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No process in nature can perfectly clone an arbitrary quantum state. But is it possible

to engineer processes that replicate quantum information with vanishingly small

error? Here we demonstrate the possibility of probabilistic super-replication

phenomena where N equally prepared quantum clocks are transformed into a much

larger number of M nearly perfect replicas, with an error that rapidly vanishes

whenever M is small compared with N . The quadratic replication rate is the ultimate

limit imposed by quantum mechanics to the proliferation of information and is

fundamentally linked with the Heisenberg limit of quantum metrology.

No physical process can copy arbitrary quantum states on demand ; if such a process

existed, we could build a device that distinguishes quantum states with arbitrary

precision, violating the uncertainty principle and enabling faster-than-light

communication . Probabilistic processes like stimulated emission, however, seem to

evade this restriction. In Einstein’s treatment of stimulated emission , an excited atom

interacting with a polarized photon is expected to produce sometimes a second

photon with the same polarization, effectively delivering a perfect clone. True that

some other times the atom will spontaneously emit a photon of random polarization,

but still, when stimulated emission occurs, a perfect clone has been produced. If we

had on our side a quantum version of Maxwell demon, who separates the photons

produced by stimulated emission from those produced by spontaneous emission, we

would be able to generate any desired number of clones with a non-zero probability.

Unfortunately, our imaginary helper is not allowed by the laws of quantum mechanics,
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even with tiny probability, knowing whether or not stimulated emission took place

would lead to a violation of the no-signalling principle (incidentally, this observation

should be taken as a reminder that Einstein’s treatment is just an approximation,

whereas in the actual quantum dynamics stimulated and spontaneous emission

happen in a coherent superposition). However, nothing forbids that other probabilistic

processes, akin to spontaneous emission, could proliferate quantum information

beyond any previously conceived limit. This possibility raises new fundamental

questions: is it possible to engineer a process that duplicates a beam of N equally

prepared particles, producing a beam of 2N almost perfect clones? What is the

ultimate rate at which quantum information proliferate without significant errors?

Here we answer both questions: although it is impossible to duplicate arbitrary

quantum states, we devise a probabilistic mechanism that transforms an input beam of

N particles, equally prepared in a state =e  generated by time evolution, into an

output beam of magnified intensity, consisting of an overwhelming number M of nearly

perfect clones with a small error that vanishes rapidly whenever M is small compared

with N . We name this new phenomenon super-replication and show that it is

intrinsically probabilistic, by proving that deterministic processes can only produce a

negligible number of nearly perfect replicas. For example, for 100 linearly polarized

photons, super-replication allows one to produce 1,000 replicas with fidelity 99.9%,

whereas the best deterministic process can only achieve fidelity 57%. In addition, we

show that no physical process, deterministic or not, can proliferate quantum

information at a rate larger than quadratic; any attempt to replicate quantum

information beyond this limit is doomed to produce a joint output that has vanishing

fidelity with the desired state. To explain the roots of this fundamental limitation, we

establish a deep link between quantum cloning and the precision limits of quantum

metrology , showing that the Heisenberg limit (HL) sets the ultimate bound to

the replication rate of probabilistic processes, while the standard quantum limit (SQL)

sets the corresponding bound in the deterministic regime.

The SQL for information replication
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Optimal cloning is a fundamental primitive in quantum information . Its goal is to

transform N input copies of a quantum state , randomly drawn from a set { } ,

into M approximate copies that are as faithful as possible. The simplest figure of merit

here is the fidelity F  between the M-particle state produced by the process and M

exact copies of the desired state, evaluated on the worst-case input state. Inspired by

information theory, we now consider a sequence of cloning processes that transform N

input copies into M=M(N) approximate copies and we say that the replication is

reliable if the replication error vanishes in the limit of large N. As an error measure, we

use the infidelity e :=1−F . Here the crucial question is how large can M grow as

a function of N in a reliable replication process? To answer the question, we introduce

the notion of replication rate, saying that a replication process has rate α if the number

of extra copies scales like N . We say that a rate is achievable if there exists a sequence

of reliable replication processes with that rate. We will now see that the achievable

replication rates are determined by the precision limits of quantum metrology. Our

first key result in this direction is a SQL for quantum replication: No deterministic

process can reliably replicate a continuous set of quantum states at a rate larger than

1. In other words, deterministic processes can only embezzle from nature a negligible

number of extra copies.

The derivation of the SQL for quantum replication is based on the SQL for quantum

metrology , applied to an arbitrary curve of states {  | t∈(−ε, ε)} contained in the set

of states that we are trying to clone. A sketch of proof is as follows: the SQL states that

the variance in the estimation of t from N copies is lower bounded by , for a constant

c that can be set to c=1 with a suitable choice of parametrization. Now, suppose that

there is a sequence of reliable deterministic processes with rate α. The Nth process

will produce an M-particle output state , where M≥N+aN  for some constant a>0,

approaching the ideal target  in the large N limit. For simplicity, let us assume that

the trace distance between  and  vanishes as O(M ) for some exponent β≥1 (for

sets of states of the form , this assumption is lifted in

Supplementary Note 1). Now, if two states are close, so is the variance in the

estimation of t from these two states: for every fixed estimation strategy, we have the

bound , where  is the variance in the estimation of t from , V  is

the variance in the estimation of t from M copies and γ>0 is a suitable constant.

However, applying a deterministic transformation cannot reduce the variance of the

optimal estimation strategy, denoted by . Hence, we have the bound 
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. Choosing the best estimation strategy, we then obtain 

. Now, since the SQL is asymptotically achievable by a suitable

strategy (cf. Methods), for large N the bound becomes 1/N≤1/(N+aN )+γ(N+aN ) , up

to terms that are negligible with respect to N . Clearly, this implies α≤1 because

otherwise we would have a contradiction for large N. This establishes the SQL for

quantum replication. As a by-product of the derivation, we also have that no

deterministic process can replicate information with error vanishing faster than N .

Indeed, by Taylor expanding on the right hand side of the inequality

1/N≤1/(N+aN )+γ(N+aN ) , we obtain the condition β≤2−α, which implies β≤2. Using

the relation between fidelity and trace distance , this means that the replication error

is lower bounded as e ≥O(N ). In other words, for a reliable replication process the

error cannot vanish faster than a low-degree polynomial.

The SQL limits not only deterministic replication but also some instances of

probabilistic replication; for example, probabilistic cloning has no advantage for

arbitrary pure states (this fact was observed in  for 1-to-M cloning, but the argument

can be easily extended to N-to-M cloning). More generally, it is easy to see that if the

set of states { } has strong symmetries, probabilistic processes do not lead to any

improvement (cf. Methods). A sketch of the argument is the following: any probabilistic

process can be decomposed into the application of a filter—that transforms an input

state  into the output state  for some suitable operator

M —followed by a deterministic process. Now, if the set of states has strong

symmetries, the optimal operator M  is forced to be equal to the identity, and the

probabilistic process becomes equivalent to a deterministic one. This is the case for

cloning of arbitrary pure states , coherent states  or coherent spin states , where

the replication rates are bound to satisfy the SQL.

The HL for information replication

We now restrict our attention to the replication of states of the form , t∈, where

H=H  is a suitable Hamiltonian. We call these states clock states, as they can be

generated through a time evolution obeying the Schrödinger equation. For simplicity,

we focus on finite-dimensional quantum systems and we ignore the uninteresting case

where H is a multiple of the identity. The main result here is a HL for the probabilistic

replication of clock states. To get the result, we first establish a precision limit for

probabilistic metrology where one is allowed to take advantage of filters . Our
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strategy is to apply the quantum Cramér-Rao bound (CRB)  to the states 

 emerging from the filter. By explicit calculation (see

Supplementary Note 2), we bound the variance at a given point t as

where . This innocent-looking application of the

CRB leads immediately to a surprise: optimizing over all filters M , the right hand

side of equation (1) can be made arbitrarily small, suggesting the possibility of

unlimited precision (cf. Methods). Note, however, that to attain the equality in

equation (1), one should adapt the choice of filter to the value of t, the unknown

parameter that one is trying to estimate. In practice, this is not a realistic scenario. In

the case of periodic evolution, a more realistic setting is to have t distributed

according to a uniform prior p(t) over the period. In this case, the precision that can be

achieved on average is still limited: denoting by  the expected variance when the

particles pass the filter, in Supplementary Note 3 we prove the bound

where E  (E ) is the maximum (minimum) eigenvalue of the energy such that |ψ

has non-zero overlap with the corresponding eigenspace. We note that (E −E ) /4

is equal to the maximum of the variance of H over all possible states |ϕ  contained in

the subspace generated by the input states { }. Such maximum is achieved by the

‘NOON state’ , where |E  (|E ) is an eigenstate of H

corresponding to the eigenvalues E  (E ). Since these states are the best states for

deterministic metrology , our result implies that the best strategy for probabilistic

metrology with uniform prior consists just in using a filter that generates the NOON

state, and then applying the optimal deterministic estimation strategy. Up to a small

correction, the same result of equation (2) can be obtained when the evolution is non-

periodic, by approximating the uniform distribution with a Gaussian with large

variance (cf. Supplementary Note 4).

When N identical copies of  are available, equation (2) gives the Heisenberg scaling
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Equipped with this bound, we can now derive the HL for quantum replication; no

physical process can reliably replicate a set of clock states at a rate larger than 2. Here

is a sketch of the proof: the filter transforms the product state  into the entangled

state . For this state, equation (3) gives the bound  with c=

(E −E ) +ε (ε=0 in the case of periodic evolution). Now, suppose that there exists

a sequence of probabilistic processes with replication rate α>1, and suppose that the

Nth process in the sequence produces M≥N+aN  approximate copies, with a trace

distance from the ideal target vanishing asymptotically as O(1/M ), β≥1 (this

assumption is lifted in Supplementary Note 5). Then, the variance of the estimation

from the output state —denoted by —will be close to the variance of the

estimation from : for every t, we will have , for some constant γ

independent of t. Taking the average variance over the uniform prior p(t), we obtain the

relation , where  and V  are the averages of  and V ,

respectively. By definition, the average variance V  is lower bounded by the SQL and

the bound is attained in the large M limit by choosing a suitable measurement (cf.

Methods). Hence, by Taylor expanding the terms in M and keeping the leading order

terms, we obtain cN ≤4N +O(N ), which implies α≤2. Note that here β disappeared

from the equation as there is no upper bound on β, in principle the error can vanish

faster than any polynomial! The HL leaves lots of room for replicating quantum

information: for every rate 1<α<2, one has the chance not only to duplicate the input

copies but also to produce an overwhelming number of replicas, with an error that

vanish faster than any polynomial. In the next paragraph, we will exhibit explicit

protocols that have all these features. Our protocols are necessarily probabilistic, as a

consequence of the SQL, which constrains deterministic processes to produce a

negligible number of extra replicas.

Probabilistic super-replication

Here we show that clock states can be reliably replicated at any rate allowed by the

HL. When the rate is larger than (or equal to) 1, we call the process super-replication to

emphasize the fact that it beats the SQL. The key idea to achieve super-replication is

to devise a filter that modulates the Fourier amplitudes of the wavefunction in a way

that enhances the replication performances to the maximum rate allowed by quantum

mechanics. To move to the Fourier picture, we express the input states as 
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, where Spec(H) denotes the spectrum of the Hamiltonian, 

 is an eigenvector of H with eigenvalue E and p  is the probability that a

measurement of the energy gives outcome E. When N identical copies are given, the

joint state can be expressed as

where H =  is the total Hamiltonian (H  denoting the operator H acting on the ith

system), |N,E  is an eigenvector of H  for the eigenvalue E and p  is the probability

that a measurement of the total energy gives outcome E. Choosing a filter M  that is

diagonal in the energy eigenbasis, we can modulate the Fourier amplitudes of the state

(4) in any way we like. Of course, since we aim at producing M perfect copies, the

natural choice is to replace N with M in the probability distribution p . However, the

spectrum of H  may be not be contained in the spectrum of H  and in general one

needs to shift the energy values by a suitable amount δE ≈(M−N) ψ|H|ψ  (see

Supplementary Note 6). With this choice, the state after the filter is projected to the

entangled state .

The state  will now act as a quantum programme, containing the instructions that

will be used by a deterministic quantum device to generate M approximate clones. For

this purpose, we use a device that coherently transforms each eigenstate |N,E  into

the corresponding eigenstate |M,E+δE , thus producing the state 

. It is not hard to see that the state 

 has high fidelity with the desired state  for every replication rate allowed by the

HL. Precisely, for large enough N one has the bound

where K is the number of energy levels E such that p ≠0 and p =min{p  : p ≠0} (see

Supplementary Note 7 for the proof). Equation (5) shows that the fidelity approaches 1

faster than any polynomial whenever M is of order N  with α<2, that is, whenever the

replication rate satisfies the HL. A strong converse can be proven: every process

replicating quantum states at a rate higher than 2 must have vanishing fidelity in the

limit of large N, as showed in Supplementary Note 5.
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Thanks to our filter, we have been able to embezzle from nature a large number of

replicas. The improvement is striking if one compares it with the performances of

standard cloning processes. Let us illustrate this fact for the replication of linear

polarization states =cos t +sin t . In this case, the best deterministic process is

the phase-covariant cloner of , and its fidelity is  in the asymptotic

limit of large N and M. In agreement with our SQL, the fidelity vanishes whenever M is

of order N , ε>0. As we proved in general, deterministic processes can only produce a

number of extra replicas that is a negligible fraction of the number of input photons. In

stark contrast, for N=100 input photons, our filter can produce M=1,000 approximate

copies with fidelity F =0.9986, whereas the fidelity of the optimal deterministic

cloner is only F =0.5739. In the example of linearly polarized photons, our filter is

provenly optimal, as it coincides with the optimal probabilistic cloner of . Quite

surprisingly, the possibility of super-replication was not recognized in  where the

advantage of probabilistic processing was conjectured to be only of the order of one

percent.

The different features of replication processes at the HL and at the SQL are illustrated

in Fig. 1 in the case of linearly polarized photons.
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Figure 1: The advantages of probabilistic super-replication.

(a) Every deterministic process is constrained by the SQL: the number of clones that can be produced reliably

from N input copies is of order N and the fidelity of the clones cannot approach 1 faster than the inverse of a

polynomial of degree 4. (b) Super-replication at the HL: the cloning performances can be dramatically

increased by a probabilistic filter, depicted here as a ‘quantum Maxwell demon’ that separates two branches

of the wavefunction. In the successful branch, any number of clones of order N  can be produced with

fidelity approaching 1 faster than any polynomial.

The advantage of the filter is clear also in the non-asymptotic setting: a plot

comparing the performances of replication with and without the filter in the case

N=20 is presented in Fig. 2.

2−ε
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Figure 2: Replication of linearly polarized photons.

The fidelity of the best cloning processes for linearly polarized photons =cos t|V +sin t|H  is plotted

here for N=20 input copies, with the number M of output clones ranging from 20 to 400. The red (green) line

refers to optimal cloning with (without) filter.

What makes the improvement even more dramatic is that the quality of the replicas is

measured by the global fidelity between the output state and the desired joint state of

M perfect copies, which is much smaller than the fidelity that each single copy has

with the state .

Maximizing the probability of success

The dazzling performances of super-replication come at a price: the probability that

the input systems pass the filter has to decay with N. Indeed, in Supplementary Note 1

we already showed a strong converse of the SQL: every deterministic process

producing replicas at a rate higher than the SQL must have vanishing fidelity.

https://www.nature.com/articles/ncomms3915/figures/2
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For our filter, the probability of super-replication at rate α>1 decreases exponentially

fast as p [N→M]≤e  for a suitable constant k>0 independent of α (see

Supplementary Note 8). One may ask whether there are ways to achieve super-

replication with a larger success probability. It turns out that the answer is yes. In

Supplementary Note 9, we show that a process producing M≤O(N) replicas can have a

success probability p [N→M] going to zero as 1/N  for every desired δ>0. Most

importantly, for a super-replication process with rate α=1+ε, ε>0, we show how to

increase the success probability to p [N→M]≥e  for every desired exponent δ>ε.

However, no further improvement is possible below the critical value δ =ε; any process

with success probability scaling as p [N→M]=ae , δ<ε, a,b>0 must have vanishing

fidelity in the asymptotic limit, as observed in Supplementary Note 1.

These results identify the optimal exponent for the decay of the success probability in

a super-replication process, pinning down the trade-off between the replication rate

and success probability. Interestingly, the choice between the advantage of a high

replication rate and that of a unit success probability can be always delayed to the

very last moment. Indeed, it is easy to see that asymptotically the best deterministic

replication process is just given by the coherent transformation 

that we used in our protocol. Hence, an alternative way to achieve super-replication is

to apply first the best deterministic process and later to modulate the Fourier

amplitudes of the wavefunction using a probabilistic filter.

Many-worlds fairness

Super-replication can be achieved not only for one-parameter families of clock states

but also for different manifolds of states, including the manifold of all maximally

entangled states of two identical systems. However, super-replication is not a generic

feature. As we already mentioned, if one tries to copy an arbitrary—as opposed to

linear—polarization state, then no filter is going to help; the performances with filter

are equal to the performances without filter. More generally, for generic quantum

systems, no probabilistic filter can make an arbitrary quantum state more copiable.

This property is quite compelling when considered from the angle of the many-worlds

interpretation of quantum mechanics  because it states that no-branch of the

wavefunction of the universe offers an advantage over the others in replicating the

information contained in a completely unknown state. Regarding different branches as

‘different worlds’, we can formulate this as a fundamental principle, which we name

many-worlds fairness: the maximum rate at which arbitrary information can
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proliferate is the same in all possible worlds. Many world fairness rules out quantum

mechanics on real Hilbert spaces , an alternative physical theory where photons can

have only linear polarizations. Thanks to this observation, one can provide a new

answer to the old question‘why are physical systems described by complex—instead of

real—Hilbert spaces?’. Traditionally, the standard answer has been to invoke local

tomography, the property that one can completely identify a mixed state from the

statistics of local measurement on the components. However, one may consider this as

an ad hoc requirement , and, in fact, there are even reasons to prefer real quantum

mechanics to its complex version, as it was recently pointed out by Wootters .

Balancing this fact, many-world fairness offers a new reason (other that the usual local

tomography) in favour of complex quantum mechanics.

Super-replication has been introduced here from a theoretical point of view. But is it

possible to implement it experimentally? Luckily, very recently there have been

experimental breakthroughs on the closely related topic of probabilistic amplification

of coherent states of light . Although the translation to our case is not

immediate, we suggest that super-replication of linearly polarized photons could be

achieved through a suitable sequence of amplitude-damping channels, which for the

polarization play the role of the photon subtraction for coherent states. An alternative

approach is to first encode the state of the input copies into a coherent state via

matter-light teleportation , amplify the coherent state in a probabilistic fashion, and

then teleport back. This scheme provides a new application of the existing

experimental schemes for coherent state amplification, making them the building

block for the replication of quantum information at the HL. Finally, a third avenue

towards implementing super-replication would be through stimulated emission,

combined with a suitable monitoring of the emitting atoms. Simulated emission has

been discussed extensively in connection with deterministic cloning , but its

potential for implementing probabilistic processes is still unexplored.

In relation to the existing literature, it is interesting to comment on the relation

between our results and previous works on probabilistic cloning and probabilistic

estimation. The idea that in some situations even non-orthogonal states can be copied
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perfectly using a probabilistic device was first introduced by Duan and Guo  who

showed that a set of pure quantum states can be copied perfectly if and only if they are

linearly independent. This means that for a single photon, one can perfectly copy two

polarization states, while for N photons one can copy at most N+1 states. Subsequent

works  showed that probabilistic devices can improve the performances of

approximate cloning for continuous sets of states, leading to nearly ideal

performances in the case of coherent states with fixed amplitude. The nearly perfect

cloning of coherent states may lead one to believe that in general there is no limit to

the amount of clones that can be produced probabilistically. Contrarily to this

intuition, we have proven here that for finite quantum systems, the HL sets the

ultimate bound M=O(N ) to the number of clones that can be produced reliably.

Moreover, we have shown that for arbitrary one-parameter families of states, any

replication rate allowed by the HL can be achieved and we identified exactly the

exponent at which the probability of success has to decay.

Finally, the relation between cloning and estimation has been extensively investigated

in the literature  in terms of single-copy fidelities. However, none of the

approaches proposed so far was suitable to derive limits on the asymptotic replication

rates, nor to connect the latter with quantum metrology. Recently, it has been

observed that the precision of quantum estimation can be improved using

probabilistic strategies  where depending on the outcome of the filter, one can

decide to abstain from estimating the parameter. The mechanism of abstention can

sometimes boost the precision from the SQL 1/N to the HL 1/N . The connection

between these results and super-replication is made clear by our approach: the fact

that a probabilistic filter can improve estimation until the HL implies that N , rather

than N, is the upper bound for the replication rate of the states =e . However,

there is an important catch: the filter that achieves replication at the HL is not the

same filter that achieves estimation at the HL. In fact, if we were to use the same filter

needed in , we would not be able to reduce the error down to zero.

Decomposition of quantum instruments
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To describe the most general probabilistic processes allowed by quantum mechanics,

we use the framework of quantum instruments . A quantum instrument with

input (output) Hilbert space  ( ) is a collection of completely positive (CP), trace

non-increasing linear maps { } , where each map transforms density matrices on 

 into (sub-normalized) density matrices on . If the input system is prepared in

the density matrix ρ, the probability that outcome j is p(j|ρ)=Tr[ (ρ)]. Conditionally, to

the occurrence of outcome j, the state of the output system is . We

note an elementary fact about quantum instruments: any quantum instrument can be

decomposed into a pure measurement on the input system followed by quantum

channel depending on the outcome. By ‘pure measurement on the input system’, we

mean a quantum instrument { }  of the special form  for some

operator M  on . By ‘quantum channel’, we mean a trace-preserving CP map C ,

transforming density matrices on  into (normalized) density matrices on . In

formula, our claim is that every CP map  can be decomposed as

The proof is as follows: let  be the adjoint of the map , defined by 

 for every operator A and for every density matrix ρ. Define the

operator  and the map  by the relation , where 

is the inverse of M  on its support. If M  is invertible, then :=  is trace preserving:

In this case, by definition we have  for every ρ. If M  is not invertible,

we can define the trace-preserving map (ρ):= (ρ)+P ρP , where P  is the projector on

the kernel of M . Again, the definition implies  for every state ρ.

For the purposes of this paper, it is enough to consider measurements with two

outcomes (yes,no), referred to as filters. The filter induces a bifurcation of the

wavefunction and selects one particular branch, corresponding to the successful

outcome yes.

Symmetry constraints on probabilistic cloning
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Consider a quantum cloning problem where the set of states { } has a group of

symmetries, denoted by G. This means that, for every unitary operator U  representing

the action of a symmetry transformation in the group, one has {U } ={ } . A

probabilistic cloner is described by a quantum instrument { , } from the space of

N copies to that of M copies, where the CP maps  and  correspond to the

successful and unsuccessful instances, respectively. Conditional to the successful

outcome, the fidelity of the output state with the desired M-copy state is

The goal of cloning is to maximize the worst-case fidelity .

Because of the symmetry of the set of states, the maximization can be restricted

without loss of generality to the set of covariant CP maps, that is, of CP maps

satisfying the relation

for every group element g and for every quantum state ρ. The proof is standard and we

refer the interested reader to similar proofs provided in the literature, such as those of

 for covariant measurements and that of  for covariant cloning channels.

Let us work out the implication of symmetry, starting from the decomposition =

 of equation (6). It is easy to see that the covariance of P  implies the

commutation relation , for every group element g. Indeed, using the

definition  and the covariance of , we have

Now, if the group of symmetries is sufficiently large, the action of the unitaries  can

be irreducible in the subspace containing the input states . When this happens, the

Schur’s lemma imposes that the filter M  be a multiple of the identity, and, therefore 

. By equation (7), this means that the fidelity achieved by the CP map  is

g

g x∈X x∈X

51,52 53

yes
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the same as the fidelity achieved by the quantum channel . In summary, we have

proven the following fact: the maximum of the fidelity over all probabilistic cloners is

equal to the maximum of the fidelity over deterministic cloners whenever the action of

the unitaries  is irreducible in the subspace spanned by the input states { }. This

simple observation has several important consequences. A first consequence, noted by

Fiurášek , is that the probabilistic processes do not offer any advantage for 1-to-M

cloning of arbitrary pure states. Our approach allows to reach the same conclusion in a

fairly broader range of cloning problems: in particular, it implies that probabilistic

processes offer no advantage in the case of N-to-M cloning of arbitrary pure states ,

N-to-M cloning of coherent states  and spin-coherent states , 1-to-M cloning of two

Fourier transformed bases  and of all the sets of states considered in , and 1-to-M

phase-covariant cloning for qubit states on the equator of the Bloch sphere .

Pointwise versus average CRB

The CRB is the cornerstone of quantum metrology . For a family of clock states 

=e , it states that the variance in the estimation of t from the state  is lower

bounded by V ≥1/Q , where Q :=4( H − H ) is the quantum Fisher information

(QFI). The equality in the CRB can be achieved if one adapts the estimation strategy to

the value of t. This can be done in an asymptotic scenario when one is given a large

number of copies of  and uses a fraction of them to obtain a rough estimate of t ( ).

However, if instead of having N copies one has a single N-particle entangled state, the

CRB may not give an achievable lower bound. For example, Hayashi  showed that the

CRB for phase estimation predicts the correct scaling c/N , but with a constant c that

is not achievable. In the case of probabilistic metrology, the issue about the

achievability of the CRB appears in a more dramatic way: if we allow one to adapt also

the choice of the filter M  to the value of t, then the CRB promises unlimited

precision. It is instructive to see how this phenomenon can happen. For a given t ,

choose a parametrization where H =0 (this can always be done by redefining H as

H′=H− H ). Then, define the vector

which by construction satisfies . Now, choose the filter operator

17

18

19 20

53 53

26

5,6,7,8,9,11

−itH

t t t
2 2
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The filter does not change the state :

However, it amplifies the time derivative at t :

where in the second line we used the explicit expression

along with the observation that . As a result, the

probabilistic QFI at t , defined as the QFI associated to the states , satisfies

This equation means that, whenever the original QFI is non-zero at a specific value t ,

the probabilistic QFI can be made arbitrarily large with a suitable choice of ε. This fact,

combined with the CRB, seems to suggest that one can have unlimited precision.

However, such a conclusion is an artifact of the pointwise character of the CRB: the

probabilistic estimation scheme shown above has unlimited precision only in an

infinitesimally small neighbourhood of t . In light of this observation, for probabilistic

metrology, it is more sensible to choose the filter M  independent of t, to assign a

prior p(t) to the unknown parameter and to minimize the expected variance. Note that,

since the estimate is produced only when the system passes through the filter, the

expectation has to be computed with respect to the conditional probability

distribution . The expected variance, denoted by 

0

0

0

0

yes
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, is lower bounded by the inverse of the expected QFI, denoted

by  in formula

The proof of equation (9) is an elementary application of the pointwise quantum CRB

and of the Schwartz inequality:

Note that the average CRB of equation (9) is just a lower bound and the equality may

not be achievable. However, achievability is of no consequence for our arguments

about the replication rates.

How to cite this article: Chiribella, G. et al. Quantum replication at the Heisenberg

limit. Nat. Commun. 4:2915 doi: 10.1038/ncomms3915 (2013).
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