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Abstract

In this paper we give energy-optimal excitation current waveforms for a permanent

magnet synchronous motor that result in a desired average torque. Our formulation

generalizes previous work by including a general back-EMF waveform, voltage and cur-

rent limits, an arbitrary phase winding connection, a simple eddy current loss model,

and a trade-off between power loss and torque ripple. Determining the optimal cur-

rent waveforms requires solving a small convex optimization problem. We give a fast

algorithm to find the optimal current waveforms in around 400µs; changes in required

torque can be handled in around 200µs even on low-cost processors. We show that

for an ideal motor with sinusoidal back-EMF, the optimal current waveforms increase

efficiency by several percent in the constant power region. We also show that, for our

model parameters, a sinusoidal back-EMF gives no performance benefit over a trape-

zoidal back-EMF, even in the constant power region, provided the optimal current

waveforms are used. Another advantage of on-line optimization is the ability to adapt

in real time to changes in the model or requirements, such as changes in resistance as

winding temperature varies, or even gross changes like the failure of one winding.
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1 Introduction

We consider the problem of controlling an AC permanent magnet synchronous motor (PMSM)
by choosing phase winding current waveforms that produce smooth output torque. Tradition-
ally, the problem is solved differently depending on the type of motor: if the rotor magnets
induce an counter-electromotive force (back-EMF) in the phase windings that is a sinusoidal
function of rotor position (i.e., the motor has a sinusoidal back-EMF waveform), then sinu-
soidal current waveforms are used; if the induced back-EMF is instead a trapezoidal function
(i.e., the motor has a trapezoidal back-EMF waveform), then rectangular current waveforms
are used. Ideally, both of these schemes produce smooth output torque. In reality, however,
motors with perfectly shaped back-EMF waveforms are difficult to produce, and rectangular
phase current waveforms are impossible to realize due to phase winding self-inductance.

We therefore address the problem of choosing drive current waveforms that achieve a
desired average torque while minimizing a combination of resistive power loss and RMS
torque ripple. We consider motors with general back-EMF waveforms. We assume supply
voltage limits and phase current limits due to magnetic saturation. We also include a simple
eddy current loss model, which has the effect of penalizing high-frequency harmonics of the
current waveforms. Because our formulation can be applied to motors with arbitrary phase
connections (including delta, wye, and independently connected phases), we can handle
several fault conditions, and we demonstrate operation of a delta-wound, three-phase motor
with a single open-phase fault. We also discuss simple variations of our formulation, including
alternative definitions of torque ripple (e.g., the range of the torque values, or the mean
absolute deviation), or maximum torque problems. We show that the proposed torque
control problem, and all proposed variations, are convex optimal control problems, and
can be therefore be quickly and reliably solved using convex optimization. We provide a
fast iterative algorithm for solving the resulting optimization problem, and we demonstrate
that the algorithm can be executed quickly, in well under one millisecond. Furthermore,
the iterates of the algorithm provide a very good approximation of the optimal waveforms,
even before convergence. Indeed, the first iteration of the algorithm (available in tens of
microseconds) produces the optimal current waveforms when voltage and current limits are
ignored, which is competitive with evaluating the analytical expressions given in the literature
(see below). Within a few tens of iterations, the iterates are typically within a few tenths of
a percent of the optimal values, and can be considered converged for all practical purposes.
The algorithm can also incorporate new desired torque signals after each iteration, and
new iterates can be implemented immediately, which reduces the torque response time to
tens of microseconds on a standard processor, or hundreds of microseconds on a low-cost
ARM processor, which is around the switching period of common power electronic devices.
The inverter bridge voltage waveforms that generate the optimal current waveforms are also
computed as a by-product of computing the optimal current waveforms; these open-loop
optimal bridge voltages and current waveforms can be used in a closed-loop current control
scheme.

The ability to find the optimal current waveforms in real time allows us to change the
model parameters on the fly (e.g., changing phase resistance with temperature, or updating
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the inverter bus voltage), or change the problem based on operating requirements. For
example, an electric vehicle application may require maximizing output torque at some
times, thus increasing the performance of the vehicle, and high efficiency and low torque
ripple at other times, thus increasing the efficiency (and range) of the vehicle.

We demonstrate our formulation on an example motor. Our method gives the optimal
current waveforms in the constant power (i.e., flux weakening) operating region, and we
demonstrate that the optimal drive currents are nonsinusoidal in this region, even for mo-
tors with sinusoidal back-EMF. We additionally compare the performance of sinusoidal and
trapezoidal back-EMF waveforms in this region, and we find that, when driven with the
optimal current waveforms, the two types of motors perform quite similarly.

1.1 Related work

Convex optimization. Convex optimization problems can be solved efficiently and reli-
ably using standard techniques [BV04]. Recently, much work has been devoted to solving
moderately-sized convex optimization problems quickly (i.e., in milliseconds or microsec-
onds), possibly on embedded platforms, which enables convex-optimization-based control
policies to be implemented at kilohertz rates [WB10, OSB13]. In addition, recent advances
in automatic code generation for convex optimization [MB10, CPDB13] can significantly
reduce the cost and complexity of developing and verifying an embedded solver.

We provide an algorithm based on the alternating direction method of multipliers (ADMM).
Details about ADMM can be found in [BPC+11, PB14]. ADMM is is particularly well-
suited for real-time optimal control because it typically converges to acceptable accuracy
very quickly, and because its simplicity allows for easily verifiable source code. Details about
using ADMM for optimal control can be found in [OSB13].

PMSM current waveform optimization. Significant work has been devoted to finding
optimal current waveforms for motors with nonsinusoidal back-EMF waveform, and sev-
eral special cases have been solved, some analytically. Simple characterizations of current
waveforms that minimize power loss and produce smooth torque in the absence of other con-
straints are given in [LHPF86, HD92, WC05]. The authors of [CSW99] extend these results
to include a trade-off between RMS torque ripple and power loss by solving a linear least
squares problem. An RMS voltage limit is considered by [Han94], who proposes offline solu-
tion of the resulting quadratic program and implementation as a lookup table. The authors
of [ABH01, ABH03] instead introduce a current saturation limit, and analytically solve the
Karush-Kuhn-Tucker conditions to find the optimal current waveforms that produce smooth
torque. Several of the aforementioned results can be extended to apply if one or more phases
are in an open fault condition; explicit derivation of the optimal waveforms in this case can
be found in [BMDL13] and references therein (which neglect voltage and current limits). The
authors of [YWWL04] take a different approach, showing that minimum power loss required
to achieve a desired torque, without regard for torque ripple, is attained when the current
waveform is proportional to the back-EMF waveform.
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Field oriented control. For a motor with sinusoidal back-EMF waveforms and no volt-
age limits, sinusoidal current waveforms minimize power loss while also producing no torque
ripple. In this case, it is convenient to formulate the control problem using Park’s trans-
formation into the d–q reference frame, which separates the current producing component
of the current waveform from the field-weakening component, resulting in a field-oriented

control framework [GLN80, HM94],
Within this framework, two general techniques can be used to minimize power loss in

steady-state, including RMS voltage constraints In loss-model control, a model of the power
loss is used to determine the sinusoidal currents that minimize power loss in steady-state at
a given operating point. Early work in this area focused on finding analytical expressions for
the optimal current for a simple loss models [CCL08, MTTH94]. More recent approaches have
addressed nonlinearities due to magnetic saturation, by storing a lookup table of optimal d-
and q-axis current components [LNCK07], or computing them in real time using Newton’s
method. [JSHR06]. Search control techniques instead involve actively searching for the
optimal current d- and q-axis current components by directly iterating on the motor itself
[VJR99, CN88].

Model predictive control. As an alternative to seeking the optimal steady-state cur-
rents, model predictive control has recently been proposed to improve dynamic response.
Most formulations involve solving a convex optimization problem to determine the inverter
voltage signal, which can either be done offline and implemented as a lookup table, as in
[WsCY+14, MDM09, BKKP11, BBPZ09] or online in real time, as in [SDK12]. A different
model predictive control scheme is proposed in [Gey11], who considers the discrete switch-
ing states of the inverter. Using various heuristic strategies, they are able to compute a
reasonable sequence of inverter switching states.

1.2 Outline

In §2, we introduce our model of the PMSM. In §3, we formally introduce the torque control
problem, and we list several variations of the base problem. We then explore the types of
symmetry that a PMSM typically exhibits, and we show how to use symmetry to reduce
the complexity of the torque control problem. In §4, we demonstrate the solution of the
torque control problem, and we give a fast operator splitting algorithm. In §5, we discuss
how to implement the solution in real time, possibly on an embedded processor. In §6, we
show the optimal waveforms for an example motor, which we use to compare rectangular
and sinusoidal back-EMF waveforms, and to compare the optimal waveforms with sinusoidal
current waveforms.

2 Model

The model describes a three-phase, permanent magnet synchronous motor, shown in figure 1.
The rotor, which is nonconductive and contains permanent magnets, has angular position θ
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Figure 1: Schematic of permanent magnet synchronous motor. The rotor has angular posi-
tion θ. Symbols ⊗ and ⊙ represent the direction of axial windings. Different phase windings
are different colors.

and angular velocity ω; we assume ω is constant. The stator contains three circuits, called
phase windings, with currents ia, ib, and ic, and voltages va, vb, and vc. The phase currents
induce eddy currents in the stator iron; we consider induced eddy currents separately for each
phase, which we call ja, jb, and jc. The motor is driven by a voltage-source, triple-half-bridge
inverter with bridge voltages vU, vV, and vW. The output torque is τ .

We will assume that ia, ib, ic, va, vb, vc, ja, jb, jc, vU, vV, vW, and τ are 2π-periodic
functions of θ. We use a prime (′) to denote differentiation of these functions with respect
to θ. To lighten notation, we often drop explicit dependence on θ.

2.1 Dynamics

The circuit dynamics of the phase windings are

va = Ria + ω(Li′a +Mi′b +Mi′c + M̃j′a + ka),

vb = Rib + ω(Mi′a + Li′b +Mi′c + M̃j′b + kb),

vc = Ric + ω(Mi′a +Mi′b + Li′c + M̃j′c + kc),

(1)

where R is the phase resistance, L is the phase self inductance, M is the mutual inductance
between phases, and M̃ is the mutual inductance between a phase and the corresponding
eddy current. The back-EMF waveforms ka, kb, and kc are 2π-periodic functions of θ. The
eddy current circuits are modeled as RL (resistance-inductance) circuits, with dynamics

0 = R̃ja + ω(L̃j′a + M̃i′a),

0 = R̃jb + ω(L̃j′b + M̃i′b),

0 = R̃jc + ω(L̃j′c + M̃i′c),

(2)

where R̃ and L̃ are respectively the eddy circuit resistance and self inductance.
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Figure 2: Delta, wye, and independently driven phase connections.

2.2 Inverter

The inverter bridge voltages satisfy

|vU| ≤ (1/2)Vdc, |vV| ≤ (1/2)Vdc, |vW| ≤ (1/2)Vdc, (3)

where Vdc is the constant DC bus voltage (figure 2). We consider three winding configu-
rations, The relation between the bridge voltages and the phase voltages depends on the
winding connection, and are given below. depends on the winding connection, and are given
below.

• Independent phases:
va = vU, vb = vV, vc = vW. (4)

• Delta connection:

va = vU − vV, vb = vV − vW, vc = vW − vU. (5)

• Wye connection:

va − vb = vU − vV, vb − vc = vV − vW, vc − va = vW − vU, (6)

as well as Kirchoff’s current law for the center node:

ia + ib + ic = 0. (7)

Other configurations are possible. For example, a six-half-bridge inverter can arbitrarily
assign voltages to each side of the three phases (with each bridge voltage between −(1/2)Vdc

and (1/2)Vdc).

2.3 Magnetic saturation

We assume that the phase currents are maintained within the following magnetic saturation
limits:

|ia| ≤ imax, |ib| ≤ imax, |ic| ≤ imax. (8)
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2.4 Torque

The total output torque is
τ = kaia + kbib + kcic + τcog, (9)

where the cogging torque τcog is a 2π-periodic function of θ. The average torque over one
cycle is

τ =
1

2π

∫ 2π

0

τ dθ.

The RMS torque ripple is

rrms =

√

1

2π

∫ 2π

0

(τ − τ)2 dθ,

and the relative torque ripple is

rrms,rel =
rrms

τ
.

2.5 Power loss

The power loss is the average resistive loss from all phase currents and eddy currents over
one cycle:

Ploss =
1

2π

∫ 2π

0

(

R(i2a + i2b + i2c) + R̃(j2a + j2b + j2c )
)

dθ.

The relative power loss is

Ploss,rel =
Ploss

τω
.

and the efficiency is η = 1 − Ploss. This assumes that τω > 0, i.e., the mechanical output
power is positive. When the motor is used as a generator, or for regenerative braking, the
denominator can be replaced by its absolute value.

3 Torque control problem

3.1 Optimal torque control

We choose the phase voltages, phase currents, and eddy currents that achieve a desired
average torque while minimizing the average power loss and torque ripple. The optimal
torque control problem is

minimize Ploss + λr2rms

subject to τ = τdes,
equations (1), (2), (3), (8), (9),
and one of (4), (5), or (6)–(7).

(10)

The parameters are the trade-off parameter λ ≥ 0, The circuit parameters R, L, and M ,
the eddy circuit parameters R̃, L̃, and M̃ , the current and voltage limits imax and Vdc, and

8



ω and τdes. The variables are the 2π-periodic functions ia, ib, ic, ja, jb, jc, va, vb, vc, vU, vV,
vW, and τ . The constraints include the dynamics, current and voltage limits, torque-current
relation, and one set of winding constraints.

Problem (10) is an infinite-dimensional (convex) quadratic program, since the variables
to be determined are periodic functions. Once we discretize the variables, it can be (approx-
imately) solved quickly and reliably using standard methods [BV04].

3.2 Variations

We list some variations of (10) that also result in convex optimization problems.

Power loss and torque ripple constraints. We can limit the acceptable power loss and
torque ripple by adding the constraints

Ploss ≤ Pmax
loss , rrms ≤ rmax

rms . (11)

Alternatively, we can use the relative values of power loss or relative torque ripple in the
objective or in (11).

Maximum torque. We can set up a maximum torque problem. To do this, we remove the
τ = τdes constraint, and use τ as a variable. Instead of minimizing the power loss and torque
ripple, we instead maximize τ . Other constraints may be added; for example, a power loss
constraint can be used to obtain the maximum sustainable torque subject to heat dissipation
limits.

Alternative ripple definitions. We can use other definitions for the torque ripple, such
as

rrange = sup
θ

τ(θ)− inf
θ
τ(θ)

or

rabs =
1

2π

∫ 2π

0

|τ − τ | dθ.

These are both convex, nonquadratic functionals of τ .

Mitigation of harmonics. We can establish magnitude constraints or penalties on spec-
ified harmonics of the currents or torque (e.g., to avoid a known mechanical resonance).

Open-phase fault. We can continue operation with one inoperable phase winding by
eliminating the relevant equations and variables from the model.
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3.3 Symmetry

Although the variables and parameters of (10) are fully defined by their values over the
interval [0, 2π], we can use the following three assumptions to make this interval shorter,
thus reducing the complexity of a discretized version of (10). This exploitation of symmetry
does not change the solution; it merely results in a smaller problem that has to be solved.
We also note that in some cases the symmetry assumptions do not hold, in which case, we
obviously cannot exploit symmetry. Examples of this include motors intentionally designed
without symmetry, or when a winding in an otherwise symmetric motor has failed.

Pole symmetry. We assume the rotor has Np pole pairs (figure 3), i.e., ka, kb, kc, and τcog
are 2π/Np-periodic. Consequently, there is a solution of (10) in which the optimal variables
are also 2π/Np-periodic.

Half-wave symmetry. We further assume that ka, kb, kc and τcog are half-wave symmetric
with period 2π/Np (e.g., ka(θ) = −ka(θ+π/Np)). This implies there exists a solution of (10)
in which the optimal variables are also half-wave symmetric with period 2π/Np.

Phase symmetry. We assume the stator windings are displaced by 2π/(3Np) radians from
each other, so the back-EMF waveform in the second and third phases are shifted versions
of the first:

kb(θ) = ka

(

θ +
2π

3Np

)

, kc(θ) = ka

(

θ −
2π

3Np

)

. (12)

and τcog is 2π/(3Np)-periodic. This implies there exists a solution of the original problem in
which the optimal variables are shifted versions of each other:

ib(θ) = ia

(

θ +
2π

3Np

)

, ic(θ) = ia

(

θ −
2π

3Np

)

, (13)

with similar shift relations for the voltage and eddy current. These assumptions, combined
with (9) and (13), imply τ is 2π/(3Np)-periodic.

Equivalent problem. The symmetry assumptions allow us to form an equivalent prob-
lem with the same constraints and objective as (10) in which the variables have domain
[0, π/(3Np)]. We also add periodicity constraints of the form

ia(0) = −ic

(

π

3Np

)

, ib(0) = −ia

(

π

3Np

)

, ic(0) = −ib

(

π

3Np

)

,

with similar constraints for the voltage and eddy currents, and τ(0) = τ(π/(3Np)). The in-
tegrands in the definitions of average torque, torque ripple, and power loss are each π/(3Np)-
periodic; to get equivalent definitions of these values over the appropriate domain, we can
integrate over [0, π/(3Np)] instead of [0, 2π], and scale the result by 6.
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Figure 3: A rotor with pole symmetry (Np = 2). The magnetic field generated by the
permanent magnets is identical at θ and θ + π.

Figure 4: A motor with pole and phase symmetry (Np = 2).

Any set of optimal variables for the reduced problem is the restriction to [0, π/(3Np)]
of some set of optimal variables to the original problem. To reconstruct the values of these
variables over the rest of the interval [0, 2π], we can use the 2π/Np-periodicity and half-wave
symmetry of the variables, as well as the phase symmetry shift relations (such as (13)).

4 Solution

4.1 Discretization

After reducing the domain of the variables of (10), we discretize this interval into N + 1
grid points, θ0, . . . , θN , with θ0 = 0 and θN = π/(3Np). All pointwise constraints must hold
at θ0, . . . , θN−1, and the periodicity constraints must hold at θ0 and θN . Integration over
the interval is replaced by summation from θ0 to θN−1, with appropriate scaling. We use a
forward-difference approximation to discretize the derivatives in (1) and (2). Implementing
this discretization method online is faster than more accurate methods (e.g., first-order hold)
and, based on our observations, the inaccuracy does not significantly degrade the quality of
the solution.
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Finite-dimensional quadratic program. After discretization, problem (10) can be ex-
pressed as

minimize xTPx+ qTx+ r
subject to Ax = b,

|xi| ≤ ci, i = 1 . . . n.
(14)

The variable x ∈ Rn is a vector containing the variables of (10) at θ0 . . . θN , and the param-
eters are the symmetric positive-definite matrix P ∈ Rn×n, as well as q ∈ Rn, A ∈ Rm×n,
b ∈ Rm, r ∈ R, and ci ∈ R ∪ {∞}. We note that the parameter matrices P and A are
sparse, which can be exploited in a numerical solution.

4.2 Interior-point methods

Problem (14) can be solved using a generic interior-point solver, which involves solving a
sequence of linear systems of equations (around 15) of size (m+n). Using a generic quadratic
programming solver, the size of these linear systems scales by the cube of the number of grid
points. However, a method that exploits the sparse structure of the problem can reduce this
to be proportional to the number of grid points. Several software packages are available that
can do this, and are capable of running on embedded platforms [MB12, WB10, CPDB13].

4.3 Operator splitting

In addition to interior-point methods, we give an operator splitting algorithm for solving
(14). Starting from any x(0), z(0), and y(0), the algorithm generates iterates x(k) according
to:

x(k+1) = argmin
x

(

f(x) + (1/2)ρ‖x+ z(k) − y(k)‖2
)

(15)

z(k+1) = sat(x(k+1) − y(k), c) (16)

y(k+1) = y(k) + x(k) − z(k), (17)

where ρ > 0 is an algorithm parameter,

f(x) =

{

xTPx+ qTx Ax = b

∞ otherwise,

and sat is the vector saturation function, i.e., the ith element of sat(x, c) is

(

sat(x, c)
)

i
=











−ci xi < −ci

ci xi > ci

xi otherwise.

(18)

Note that x(k+1) can be interpreted as a solution of a regularized version of (14) with no in-
equality constraints (i.e., ci = ∞), and x(k+1) as a projection onto the set of points satisfying
the inequality constraints of (14).
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Finding the x(k+1) that satisfies (15) can be done by solving

[

P + ρI AT

A 0

] [

x(k+1)

µ

]

=

[

z(k) − q
b

]

. (19)

Because each iteration of the splitting algorithm involves solving (19) for a different value of
z(k), it is convenient to store the coefficient matrix (the KKT matrix ) in factored form using
a sparse LDL factorization.

Convergence of x(k) to a solution of (14) is guaranteed [BPC+11]. In practice, however,
it may be beneficial to iterate over (15)-(17) continuously, updating the (factorized) KKT
matrix periodically to reflect the new values of the parameters (in particular, ω). This can
be interpreted as a warm start for a new instance of (14); because the entries of the KKT
matrix change little when updated, we expect the iterates of the previous problem instance
to be nearly optimal for the new problem. We therefore can always implement the waveforms
contained in the most recent current iterates immediately, because they reflect the current
values of all parameters and we expect that they are always very close to optimality. (Indeed,
even the first iterate x(0) is the solution of a regularized version of (14) without voltage or
current limits.) In addition, because only q and b in (19) depend on τdes, we can update
the desired torque after every iteration without refactoring the KKT matrix. Preliminary
waveforms that reflect changes in τdes can therefore be implemented after a single linear
system solve.

4.4 Solve times

We compare the average solve times of the operator splitting algorithm against two interior-
point solvers using the parameter values of the example in §6 (table 1). We used N = 15,
which corresponds to 270 grid points per cycle (i.e., 90 grid points per pole pair per cycle).

All three algorithms were carried out on a Linux machine with a 3.4 GHz Intel Xeon
E31270 processor. In addition, CVXGEN and the operator splitting method were carried
out a Raspberry Pi, a $25 computer with a 700 Mhz ARM processor with a floating point
unit. Table 1 gives the average solve times for all three algorithms over 1000 uniformly
randomly selected torque-speed pairs in the feasible operating region of the motor.

CVX. CVX [GB13, GB08] is a MATLAB-based modeling language for convex optimiza-
tion. It converts (14) into a second-order cone program, which is solved using the interior-
point solver SDPT3 [TTT03, TTT99].

CVXGEN. CVXGEN [MB12] is a code generator for fast convex optimization. It takes a
high-level description of a quadratic program and generates a custom interior-point solver,
written in C, which is suitable for embedded, real-time optimization. For details on code
generation for real-time convex optimal control, see [MWB11, MB10]. CVXGEN was termi-
nated once the duality gap was less than 0.1.
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Intel Xeon ARM processor

CVX 468.67 —
CVXGEN 3.9 229.8

OS (cold start) 0.12 3.94
OS (warm start) 0.07 2.71

Table 1: Average solve times in milliseconds.

Operator splitting. The operator splitting method was implemented in C. The variables
va, vb, and vc were (analytically) eliminated, resulting in a problem with 150 variables,
107 equality constraints, and 90 inequality constraints. Eq. (19) was solved using the LDL
package provided in [Dav05]. The operator splitting method was terminated once ‖x(k) −
z(k)‖∞ was less than 0.1 (this represents a 0.1% error for most operating conditions).

If a sequence of similar problem instances is to be solved, we can accelerate convergence
of each iteration by initializing the iterates at the solution to the previous problem (called
warm starting). We provide solve times for the operator splitting method for both cold
starting (iterates initialized to zero) and warm starting (iterates initialized to the solution
of an identical problem, but with ω uniformly randomly perturbed to a feasible value within
20%).

5 Implementation

Here we collect several ideas for implementing the solution to (10).

Table lookup. Any of the above solvers can be used to to generate a lookup table of
optimal waveforms indexed by ω and τdes. This enables the optimal current waveforms to
be used on processors with limited computational capability. Some simplifications may be
helpful to reduce storage requirements; for example, for motors with wye or independent
phase connections, neglecting eddy current, a single current wave shape can be stored for
any ω and τdes such that the inequality constraints of (10) are inactive. This wave shape
can be scaled to meet the torque requirement.

Real-time optimization. CVXGEN and the operator splitting algorithm are fast enough
to compute the optimal waveforms in real time on an embedded system. This allows us to
recompute the optimal waveforms after updating the model parameters (e.g., after updating
winding resistance with temperature) or after changing the trade-off parameter λ based on
performance requirements. We can also change the problem entirely to one of the variations
mentioned in §3.2, such as a maximum-torque mode, or continued operation after failure of
a phase winding.
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Parameter Value Unit

R 0.466 Ω
L 3.19 mH
M −1.31 mH

R̃ 3.4 Ω

L̃ 2.9 mH

M̃ 1.0 mH
Vdc 70 V
imax 10 A
Np 1 —

Table 2: Motor parameters.

Feedback control. If the model is perfectly correct, using the optimal bridge voltage wave-
forms as PWM signals for the inverter will produce the resulting optimal current waveforms.
But the models are of course not perfect, so in practice a closed-loop controller is necessary
to ensure accurate tracking of the optimal waveforms For example, a simple state-feedback
controller would have the form
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i⋆b
i⋆c







 (20)

where we use the ⋆ to denote the optimal (reference) values, andK ∈ R3×3 is a controller syn-
thesized based on the circuit dynamics (1). Note that the inclusion of the optimal open-loop
bridge voltages will improve dynamic performance compared to a simple tracking controller.
Extension to more complex controller architectures (e.g., PI controllers) is beyond the scope
of this paper.

6 Example

In this section we demonstrate the optimal waveforms for a numerical example. The values
of all scalar model parameters are given in Table 2. The phase resistance, phase inductance,
and voltage limits are based on the first example of [LZH05]. The eddy circuit parameters
were adjusted to be about one quarter of the total power loss at ω = 300 rad/s, which is the
rated speed of the motor. Because the effects of the eddy circuit dynamics are fully described
using only two parameters, we arbitrarily set M̃ = 1 mH. Cogging torque is neglected. The
motor described in [LZH05] has a sinusoidal back-EMF waveform with RMS value of 0.72
V/s. For comparison, we will also consider an empirically determined trapezoidal back-EMF
waveform (obtained from [PPLH00]) with the same RMS value as the sinusoidal back-EMF
waveform. Both back-EMF waveforms are shown in figure 5.
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Figure 5: Sinusoidal and trapezoidal back-EMF waveform for the BLDC example.

6.1 Sinusoidal vs. rectangular back-EMF

We demonstrate the solution of (10) for both the sinusoidal and the trapezoidal back-EMF
waveforms for τdes = 0.3 Nm. In figure 6, The optimal waveforms for ω = 300 rad/s, which
is below the rated speed of the motor, are shown in figure 6, We first note that the optimal
current waveforms for the sinusoidal back-EMF are sinusoidal, verifying the classical result
that sinusoidal currents simultaneously minimize power loss and acheive smooth torque.

The optimal waveforms for the trapezoidal motor are more subtle. Because the con-
straints are inactive, (10) can be solved in exactly one iteration of the operator splitting
algorithm with ρ set to zero. Also, if eddy current is neglected, the optimal current wave-
forms are independent of ω. (This is not the case for delta connected motors, in which the
back-EMF can induce circulating current which cannot be controlled by the interver.)

We also compare the optimal waveforms at ω = 425 rad/s, which is above rated speed of
the motor. In this case, the optimal current waveforms are no longer sinusoidal, for either
back-EMF waveform.

6.2 Optimal vs. sinusoidal current waveforms

In the last example, we saw that sinusoidal current waveforms are not optimal in the constant
power region for all values of λ, even with a sinusoidal back-EMF waveform. Here we show
that, for ω = 425 rad/s and τdes = 0.3 Nm, there is no value of λ for which sinusoidal
current waveforms are optimal. Figure 7 shows the optimal waveforms for λ = 0 kW/(Nm)2.
λ = 2 kW/(Nm)2, and as λ → ∞. As expected, we find that larger values of λ result in lower
torque ripple, but require greater phase advance and a greater amplitude current waveform.
We also show the optimal sinusoidal currents for comparison, which also can be found using
convex optimization, by solving a special case of the harmonic mitigation problem of §3.2.
(Because sinusoidal current waveforms always produce a smooth torque output, the choice
of λ is irrelevant.) Note that the sinusoidal current waveforms have noticably higher peak
value than any of the other waveforms. When compared with the optimal waveform for
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Figure 6: The optimal current and voltage waveforms for the both back-EMF waveforms,
for τdes = 0.3 Nm and λ = 2 kW/(Nm)2. The left and right figures show ω = 300 rad/s and
ω = 425 rad/s, respectively, and the blue and green lines correspond to the sinusoidal and
trapezoidal back-EMF waveforms, respectively.
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λ → ∞, the sinusoidal waveform has a greater magnitude for all θ, which immediately
indicates higher power loss.

By varying λ, we can characterize the entire trade-off curve between power loss and
torque ripple (shown in figure 8). Any point on this curve is optimal for some positive
value of λ, and the points corresponding to the waveforms of figures 6 and 7 are shown.
The point corresponding to the optimal sinusoidal current waveforms dose not lie on the
curve, indicating that they are not optimal for any positive λ. Indeed, by using the optimal
waveforms at this point, we can increase efficiency by several percent, depending on our
tolerance for torque ripple.

We also show the curve corresponding to the optimal waveforms for the trapezoidal back-
EMF, which in this case strictly outperforms the sinusoidal back-EMF, assuming optimal
waveforms are used.

6.3 Open-phase fault

We demonstrate the ability of a delta connected motor to operate if one winding has failed
in open circuit, and we find that this is possible, even with active voltage constraints. Note
that in this case, only the first of the three symmetry assumptions (pole symmetry) holds.
In figure 9, we show the optimal waveforms for ω = 650 rad/s and τdes = 0.3 Nm), taking
λ → ∞, thus generating smooth torque.

7 Conclusion

In this paper, we pose torque control of brushless permanent magnet motors with PWM
inverters as an optimal control problem. In this problem, we minimize a (user-defined)
combination of power loss and torque ripple while achieving a desired average torque and
respecting bridge voltage and phase current limits (arising from saturation). The resulting
problem (or one of the proposed variations) is convex, and can therefore be solved quickly and
reliably. We give an operator splitting algorithm which is fast enough to be implemented
in real time (0.4 ms/solve), possibly on embedded platforms, and we give some practical
recommendations to ensure a fast response (tens of microseconds) to changes in the desired
torque.

We conclude by noting that for many classes of AC motors, (e.g., induction machines
and switched reluctance machines), a similar torque control problem would be a nonconvex
optimization problem (due to nonlinear dynamics or a nonlinear relation between torque and
current). Nonconvex optimization problems are hard to solve in general, and the operator
splitting algorithm is not gauranteed to converge. We note, however, that for many noncon-
vex optimization problems, operator splitting methods appear to work well in practice (see
[BPC+11] for details).
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Figure 8: The achievable relative power loss and relative torque ripple for ω = 425 rad/s and
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