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A theory of two-dimensional plasma evolution with Beltrami-like flow and field due to baroclinic
effect has been presented. Particular solution of the nonlinear two-fluid equations is obtained. This
simple model can explain the generation of magnetic field without assuming the presence of a seed
in the system. Coupled field and flow naturally grow together. The theory has been applied to
estimate B-field in laser-induced plasmas and the result is in good agreement with experimental
values. ©2004 American Institute of Physics. [DOI: 10.1063/1.1793173]

The baroclinic effect, represented by the term=n3 =T
(n represents density, andT the temperature) in the magne-
toplasma equations,1–4 plays a key role in generating mag-
netic fields and coupled flows in inhomogeneous plasmas.
Quantitative estimates of the magnetic field generation
proves the effectiveness of this mechanism in laser-irradiated
targets. In these pioneering works, however, the self-
consistency of the flow and magnetic fields was not seriously
addressed, because finding exact solutions to the determining
nonlinear system of equations is generally rather difficult.

In this Brief Communication, we present rather simple,
but nontrivial solutions to the nonlinear equations of two-
fluid magnetohydrodynamics. We generalize the Beltrami
conditions5 with incorporating the baroclinic term, and de-
rive a set of linear equations that give exact and self-
consistent solutions to the full system of the nonlinear equa-
tions. The model predicts that density inhomogeneity set in
perpendicular temperature gradient yields a growing mag-
netic field and simultaneous shear flow.

We assume a time scale that is much longer than the
electron plasma oscillation timesvpe

−1d, and we ignore the
electron inertia effect. The governing equations are5
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where nisned is the ion (electron) density,visved is the ion
(electron) flow velocity (normalized to the Alfvén speedvA

=B0/Î4pMni), B is the magnetic field normalized to a rep-
resentative valueB0), pisped is the ion (electron) pressure
(normalized to the magnetic pressureB0

2/4p), andA andF
are the four potentials of the electromagnetic fields. The
space and time are normalized to the ion skin depthli

=c/vpi=ÎcM / s4pni0e
2d and the ion cyclotron timevci

−1

=Mc/ seB0d, respectively. Assuming quasineutralitysni <ne

<nd and singly charged ions, we have

j = nsvi − ved. s4d

We, thus, may writeve=vi −sj /nd. For simplicity, we assume
that the plasma is incompressible, i.e.,= ·v j =0 s j =e, id.

Denotingc= ln n in Eq. (1) and taking the curl of Eqs.
(2) and (3), the system of equations reads

]tc + = · sv jcd = 0, s5d

]tB + = 3 hB 3 fvi − sj /ndgj = − = c 3 = Te, s6d

]tsB + = 3 vid − = 3 fvi 3 sB + = 3 vidg = = c 3 = Ti .

s7d

The reason for taking curl of Eqs.(2) and (3) becomes
clear from Eqs.(6) and(7) where the sources for the plasma
flow and magnetic field become the baroclinic terms on the
right hand sides.

We consider a two-dimensional geometry where the den-
sities and temperatures vary in thex-y plane. We can express
the vector fields in Clebsch forms:

vi = = f 3 z + uiz, s8d

B = = x 3 z + vz, s9d

where the four scalar fieldsf , ui , x, andv are assumed to
be independent ofz. In the later calculations, we will assume
that ui andx, as well asc andTj s j = i ,ed, are constant with
respect tot, while f andv may be function oft.

The continuity equations(5), with ]tc=0, are satisfied, if

hf,cj = 0, s10d

wherehw ,cj=]yw]xc−]xw]yc.
Our aim is to find certain relations among physical quan-

tities using Eqs.(8) and (9) in Eqs. (6) and (7) which can
generate the coupled flow and field corresponding to given
profiles of densities and temperatures. In our opinion, the
baroclinic vectors can couple with the helicities of both mag-
netic field lines and streamlines in such a way that the non-

(10)
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linear terms vanish in Eqs.(6) and (7). Then we can find
exact solutions of the complicated nonlinear partial differen-
tial equations for given structures of densities and tempera-
tures. For such an analysis we decompose the vector equa-
tion (7) into its three components.

The x andy components of the ion equation(7) give

]isx + uid + hf,sx + uidj = 0, s11d

while thez component of Eq.(7) yields

]tsv − Dfd + fhf,sv − Dfdj + hui,sx + uidjg = − hc,Tij.

s12d

The so-called “Beltrami” conditions simplify nonlinear
vortex dynamics systems significantly, while the essential
flow-vorticity coupling in the system is well highlighted in
an analytically tractable form. We assume

B = gs= 3 vid, s13d

whereg is a constant number. Using the representations(8)
and (9) in Eq. (13), we find

v = − gDf, s14d

x = gui . s15d

We assume

]tx = ]tui = 0. s16d

Then, Eq.(11) holds, if

hf,uij = 0, s17d

because Eq.(15) warrants hf ,uij=0. Under the fourth
Beltrami-like condition

hf,vj = 0, s18d

the generalized vortex equation(12) reduces to

]tsv − Dfd = hTi,cj. s19d

Integrating Eq.(19) with respect tot, we obtain growingf
andv. Let us assume, for simplicity, thatc andTi are inde-
pendent oft. Using Eq.(14), we can integrate Eq.(19) to
obtain

sg + 1d−1v = thTi,cj. s20d

Now the determining equations for the ion-related fields
are summarized as follows: Equation(14), together with Eq.
(18), reads as a Poisson equation,

− Df = g−1vsfd, s21d

which must be consistent to Eqs.(10) and(20). The remain-
ing scaler fieldsui andx are governed by the Beltrami con-
ditions (15) and (17).

Let us preceed to formulate the electron Beltrami rela-
tions. Using the continuity equation(10), we observe

= 3 sve 3 Bd = Fhx,uij + hv,fj + Hx,
Dx

n
JGz. s22d

Here we assume

hx,sDxd/nj = 0. s23d

With the previous Beltrami conditions(10), (15), and (18),
we find that the right hand side of Eq.(22) vanishes. The
electron momentum equation(2) now reads

s]tvdz = −= ce 3 = Te = − hTe,cjz, s24d

which yields

v = − thTe,cj. s25d

Let us derive an exact solution to the determining equa-
tions. Takingg−1vsfd=lf (l is a real constant), Eq. (21)
simplifies as a linear Possion equation:

=f = − lf. s26d

The inhomogeneous term, representing the baroclinic ef-
fect, must be carefully chosen to obtain a set of self-
consistent fields. Comparing Eqs.(10), (20), (25), and (26),
we find thatTj andc must satisfy a relation

hhTj,cj,cj = 0 s j = e,id.

Let us assume the temperatures to be given as

Tj = bjy s j = i,ed, s27d

and the density(common for ions and electrons) as

c = C expsm1 xdsinsm2yd s j = i,ed, s28d

where bi ,C,m1 and m2 are arbitrary constants. The corre-
sponding baroclinic term becomes

hTj,cj = bjm1C expsm1xdsinsm2yd s j = i,ed.

Equations(20) and (25) yield, respectively,

v = s1 + gdbim1c 3 t s29d

=− bem1c 3 t. s30d

The consistency demands

s1 + gdbi = − be. s31d

Equation(26) is satisfied withl=m2
2−m1

2, and

f = abim1c 3 t, s32d

wherea is a constant. The condition(10) is also satisfied.
The simplest solution to the conditionhf ,uij=0 [see Eq.

(17)] is given by, with a constantU0,

ui = U0abim1c. s33d

Then, Eq.(15) gives

x = gU0abim1c. s34d

The above example of self-consistent fields may capture
the essential characteristics of structures that stem from in-
homogeneous plasmas. Let us compare the solution with
some examples of magnetic field and flow generations in
laser-irradiated targets. In the experiments6,7 and computer
simulation studies8 magnetic fields of the order of mega
Gauss have been found to be produced in laser-induced plas-
mas.



Let x be the vertical direction with respect to the surface
of the pellet. We assume that the density has an exponential
decay inx, as well as inhomogeneity iny, modeled by Eq.
(28). We also assume that the temperature has gradients in
the negativey direction. To write the solution in physical
units, we setbe=Te/LT, m1=1/Ln, andC=n, whereTe is in
eV, andLT and Ln are electron temperature and density in-
homogeneity scale lengths, respectively. Equation(32) in
physical units can be written as

v =
cTe

eLTLn
sinsm2ydexpsm1xd 3 t. s35d

The magnetic field and the flow have the following pro-
files:

vi = 1 tPm2 expsm1xdcossm2yd
− tPm1 expsm1xdsinsm2yd
U0P expsm1xdsinsm2yd

2 , s36d

B = 1 gU0P expsm1xdcossm2yd
− gU0m1P expsm1xdsinsm2yd

tQ expsm1xdsinsm2yd
2 , s37d

whereP=abimiC andQ=cTe/ seLnLTd.
Let us examine the magnitudes of the magnetic field and

the flow. We use experimental parametersn<1022 cm−3,Te

<1 keV,LT<Ln=L<0.005 cm, andt=Ln/cs (the ion sound
speedcs=33107 cm/sec). For vpi

−1<7.6310−15 sec, we es-
timate the length scaleli =2.3310−4 cm, and henceli /L
<0.4. Then, we obtaintcTe/ seLTLnd<106 G which is good
agreement with observed values.6

In summary, we have derived a simple but interesting
solution of nonlinear two-fluid plasma equations that cap-
tures some essential characteristics of the coupled flow mag-
netic fields generated by the baroclinic effect. The self-
consistent fields are separated into growing and ambient
(static) parts, and each part has different geometric
characters—the toroidal(longitudinal) magnetic fieldv and
the poloidal flowf grow simultaneously, while the poloidal
magnetic field and toroidal flow are static. This is a natural
consequence of the “canonical vorticity”(curl of the canoni-
cal momentum) defined in Eqs.(6) and (7). The baroclinic
term is contravariant, which may couple only with the co-
nonical vorticity consisting ofv andDf. As a consequence
of the “vorticity generation” due to the baroclinic effect, the
helicities(twists) of both magnetic field lines and streamlines
change gradually through the amplification, but they go dif-
ferently.

We are predicting long-lived nonlinear structures that
may stem in inhomogeneous plasmas. The instabilities of
some ambient inhomogeneous plasma(the stationary fields
in the model) may create magnetic fields and flows with
specific forms due to the baroclinic term=c3 =Tj. The
solution grows(not exponentially, but in proportion tot)
from “zero,” satisfying the nonlinear evolution equations ex-
actly. Since the evolution equations are fully nonlinear con-
sisting only second-order terms, and because the initial con-
ditions may be zero, the solution is “stable” against small
perturbation of the initial conditions. However, the behavior
of the solution may change drastically, if we modify the am-
bient fields. It seems rather difficult to find other configura-
tions where such a simple long-lived nonlinear structure may
develop. When the created magnetic fileds and flows drive
the system into turbulence and mess up the baroclinic term,
no significant structures may be created.

This theoretical model has been applied to the laser-
produced plasmas. The plasma ablates from the target sur-
face when the laser pulse reaches it. The density increases in
the direction perpendicular to the surface. The temperatures
decrease away from the central laser hot spot on the plane of
the target. Then, a magnetic field is generated in thez direc-
tion at every point due to=c3 =Tj which can circulate the
laser beam axis. In this simple model the collisions have
been ignored. Recently numerical simulation results based
on collisional approach for the generation of magnetic field
in laser-induced plasmas have also been presented.9
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