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We provide a characterization of tunneling between coupled topological insulators in 2D and 3D
under the influence of a ferromagnetic layer. We explore conditions for such systems to exhibit
integer quantum Hall physics and localized fractional charge, also taking into account interaction
effects for the 2D case. We show that the effects of tunneling are topologically equivalent to a certain
deformation or folding of the sample geometry. Our key advance is the realization that the quantum
Hall or fractional charge physics can appear in the presence of only a single magnet unlike previous
proposals which involve magnetic domain walls on the surface or edges of topological insulators
respectively. We give illustrative topological folding arguments to prove our results and show that
for the 2D case our results are robust even in the presence of interactions.

Time-reversal invariant topological insulators in 2D[1–
5] and 3D[6–9] serve as a novel platform for heterostruc-
ture devices. Because of the unique nature of the gap-
less boundary states in these nominally insulating mate-
rials, proximity coupling to ferromagnets[10] and s-wave
superconductors[11] leads to exciting phenomena includ-
ing fractional charge[10], quantum Hall effect[12, 13],
topological magneto-electric effect[13], Majorana fermion
bound states[11], and exotic Josephson effects[14, 15].
The origin of almost all of these effects is a consequence
of the Dirac nature of the edge/surface fermions coupled
to mass-inducing perturbations (e.g. ferromagnets and s-
wave superconductors) which are inhomogeneous. These
proposals are popular because of their inherent practi-
cality since they involve mature techniques with the only
new ingredient being the topological insulator (TI). For
example, to produce a quantum Hall effect on the surface
of a 3D TI, or analogously fractional charge on the edge
of a 2D TI one need only deposit insulating ferro-magnets
on the boundaries of these materials and induce a mag-
netic domain wall. The magnetic domain wall creates a
mass-domain wall as seen by the gapless Dirac boundary
states and all mass domain-walls trap low-energy bound
states[16]. It is these boundstates which are responsible
for the quantum Hall effect and fractional charge on the
boundary of the 3D and 2D systems respectively.

In this work we explore heterostructures which are
made using two topological insulators with some non-zero
tunneling processes between them. These heterostruc-
tures can be made using layered growth techniques (for
3D) and possibly even through lithography and gate pat-
terning (for 2D). We provide a classification of conven-
tional tunneling terms and indicate the interplay be-
tween tunneling, and proximity induced ferromagnetism
and superconductivity. Interestingly, we find a new way
to generate the integer quantum Hall effect (fractional
charge) by utilizing only a single ferromagnet sandwiched
between two 3D (2D) TI’s and without a magnetic do-
main wall. The proposed geometries are far simpler than
those proposed in [10, 13] which require the tuning of

several magnetic regions. Along with the mathematical
analysis we provide an intuitive, topological understand-
ing of these effects.

We first focus on the case of the 3D TI and note, where
important, the differences between 3D and 2D. The sur-
face state Hamiltonian for a 3D TI is simply given by

H = v (σ × p) · n̂ (1)

where σ are the spin-1/2 matrices, p is the surface mo-
mentum, and n̂ is the normal vector to the relevant sur-
face. Here we envision having two nearby 3D TI’s sepa-
rated by a distance dz in the z-direction. The decoupled,
low-energy Hamiltonian for the bottom surface of the top
TI and the top surface of the bottom TI is

H = v

(
pxσy − pyσx 0

0 −pxσy + pyσx

)
(2)

= vτz ⊗ (pxσy − pyσx) (3)

where τa represent the layer index for the fermion ba-
sis (ψt↑ ψt↓ ψb↑ ψb↓)

T where t, b represent the top
and bottom TI surfaces respectively. If the surfaces are
coupled through time-reversal (T = I ⊗ iσyK) invari-
ant tunneling processes that are also spin independent,
which is natural from the form of the bulk Hamiltonian,
then the only tunneling term is Ht = tRτ

x ⊗ I. Since
this matrix anti-commutes with H the spectrum is sim-
ply E± =

√
p2x + p2y + t2R (we have set v = 1), which is

gapped for all non-zero values of tR. To find all allowed
mass terms in the double-layer system, we tabulate all
4 × 4 matrices which anti-commute with H. There are
four allowed terms which can open a gap. The first two
arem++I⊗σz andm+−τz⊗σz and are non-zero if there is
a magnetization with a component parallel to the surface
normal which points in the same (m++ 6= 0) or opposite
(m+− 6= 0) direction in the two layers. The other two
terms are the real and imaginary hopping terms tRτx⊗ I
and tIτy ⊗ I. They all break time-reversal symmetry ex-
cept tR. Similar terms have also been discussed in the
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tR ∆+−
R ∆tb

R

∆+−
I m+− ∆++

I

∆tb
I ∆++

R tI

Table I. This table of mass terms represents perturbations
which open a gap in the surface-state Hamiltonian of two,
coupled TI layers. The three mass terms in each vertical
or horizontal line mutually commute with each other, and
the three mass terms in each diagonal direction (including
periodic wrapping) mutually anti-commute with each other.
The remaining mass term m++ commutes with all of these
nine mass terms in the grid.

context of a mean-field description of a topological exci-
ton insulator[17] although our different physical motiva-
tion is the key to our measurable predictions.

For completeness, we also consider the possibility of
proximity coupling to a superconductor to induce mass-
terms[11]. The BdG equation in the Nambu spinor basis
(ψt↑, ψt↓, ψb↑, ψb↓, ψ

†
t↓,−ψ

†
t↑, ψ

†
b↓,−ψ

†
b↑)

T of this double-
layer system is HK = 1

2πz ⊗ τz ⊗ (pxσy − pyσx), where
the Pauli matrices πi represent particle-hole space. Along
with the magnetic and tunneling terms introduced above,
surface gaps can be opened by inducing s-wave supercon-
ductivity with the same (∆++

R/I = πx/y⊗I⊗I) or opposite
(∆+−

R/I = πx/y ⊗ τz ⊗ I) phase on the two different TIs,
or even inter-TI s-wave pairing of Cooper pairs formed
between the two TIs (∆tb

R/I = πy/x ⊗ τy ⊗ σz). Each of
these possible pairing terms has both real and imaginary
parts indicated by the πx/y notation giving six additional
mass terms, yielding a total of ten. These ten mass terms
can be arranged into a 3×3 table and a 1×1 table shown
in Table I. This table has the following noteworthy prop-
erties: (i) the terms in all vertical or horizontal lines
mutually commute (ii) the terms in each diagonal line
(including wrapping as if the table had periodic bound-
ary conditions) mutually anti-commute (iii)the left-over
mass term m++ commutes with all the other nine mass
terms.

This organization of mass terms is useful in consid-
ering the natural possibility of having more than one
type of mass term present. They can be classified
pairwise as (i) compatible masses and (ii) competing
masses. Case (i) results from the two mass terms anti-
commuting. In this case, the energy spectrum takes
the form E± = ±

√
p2 +m2

1 +m2
2, from which it is

easy to see that one can adiabatically tune between the
phases dominated by m1 (m2 = 0) and the phase dom-
inated by m2 (m1 = 0). This indicates that these two
gapped phases are adiabatically connected. The com-
peting mass case (ii) arises when the two mass terms
commute. In this case the spectrum generically takes
the form ±E± = ±

√
p2 + (m1 ±m2)2. Thus, when go-

ing from the phase withm2 = 0 to the phase withm1 = 0
one always passes through a gapless critical point when

(a) (b)

(c) (d)

Figure 1. (a)Standard magnetic domain wall picture on the
surface of a 3D TI (or edge of a 2D TI) which gives rise to
a propagating chiral mode (bound e/2 charge). Inset: illus-
trates the mass domain wall seen by the Dirac fermions on
the surface (edge) (b)An illustration of the folding process.
Note that the chiral modes (e/2 charge) is preserved for ev-
ery step in the fold. (c) Completion of folding/gluing process
which shows that the final state is a domain wall between a
ferromagnet and a tunneling region. The tunneling region is
topologically equivalent to the bulk of the TI (d)When tun-
neling region is removed, leaving empty vacuum, the chiral
modes (e/2 charge) are destroyed.

the magnitudes of the mass terms are equal. Interest-
ingly, if one places a region dominated by m1 adjacent to
a region dominated by m2, there is a mass-domain wall
between these regions that traps a low-energy fermionic
bound state. This is the origin, for example, of the 0D
Majorana fermion bound states at the interface between
a magnet and superconductor placed on the edge of 2D
TI[11]. We can easily read-off the sets of compatible and
competing mass-terms from Table I.

We use these results to study our primary case of inter-
est: the tunneling tR competing with the magnetization
m++ (shortened tom for convenience.) Suppose we place
a magnet sandwiched between the two tunnel-coupled 3D
topological insulators. Let the magnet have some com-
ponent of its magnetization parallel to the z-direction
so that a gap m is induced in H. If tR and m are ho-
mogeneous in the interface layer, then energy spectrum
is ±E± = ±

√
p2x + p2y + (tR ±m)2 as mentioned above.

Now suppose the mass terms vary with position and that
there is a region near the magnet where |m| > |tR| and a
region past the extent of the magnet where |m| < |tR|. In
this case, there exists a mass domain wall which necesar-
ily binds propagating states along the 1D domain wall.
Heuristically it is easy to see the character of the states
that must be present: if instead of a domain wall between
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m and tR we had a domain between +tR and −tR, then
the boundstates in this case would be a single-pair of
time-reversed counter-propagating modes (i.e. a helical
metal) since this configuration is equivalent to an inser-
tion of a π-flux tube[18]. In the case at hand, the m/tR
domain-wall will only contain a single chiral fermion since
the effect of m is to generate a domain-wall for only one
of the members of the Kramers’ pair. Said a different
way, in a homogenous system, if m = 0 and we take tR
from negative to positive then the critical point is time-
reversal invariant and occurs where four-bands touch. If
instead we take m 6= 0 and tune from |tR| < |m| to
|tR| > |m|, then the critical point happens only between
two-bands and is essentially half of the time-reversal in-
variant phase transition. This means that only one of the
Kramers’ partners sees a domain wall. This is mathemat-
ically similar to the chiral superconductor phase transi-
tion presented in [19]. We can also analytically solve
for the boundstate given that we have periodic boundary
conditions in the y-direction and that the mass-domain
wall occurs in the x-direction. For a domain wall where
m 6= 0 for x < 0 and tR 6= 0 for x > 0 we pick the ansatz

ψ0(py) = ξ0e
ipyy ×

{
emx x < 0

e−tRx x > 0
,

where ξ0 is a constant spinor. We find the solution of the
Dirac equation with ξ0 = 1/2(1, 1,−1, 1)T and an anti-
chiral dispersion relation E(py) = −py as we expected.

Thus, we find that for a domain wall between a mag-
netic region and a tunneling dominated region, there ex-
ists a chiral interface state, giving rise to a quantum Hall
effect. The conventional way to generate the quantum
Hall effect via a magnetic domain wall on a single TI
surface is topologically equivalent to our construction as
seen in Fig. 1. The equivalence can be understood by
starting with a single TI with a magnetic domain wall
on the surface and then deforming and folding the sur-
face until it becomes a domain wall between a tunneling
region and a single-domain magnetic region. Note that
the folding picture works for any direction of the magne-
tization, assuming that a gap is opened at the surface,
i.e., that the magnetization is not exactly parallel to the
surface. The quantization of the Hall conductance can
also be seen following the arguments of Ref. [13] by in-
tegrating the magneto-electric polarizability P3 around a
loop enclosing the domain wall/hinge region. P3 is well-
defined since the system is gapped along the entire line
of integration and we find

σ2D
xy =

1

2π

e2

~

˛
dP3 =

e2

h
, (4)

as expected for a single-chiral edge state. In calculating
this we have used the fact that P3 is odd under time re-
versal and thus must wind in opposite directions when
passing from the 3D TI bulk through magnetic layers

having opposite polarizations. Thus, we have shown that
TI structures with only one magnet can generate an in-
teger quantum Hall effect.

To discuss the consequences of magnet-tunneling com-
petition for phenomena in the 2D TI (quantum spin Hall
effect), as shown in Refs. [10, 13], in the presence of
an anti-phase magnetic domain wall, a half-charge is lo-
calized on the edge of the 2D TI at the location of the
domain wall. We demonstrate that on an m++ − tR do-
main wall there is also a localized half-charge. We note
that the folding procedure in Fig. 1 still applies in 2D
but with the chiral modes replaced with a bound ±e/2
charge. We now provide a more general argument for the
existence of the e/2 charge on a purely magnetic domain
wall on a single edge than that presented in Ref. [10]
using the bosonization formalism, which is thus incorpo-
rates non-vanishing interactions. We then carry out the
argument for two edges with tunneling to show that in-
deed a half-charge is induced in that case as well. The
propagating states of a single QSH helical edge state are
described by the Hamiltonian[20]

H0 = v

ˆ
dx
[
ψ†(x)pxσ

zψ(x)
]

(5)

where ψ(x) = (ψR↑, ψL↓)
T . The coupling of the edge to

a magnetic island can be described by

Hm = −JµB
ˆ
dx(m−ψ

†(x)σ+ψ(x) + h.c.), (6)

where µB is the Bohr magneton, J is an exchange cou-
pling constant σ± = 1/2(σx±iσy) andm± = Mx±iMy =
|m|e±iθH reflects the magnetization. We can bosonize the
Hamiltonian using ψR↑(x) ∼ e−i(φ(x)−θ(x)), ψL↓(x) ∼
ei(φ(x)+θ(x)) to get

H =
1

2π

ˆ
dx
[
uK(∇θ)2 +

u

K
(∇φ)2

− 2JµB |m|
α

cos(2φ(x)− θH)

]
, (7)

From standard results[21], the exchange coupling is rele-
vant for K < 2 (as we assume) and at low temperatures,
φ is locked to the energy minima

φ(x) = nπ +
θH
2
, (8)

where n is an integer. Now suppose we make m+(x)
inhomogeneous with the domain wall profile m+(x) =

|m|eiθLH for x < 0 and m+(x) = |m|eiθRH for x > 0. This
gives rise to the inhomogeneous form φ(x) = nπ+

θLH
2 for

x < 0 and φ(x) = `π+
θRH
2 for x > 0. The charge density

has the form ρ(x) = − 1
π∇φ and thus the charge trapped

on the domain wall is

QDW = − 1

π
(φ(x > 0)−φ(x < 0)) = (`−n)+

1

2π

(
θLH − θRH

)
.

(9)
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For an anti-phase domain wall the formula gives QDW =
(n− `) + 1

2 as expected.
Turning to the two coupled 2D TI system, the Hamil-

tonian for two corresponding edges is given by

H(2)
0 = v

ˆ
dxΨ†(x)

[
pσz 0

0 −pσz

]
Ψ(x), (10)

where Ψ(x) = (ψtR↑ ψtL↓ ψbR↓ ψbL↑)
T

and t, b indicate top and bottom edges. To
bosonize this Hamiltonian, care requires defining the
fermions as ψtR↑(x) = UtR√

2πα
e−i(φt(x)−θt(x)), ψtL↓(x) =

UtL√
2πα

ei(φt(x)+θt(x)), ψbR↓(x) = UbR√
2πα

e−i(φb(x)−θb(x)),

ψbL↑(x) = UbL√
2πα

ei(φb(x)+θb(x)) where α is the momentum
cut-off and the Uab are the Klein factors preserving elec-
tron anti-commutation rules, where U†tRUbLU

†
bRUtL =

−U†tRUtLU
†
bRUbL[21].

Let us consider the perturbing mass terms for the
double-edge system. The magnetic region couples to the
two edges independently leading to two copies of Eq. 6
which when bosonized yields:

H(2)
m = −JµB |m|

πα

ˆ
dx(cos(2φt(x)− θH)

+ cos(2φb(x) + θH)) (11)

where we used the choices U†tRUtL = U†bRUbL =

U†tRUbL = −U†tLUbR = 1 which satisfies the constraint
above. The inter-edge tunnel coupling is

Ht = −tR
ˆ
dx (ψ†tR↑ψbL↑ + ψ†tL↓ψbR↓ + h.c.)

=
−2tR
πα

ˆ
dx(sin(φt + φb) sin(θt − θb)) (12)

Thus, since J and tR are relevant for weak interactions
(2 −

√
3 < K < 2) we know that both terms will lock

their phases in regions where they are present giving:

(φt + φb)(x)=

{
nπ magnetic region
π
2 + lπ tunneling region

(13)

where n, ` are integers. The total charge density is
ρ(x) = − 1

π∇(φt + φb) yielding a trapped charge on a
magnetic/tunneling domain wall: QDW = q + 1

2 for an
integer q. We remark that the Klein factors, and thus
Fermi statistics (since electrons can now exchange posi-
tions by moving to the other TI and then coming back),
were crucial for this derivation; one only finds integer
charge if they are neglected. A similar topological argu-
ment to Eq. 4 based on the topological electromagnetic
response of 2D Z2 topological insulators given in Ref.
[13] can also be given.

The folding picture provides a useful illustration of the
tunneling domain, but there are some other geometries
where the same physics is also apparent. Notably one
can study the “H-bar" geometry, such as that used in

Figure 2. Quantum spin Hall state in an H-bar geometry.
Edge states conform to the geometry and in the lower half
travel around an inset ferromagnet whose magnetization di-
rection is shown by the arrows. An e/2 charge is localized
between the two spots at the corners of the ferromagnet. In
the ideal case with this geometry there are e/4 charges local-
ized at the location of each corner spot.

non-local transport experiments in HgTe/CdTe quantum
wells[22]. In Fig. 2 we have shown such a geometry
flanked by a ferromagnet in one of the U-shaped regions
of the ‘H.’ The presence of a magnet-tunneling domain
wall, which should give rise to e/2 charge localized on the
cross-bar, can be seen by treating the two vertical legs
as two separate QSH systems connected by a small strip
of tunneling (the crossbar). Physically, the geometry re-
places the folding. The edge state, upon entering the first
part of the ‘U’ from the left, experiences a magnetization
that points to the left relative to it’s velocity while, upon
exiting the ‘U’ on the right, experiences a relative mag-
netization pointing to the right. Thus, skirting around
the magnet yields a changing magnetization, giving rise
to the localized charge. If the path does not perfectly
reverse direction, the charge is not quantized to be per-
fectly e/2 since the edge electron does not encounter a
crisp, anti-phase domain-wall. The charge is given by the
relative angle between the incident and exiting effective
magnetizations in units of e/2π and, for instance, could
split into two e/4 charges localized near the corners where
the relative magnetization typically changes by π/2. An
extension of this geometry to the 3D case would yield a
chiral edge state. It is important to note in that case
that the existence of the chiral modes does not depend
on the precise reversal of the path direction.

To summarize, we have shown that two sought after
phenomena– quantum Hall states and fractional charge,–
can be achieved in 2D and 3D TI’s with experimentally
viable fabrication. In 3D one must simply grow a mag-
netic layer sandwiched between two TI layers, and in 2D
one must simply fabricate an H-bar geometry and deposit
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a magnetic island on one of the indentations of the H. We
also performed a cursory examination of similar geome-
tries where the magnet was replaced by an s-wave super-
conductor and found that the effects, while interesting,
were not feasible for current experimental capabilities.
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