中国有色金属学报

中国有色金属学报(英文版)

、 论文摘要

中国有色金属学报

ZHONGGUO YOUSEJINSHUXUEBAO XUEBAO

第11卷 第3期 (总第42期)

2001年6月

[PDF全文下载] [全文在线阅读]

文章编号: 1004-0609(2001)03-0362-05

稀土大块状非晶/纳米晶双相NdFeA1的制备与性能测量

邵元智, 蓝 图, 林光明

(中山大学 物理系凝聚态物理研究所, 广州 510275)

要: 用铜模急冷法制得直径达8 mm的棒状稀土NdFeAI样品,X射线衍射、扫描电镜(SEM)和差热扫描(DSC)分析表明制备样品主要为大 量非晶加少量纳米晶。测得起始晶化温度(T_{x})和熔点(T_{m})分别为743 K和823 K, ΔT_{m} =80 K, T_{rx} =0.90。极小的 ΔT_{m} 和高的 T_{rx} 是具有良好非 晶形成能力的主要原因。磁热重分析测量得到该非晶材料的居里温度点为525 K。通过控制大块状非晶样品的热处理工艺可得到不同纳米晶比例 的非晶/纳米晶双相材料。振动样品磁强计测量结果表明,当晶相比例约为40%时,材料的硬磁性最差。

关键字: 急冷法; 非晶/纳米晶; 稀土; 磁性

Investigation on bulk rare-earth Nd-Fe-Al amorphous/nano-crystalline alloy

SHAO Yuan-zhi, LAN Tu, LIN Guang-ming

(Institute of Condensed Matter Physics, Department of Physics, Zhongshan University, Guangzhou 510275, P.R.China)

Abstract: Cylindrical ingots of bulk amorphous Nd₇₀Fe₂₀Al₁₀ with a diameter of 8 mm were prepared by a copper mold casting method. It was proved that as-prepared samples are mainly consisted of amorphous phase by measurement of X-ray diffraction, observation of scanning electronic microscopy and analysis of differential scanning calorie. The onset crystallization temperature (T_x) and the melting temperature (T_m) of the samples were measured to be 743 K and 823 K, respectively. The temperature interval between $T_{\rm x}$ and $T_{\rm m}(\Delta T_{\rm m})$ is as small as 80 K and the resulting reduced ratio of $T_{\rm x}/T_{\rm m}$ is as high as 0.90. The extremely high $T_{\rm x}/T_{\rm m}$ and the small $\Delta T_{\rm m}$ values are assumed to be the reason for the achievement of the large glass-forming ability. The Curie temperature (T_c) of these samples was determined to be 525 K by magnto-thermal gravity analysis, which is higher than the highest T_c of binary Nd-Fe amorphous alloys. Dual phase alloys of different nanocrystalline volume fraction were obtained by means of various annealing treatments to the as-prepared samples. The magnetic measurement indicated that the hard magnetic behaviour of the dual phase samples deteriorates most at the volume fraction about 40%, which has predicted in our previous theoretical computation.

Key words: solidification; rare-earth; amorphous/nano-crystalline alloy; magnetism

版权所有: 《中国有色金属学报》编辑部 湘ICP备09001153号

地 址:湖南省长沙市岳麓山中南大学内 邮编: 410083

电话: 0731-88876765, 88877197, 88830410 传真: 0731-88877197

电子邮箱: f-ysxb@mail.csu.edu.cn