Beltrami-like fields created by baroclinic effect in two-fluid plasmas
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A theory of two-dimensional plasma evolution with Beltrami-like flow and field due to baroclinic
effect has been presented. Particular solution of the nonlinear two-fluid equations is obtained. This
simple model can explain the generation of magnetic field without assuming the presence of a seed
in the system. Coupled field and flow naturally grow together. The theory has been applied to
estimate B-field in laser-induced plasmas and the result is in good agreement with experimental
values. ©2004 American Institute of Physid®Ol: 10.1063/1.1793173

The baroclinic effect, represented by the teinxX VT  =Mc/(eB,), respectively. Assuming quasineutralifg; = ng
(n represents density, andthe temperatupein the magne- =n) and singly charged ions, we have
toplasma equatiorfs‘,4 plays a key role in generating mag- .
netic fields and coupled flows in inhomogeneous plasmas. J=n(vi=ve. ()
Quantitative estimates of the magnetic field generatiorwe, thus, may write/,=v;—(j/n). For simplicity, we assume
proves the effectiveness of this mechanism in laser-irradiatethat the plasma is incompressible, i€.,v;=0 (j=e,i).
targets. In these pioneering works, however, the self- Denotingy= In nin Eq. (1) and taking the curl of Egs.
consistency of the flow and magnetic fields was not seriously?2) and(3), the system of equations reads
addressed, because finding exact solutions to the determining :
nonlinear system of equations is generally rather difficult. dp+ V- (viyh) =0, 5)
In this Brief Communication, we present rather simple,
but nontrivial solutions to the nonlinear equations of two-
fluid magnetohydrodynamics. We generalize the Beltrami
conditiong with incorporating the baroclinic term, and de- (B +VX V)= VX[vi X (B+V X V)]= V¢ X VT,
rive a set of linear equations that give exact and self- (7)
consistent solutions to the full system of the nonlinear equa-

: : o . . The reason for taking curl of Eq§2) and (3) becomes
tions. The model predicts that density inhomogeneity set i ear from Eqs(6) and(7) where the sources for the plasma

per_per_ldlcular tgmperature gradient yields a growing Ma% 5w and magnetic field become the baroclinic terms on the
netic field and simultaneous shear flow. . .
right hand sides.

We assume a time scale that is much longer than the We consider a two-dimensional geometry where the den-

. . . _l .
electron _plas_ma oscillation t'me”l?e)’ and We ignore the sities and temperatures vary in thg plane. We can express
electron inertia effect. The governing equatlons'sare : : ’
the vector fields in Clebsch forms:

dB+VX{BX[vi—(jIm}== VX VT, (6)

any+V-(vin) =0 (j=e]), 1) vi= V¢ Xz+ugz, (8)
\Y =
GA - (Ve X B)=— Vb + e, ®) B=Vxxztoz, ©
Ne where the four scalar field$, u;, x, andw are assumed to
be independent d. In the later calculations, we will assume
A +V) -V X (B+V X V) =-V (cp + }v,z) _ E thatu; and y, as well asy andT,; (j=i ,e),_are constant with
2 n respect ta, while ¢ and w may be function of.
(3) The continuity equationg), with d,4=0, are satisfied, if
{¢,4}=0, (10)

where n;(ny) is the ion (electron density, v;(ve) is the ion
(eIectroQ flow velocity (normalized to the Alfvén speegh  where{o, ¢} = @dyih—dxpdyip.

=By/V47Mn;), B is the magnetic field normalized to a rep- Our aim is to find certain relations among physical quan-
resentative valueéBg), pi(pe) is the ion (electror) pressure tities using Egs(8) and (9) in Egs.(6) and (7) which can
(normalized to the magnetic pressiBg 4m), andA and®  generate the coupled flow and field corresponding to given
are the four potentials of the electromagnetic fields. Theprofiles of densities and temperatures. In our opinion, the
space and time are normalized to the ion skin depth baroclinic vectors can couple with the helicities of both mag-
:c/wpi:\,cM/(4TrniOe2) and the ion cyclotron timewgil netic field lines and streamlines in such a way that the non-

(10)
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linear terms vanish in Eqg6) and (7). Then we can find {x,(Ay)In}=0. (23

exact solutions of the complicated nonlinear partial differen- . ) .
tial equations for given structures of densities and temperalVith the previous Beltrami condition8.0), (15), and(18),

tures. For such an analysis we decompose the vector equi® find that the right hand side of E2) vanishes. The

tion (7) into its three components. electron momentum equatig2) now reads
The x andy components of the ion equatigi) give (w)z2==V g X V Te=={Te, h}2, (24)
Glx+u) +{g,(x+u)}=0, (1) which yields

while thez component of Eq(7) yields 0=—t{Ts Y. (25)
do=A¢) +[{},(w—Ad)} +{u,(x + )} =—{¢, Ti}. Let us derive an exact solution to the determining equa-

(12)  tions. Takingg™w(¢)=N\¢ (\ is a real constant Eq. (21)

B . L . simplifies as a linear Possion equation:
The so-called “Beltrami” conditions simplify nonlinear

vortex dynamics systems significantly, while the essential Vé=-\¢. (26)
flow-vorticity coupling in the system is well highlighted in

. The inhomogeneous term, representing the baroclinic ef-
an analytically tractable form. We assume

fect, must be carefully chosen to obtain a set of self-
B=g(V X V), (13) consistent fields. Comparing Eq4.0), (20), (25), and(26),

) ) . we find thatT; and ¢» must satisfy a relation
whereg is a constant number. Using the representati@s

and(9) in Eq. (13), we find {Tvhyt=0 (j=ei).
w=-gAd, (14) Let us assume the temperatures to be given as
T.=by (j=i,e), (27)
X=9u. (15) b _
and the densitycommon for ions and electronas
We assume
=C ex x)sin(uyy) (j=i,e), (28)
A= =0, (16) 4 iy ©2y)
. where b;,C,uq, and u, are arbitrary constants. The corre-
Then, Eq.(11) holds, if sponding baroclinic term becomes
{gu=0, @7 {Tj 0} =bjuaC expluasin(uzy)  (j=1.€).
because Eq.(15 warrants {¢,u}=0. Under the fourth Equations(20) and(25) yield, respectively,
Beltrami-like condition ( ) 29
w=(1+gbuy Xt 29
{$.0}=0, (18) -
the generalized vortex equatioh?) reduces to ==Dbeup X t. (30)
dw—A¢) ={T,, 4} (199  The consistency demands
Integrating Eq(19) with respect ta, we obtain growinge (1+g)b; = - be. (31)
andw. Let us assume, for simplicity, thatandT; are inde- Equation(26) is satisfied with\ =u2- u2, and
pendent oft. Using Eq.(14), we can integrate Eq19) to
obtain d=abjupXt, (32)
(g+ 1) tw=t{T;, y}. (200  Wherea is a constant. The conditiof10) is also satisfied.

o ) . . The simplest solution to the conditige, u;} =0 [see Eq.
Now the determining equations for the ion-related flelds(lm is given by, with a constarit,

are summarized as follows: Equatigi¥), together with Eq.

(18), reads as a Poisson equation, U; = Ugabj ey . (33
-Ap=gl(¢), (21)  Then, Eq.(15) gives
which must be consistent to Eq4.0) and(20). The remain- X = gUoabiug . (34)

iqg scaler fields; andy are governed by the Beltrami con- The above example of self-consistent fields may capture

ditions (15 and(17). _ the essential characteristics of structures that stem from in-

_ Let us preceed tp f(_)rmulate_the electron Beltrami rela’homogeneous plasmas. Let us compare the solution with

tions. Using the continuity equatiqd0), we observe some examples of magnetic field and flow generations in

X laser-irradiated targets. In the experimértand computer

z (22 simulation studieb magnetic fields of the order of mega

Gauss have been found to be produced in laser-induced plas-

Here we assume mas.

n

V X (ve X B) = [{x,ui}+{w,¢}+ {X.A



Let x be the vertical direction with respect to the surface We are predicting long-lived nonlinear structures that
of the pellet. We assume that the density has an exponentialay stem in inhomogeneous plasmas. The instabilities of
decay inx, as well as inhomogeneity ip, modeled by Eq. some ambient inhomogeneous plas(tiee stationary fields
(28). We also assume that the temperature has gradients in the model may create magnetic fields and flows with
the negativey direction. To write the solution in physical specific forms due to the baroclinic terWiyx VT;. The
units, we seb,=T/Ly, u;=1/L,, andC=n, whereT.is in  solution grows(not exponentially, but in proportion to)
eV, andL; andL, are electron temperature and density in-from “zero,” satisfying the nonlinear evolution equations ex-
homogeneity scale lengths, respectively. Equatid®) in  actly. Since the evolution equations are fully nonlinear con-

physical units can be written as sisting only second-order terms, and because the initial con-
ditions may be zero, the solution is “stable” against small
0= CTe sin(uoy)exp(ugX) X t. (35) perturbation of the initial conditions. However, the behavior
elsl, of the solution may change drastically, if we modify the am-
The magnetic field and the flow have the following pro- Pient fields. It seems rather difficult to find other configura-
files: tions where such a simple long-lived nonlinear structure may
develop. When the created magnetic fileds and flows drive
tPu, exp(uqX)cos uoy) the system into turbulence and mess up the baroclinic term,
v = | — tPuy explugX)sin(ugy) |, (36) no significant structures may be created.

This theoretical model has been applied to the laser-
produced plasmas. The plasma ablates from the target sur-
face when the laser pulse reaches it. The density increases in

UoP explugx)sin(uzy)

9UoP explu1X)cos 1Y) the direction perpendicular to the surface. The temperatures
B =| — gUousP explusX)sin(uzy) |, (37)  decrease away from the central laser hot spot on the plane of
tQ expluyX)sin(uoy) the target. Then, a magnetic field is generated inzttgec-
tion at every point due t¥ »X VT; which can circulate the
whereP=ab;x;C andQ=cT/(eL,Ly). laser beam axis. In this simple model the collisions have

Let us examine the magnitudes of the maggetic_sfield angeen ignored. Recently numerical simulation results based
the flow. We use experimental parameters 10°2cm™, Te  on collisional approach for the generation of magnetic field

~1keV,Ly=L,=L~0.005 Cm’_"i‘”d:'-nlcs (the ion sound i |aser-induced plasmas have also been presénted.
speedc,=3x 10" cm/seg. For w,i =7.6X 10 sec, we es-

timate the length scala;=2.3X10*cm, and hence\;/L One of us(H.S) thanks the University of Tokyo where
~0.4. Then, we obtaincT,/(eL;L,)=~10° G which is good this research started during his visit. The authors acknowl-
agreement with observed values. edge the Abdus Salam ICTP where this research was com-
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