )
1 〉 =

∑
p 6=1

〈ϕp|cF,ijFirj |ϕ1〉
E0

1 − E0
p

|ϕp〉

=:
∑
p 6=1

WF,p1

E1p
|ϕp〉 =

WF,31

E13
|ϕ3〉 , (A29)

where we introduced WF,pq = 〈ϕp|cF,ijFirj |ϕq〉 and
Epq = E0

p − E0
q . For an electric field in arbitrary di-

rection the numerator in (A29) reads

WF,31 = ex31[Fx(cF,xx + icF,xy)

+ FyicF,yy + Fz(cF,zx + icF,zy)] (A30)

and if we restrict our consideration to an electric field
pointing along the X-axis we find

|λFϕ(1,Fx)
1 〉 = ex13Fx(cF,xx + icF,xy)

|ϕ3〉
E13

, (A31)

where cF,xx = cosβ and cF,xy = sinα sinβ.

The second order energy correction due to the external
electric field reads

λ2F ε
(2,Fx) =Fx〈ϕ1 + λFϕ

(1,Fx)
1 |cF,xjrj |ϕ1 + λFϕ

(1,Fx)
1 〉

=2Re
(
Fx〈ϕ1|cF,xjrj |λFϕ(1,Fx)

1 〉
)

=2
eF 2

x

E13
x213(c2F,xx + c2F,xy)

=
9

4

F 2
x

E13
n2(n− 1)(cosβ2 + sinα2 sinβ2) .

(A32)

For vanishing Q and with the approximate expression for
the energetic separation between the coupling surfaces,
E13 := ∆E ≈ |B|/2, this reads

λ2F ε
(2,Fx) ≈ 9

4
F 2
xn

2(n− 1)
B2 +G2Y 2

B2 +G2Y 2 +G2X2
. (A33)

The perturbative contribution to the uppermost surface
due to an external electric field (Fx, 0, 0) is thus positive
and it is maximal on the z axis.

Both the unperturbed wave function |ϕ1〉 as well as

the perturbation |λFϕ(1,Fx)
1 〉 have definite parity. The

electric dipole moment expectation value in the upper-
most electronic energy surface is therefore, analogously

to (A23),

dF = 2Re
(
〈ϕ1|U†rU |λFϕ(1,Fx)

1 〉
)

=R−1αβ(2x31
Fx
E13

Re(cF,x

 x13
−ıx13

0

+ cF,y

 ıx13
x13
0

))

=
2Fx
E13

x213R−1αβ

 cF,x
cF,y

0


=

2eF

E13
x213(cosβ

 cosβ

0

sinβ

+ sinα sinβ

 sinα sinβ

cosα

− sinα cosβ

)

=
9

4

Fx
E13

n2(n− 1)
1

B2

 B2
y +B2

z

−BxBy
−BxBz

 , (A34)

where we use cF,x = cosβ, cF,y = sinα sinβ, x13 =
3

2
√
2
n
√
n, and the relation (A15). In contrast to dγ , dF

does not vanish on the Z-axis but points in the direction
of the electric field with dF,x = 4x213Fx/|B|. This is not
true away from the Z-axis. The dipole moment does not
point in the electric field direction there but stays rather
perpendicular to the local direction of the magnetic field
[alike dγ , Eq. (A26)]. This can be deduced from the
directional dependence in (A34) for arbitrary magnetic
field configurations,

dF ·B ∼

 B2
y +B2

z

−BxBy
−BxBz

 ·B = 0 . (A35)

3. Addition of perturbatively calculated dipole
moments

For a non-zero external electric field the perturbation
operator is Wtot = UHγU† + UHFU† and the total
first order correction to the wave function hence reads
|λ1〉 = |λγ1〉γ + |λF 1〉F . The calculation of the expec-

tation value of the observable Ô in the perturbed state
|ψc + λ1〉 yields accordingly

〈ψc + λ1|Ô|ψc + λ1〉
= Ôγ + ÔF + 2Re(〈λγ1γ |Ô|λF 1F 〉) . (A36)

The perturbations |λγ1〉γ and |λF 1〉F , Eqs. (A16) and
(A29), involve the states |ϕ3〉, |ϕ5〉, |ϕ13〉 which do not
differ in their angular momentum quantum number l.
They have the same definite parity since the parity of
the spherical harmonics does not depend on the quantum
number m. The mixed matrix element 〈λγ1γ |d|λF 1F 〉
therefore vanishes (the dipole operator is an odd opera-
tor) and

d = 〈ψc + λ1|r|ψc + λ1〉 = dγ + dF . (A37)
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In other words, within first order perturbation theory,
adding the different dipole moment expectation values

dγ and dF is equivalent to calculating the expectation
value for the combined perturbed state vector.
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Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Phys. Rev.
Lett. 93, 063001 (2004).

[4] T. Cubel Liebisch, A. Reinhard, P. R. Berman, and
G. Raithel, Phys. Rev. Lett. 95, 253002 (2005).

[5] T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat,
and P. Pillet, Phys. Rev. Lett. 99, 073002 (2007).

[6] C. S. E. van Ditzhuijzen, A. F. Koenderink, J. V.
Hernández, F. Robicheaux, L. D. Noordam, and H. B.
van Linden van den Heuvell, Phys. Rev. Lett. 100,
243201 (2008).

[7] R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher,
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