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Abstract

We propose a Bayesian expectation-maximization (EM) algorithm for reconstructing structured approximately
sparse signals via belief propagation. The measurements follow an underdetermined linear model where the
regression-coefficient vector is the sum of an unknown approximately sparse signal and a zero-mean white Gaussian
noise with an unknown variance. The signal is composed of large- and small-magnitude components identified by
binary state variables whose probabilistic dependence structure is described by a hidden Markov tree. Gaussian
priors are assigned to the signal coefficients given their state variables and the Jeffreys’ noninformative prior is
assigned to the noise variance. Our signal reconstruction scheme is based on an EM iteration that aims at maximizing
the posterior distribution of the signal and its state variables given the noise variance. We employ a max-product
algorithm to implement the maximization (M) step of our EM iteration. The proposed EM algorithm estimates the
vector of state variablesas well assolves iteratively a linear system of equations to obtain the corresponding signal
estimate. We select the noise variance so that the corresponding estimated signal and state variables (obtained upon
convergence of the EM iteration) have the largest marginal posterior distribution. Our numerical examples show
that the proposed algorithm achieves better reconstruction performance compared with the state-of-the-art methods.

Index Terms

Belief propagation, expectation maximization (EM) algorithm, hidden Markov tree (HMT), max-product algo-
rithm, structured sparsity, sparse signal reconstruction.

I. INTRODUCTION

The advent of compressive sampling (compressed sensing) inthe past few years has sparked research

activity in sparse signal reconstruction, whose main goal is to estimate thesparsestp×1 signal coefficient

vectors from theN ×1 measurement vectory satisfying the following underdetermined system of linear

equations:y = H s, whereH is anN × p sensing matrixandN ≤ p.

A tree dependency structure is exhibited by the wavelet coefficients of many natural images [1]–

[5], see also Fig. 1(a) and [2, Fig. 2]. A probabilistic Markov tree structure has been employed to

model the statistical dependency between the state variables of wavelet coefficients [1]. An approximate

belief propagation algorithm has been first applied to compressive sampling in [6], which employs

sparse Rademacher sensing matrices for Bayesian signal reconstruction. Donohoet al. [7] simplified the

sum-product algorithm by approximating messages with using a Gaussian distribution specified by two
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scalar parameters, leading to theirapproximate message passing (AMP)algorithm. Following the AMP

framework, [8] proposed aturbo-AMP structured sparse signal recovery method based on loopy belief

propagation and turbo equalization and applied it to reconstruct one-dimensional signals; [5] applied the

turbo-AMP approach to reconstruct compressible images. However, the above references do not employ

the exact form of the messages and also have the following limitations: Baronet al. [6] rely on sparsity

of the sensing matrix, the methods by Baronet al. [6] and Donohoet al. [7] apply to unstructured signals

only, and the turbo-AMP approach in [5] and [8] needs columnsof the sensing matrix to be normalized,

see [5, eq. (22)] and [8, Sec. IV.A].

In this paper, we combine the hierarchical measurement model in [9] with a Markov tree prior on

the binary state variables that identify the large- and small-magnitude signal coefficients and develop

a Bayesian maximuma posteriori (MAP) expectation-maximization (EM) signal reconstruction scheme

that aims at maximizing the posterior distribution of the signal and its state variables given the noise

variance, where the maximization (M) step employs a max-product belief propagation algorithm. Unlike

the previous work, wedo notapproximate the message form in our belief propagation scheme. Unlike the

turbo-AMP scheme in [5] and [8], our reconstruction schemedoes notrequire the columns of the sensing

matrix to be normalized. Since there are no loops in the graphical model behind our M-step objective

function, the M step of our EM algorithm is exact. In [10], we proposed a similar EM algorithm for a

random signal model [11] with a purely sparse deterministicsignal component and a noninformative prior

on this component given the binary state variables. We applya grid search to select the noise variance so

that the estimated signal and state variables have the largest marginal posterior distribution.

In Section II, we introduce our measurement and prior models. Section III describes the proposed EM

algorithm, where the M step implementation via the max-product algorithm is presented in Section III-A.

The selection of the noise variance parameter is discussed in Section IV. Numerical simulations in

Section V compare reconstruction performances of the proposed and existing methods.

We introduce the notation:In and 0n×1 denote the identity matrix of sizen and then × 1 vector

of zeros, respectively; “T ” and ‖ · ‖p are the transpose andℓp norm, respectively;N (x;µ,Σ ) denotes

the probability distribution function (pdf) of a multivariate Gaussian random vectorx with meanµ and

covariance matrixΣ ; Inv-χ2(σ2; ν, σ2
0) denotes the pdf of a scaled inverse chi-square distributionwith

ν degrees of freedom and a scale parameterσ2
0, see [12, p. 50 and App. A];|T | is the cardinality of

the setT ; υ(·) is an invertible operator that transforms the two-dimensional matrix element indices into

one-dimensional vector element indices. Finally,ρH denotes the largest singular value of a matrixH, also
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known as the spectral norm ofH, and “⊙” denotes the Hadamard (elementwise) product.

II. M EASUREMENT AND PRIOR MODELS

We model anN × 1 real-valued measurement vectory using the standard additive white Gaussian noise

measurement model with the likelihood function given by thefollowing pdf [2], [5]:

py | s,σ2(y | s, σ2) = N (y ; H s, σ2 Ip) (1)

whereH is anN×p real-valued sensing matrix withrank(H) = N satisfying (without loss of generality)

ρH = 1 (2)

s = [s1, s2, . . . , sp]
T is an unknownp × 1 real-valued signal coefficient vector, andσ2 is the unknown

noise variance.

We adopt the Jeffreys’ noninformative prior for the variance componentσ2:

pσ2(σ2) ∝ (σ2)−1. (3)

Define the vector of binary state variablesq = [q1, q2, . . . , qp]
T ∈ {0, 1}p that determine if the

magnitudes of the signal componentssi, i = 1, 2, . . . , p are small (qi = 0) or large (qi = 1). Assume

thatsi are conditionally independent givenqi and assign the following prior pdf to the signal coefficients:

ps |q, σ2(s | q, σ2) =

p∏

i=1

[N (si ; 0, γ
2 σ2)]qi [N (si ; 0, ǫ

2 σ2)]1−qi (4a)

where γ2 and ǫ2 are known positive constants and, typically,γ2 ≫ ǫ2. Hence, the large- and small-

magnitude signal coefficientssi corresponding toqi = 1 andqi = 0 are modeled as zero-mean Gaussian

random variables with variancesγ2 σ2 andǫ2 σ2, respectively. Consequently,γ2 andǫ2 are relative variances

(to the noise varianceσ2) of the large- and small-magnitude signal coefficients. Equivalently,

ps |q, σ2(s | q, σ2) = N (s ; 0p×1, σ
2D(q)) (4b)

where

D(q) = diag{(γ2)q1 (ǫ2)1−q1, (γ2)q2 (ǫ2)1−q2, . . . , (γ2)qp (ǫ2)1−qp}. (4c)

We now introduce the Markov tree prior probability mass function (pmf) on the state variablesqi

[1], [5]. To make this probability model easier to understand, we introduce two-dimensional signal

element indices(i1, i2). Recall that the conversion operatorυ(·) is invertible; hence, there is a one-to-one

correspondence between the corresponding one- and two-dimensional signal element indices. A parent
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(a)

A

Troot

Tleaf

(b)

Fig. 1. (a) Clustering of significant discrete wavelet transform coefficients of a compressed ‘Cameraman’ image and (b) types of wavelet
decomposition coefficients: approximation, root, and leaf, whose sets are denoted byA, Troot, andTleaf , respectively.

wavelet coefficient with a two-dimensional position index(i1, i2) has four children in the finer wavelet

decomposition level with two-dimensional indices(2 i1 − 1, 2 i2 − 1), (2 i1 − 1, 2 i2), (2 i1, 2 i2 − 1) and

(2 i1, 2 i2), see Fig. 1(b). The parent-child dependency assumption implies that, if a parent coefficient in a

certain wavelet decomposition level has small (large) magnitude, then its children coefficients in the next

finer wavelet decomposition level tend to have small (large)magnitude as well. Denote byρ and c the

numbers of rows and columns of the image, and byL the number of wavelet decomposition levels (tree

depth).

We set the prior pmfpq(q) as follows. In the first wavelet decomposition level (l = 1), assign

pqi(1) = Pr{qi = 1} =

{
1, i ∈ A

Proot, i ∈ Troot
(5a)

where

A = υ
(
{1, 2, . . . , ρ

2L
} × {1, 2, . . . , c

2L
}
)

(5b)

Troot = υ
(
{1, 2, . . . , ρ

2L−1
} × {1, 2, . . . , c

2L−1
}
)
\A (5c)

are the sets of indices of the approximation and root node coefficients andProot ∈ (0, 1) is a known constant

denoting the prior probability that a root node signal coefficient has large magnitude, see Fig. 1(b). In the

levels l = 2, 3, . . . , L, assign

pqi | qπ(i)
(1 | qπ(i)) =

{
PH, qπ(i) = 1
PL, qπ(i) = 0

(5d)
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where π(i) denotes the index of the parent of nodei. Here,PH ∈ (0, 1) and PL ∈ (0, 1) are known

constants denoting the probabilities that the signal coefficientsi is large if the corresponding parent signal

coefficient is large or small, respectively.

Our wavelet tree structure consists of|Troot| trees and spans all signal wavelet coefficients except the

approximation coefficients; hence, the set of indices of thewavelet coefficients within the trees is

T = υ
(
{1, 2, . . . , ρ} × {1, 2, . . . , c}

)
\A (5e)

Define also the set of leaf variable node indices within the tree structure as

Tleaf = υ
(
[{1, 2, . . . , ρ} × {1, 2, . . . , c}] \ [{1, 2, . . . , ρ

2
} × {1, 2, . . . , c

2
}]
)

(5f)

see Fig. 1(b). More complex models are possible; see e.g., [3] and [5], which, however, need at least10

hyperparameters to specify the prior for the same wavelet tree and did not report large-scale examples.

Here, we only need5 tuning parametersProot, PH, PL, γ2, andǫ2, each with a clear meaning. A fairly crude

choice of these parameters is sufficient for achieving good reconstruction performance, see Section V.
The logarithm of the prior pmfpq(q) is

ln pq(q) = const+
[∑

i∈A

ln1(qi = 1)
]
+
[ ∑

i∈Troot

qi lnProot + (1− qi) ln(1− Proot)
]

+
[ ∑

i∈T \Troot

qi qπ(i) lnPH + (1− qi) qπ(i) ln(1− PH)

+qi (1− qπ(i)) lnPL + (1− qi) (1− qπ(i)) ln(1− PL)
]

(5g)

where const denotes the terms that are not functions ofq.

A. Bayesian Inference

Define the vectors of state variables and signal coefficients

θ =
[
θT
1 θT

2 · · · θT
p

]T
, θi =

[
qi, si

]T
. (6)

The joint posterior distribution ofθ andσ2 is

pθ, σ2 |y(θ, σ
2 |y) ∝ py | s,σ2(y | s, σ2) ps |q, σ2(s | q, σ2) pq(q) pσ2(σ2)

∝ (σ2)−(p+N+2)/2 exp[−0.5 ‖y −H s‖22/σ2 − 0.5 sT D−1(q) s/σ2]
( ǫ2
γ2

)0.5 ∑p
i=1 qi

pq(q) (7)

which implies

pσ2 | θ,y(σ
2 | θ, y) = Inv-χ2

(
σ2
∣∣∣ p+N,

‖y −H s‖22 + sT D−1(q) s

p+N

)
(8a)

pθ |y(θ |y) = pθ, σ2 |y(θ, σ
2 |y)

pσ2 |θ,y(σ2 | θ, y)

∝ pq(q)
( ǫ2
γ2

)0.5 ∑p
i=1 qi

/[‖y −H s‖22 + sT D−1(q) s

p+N

](p+N)/2

(8b)
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and

pθ | σ2,y(θ | σ2,y) ∝ exp
[
− 0.5

‖y −Hs‖22 + sT D−1(q)s

σ2

] ( ǫ2
γ2

)0.5∑p

i=1 qi
pq(q). (8c)

For a fixedq, (8b) is maximized with respect tos at

ŝ(q) = D(q)HT [IN +HD(q)HT ]−1 y. (9)

which is the Bayesian linear-model minimum mean-square error (MMSE) estimator ofs for a givenq

[13, Theorem 11.1]. Asǫ2 decreases to zero,̂s(q) becomes more sparse (becoming exactly sparse for

ǫ2 = 0); as ǫ2 increases,̂s(q) becomes less sparse.

Substituting (9) into (8b) yields the followingconcentrated (profile) marginal posterior:

max
s
pθ |y(θ |y) ∝ pq(q)

( ǫ2
γ2

)0.5 ∑p

i=1 qi
/{yT [IN +HD(q)HT ]−1 y

p+N

}(p+N)/2

(10)

which is a function of the state variablesq only.

We wish to maximize (8b) with respect toθ, but cannot perform this task directly. Consequently, we

adopt the following indirect approach: We first develop an EMalgorithm for maximizingpθ |σ2,y(θ | σ2,y)

in (8c) for a givenσ2 (Section III) and then propose a grid search scheme for selecting the best

regularization parameterσ2 so that the estimated signal and state variables have the largest marginal

posterior distribution (8b) (Section IV).

III. A N EM ALGORITHM FOR MAXIMIZING pθ |σ2,y(θ | σ2,y)

Motivated by [9, Sec. V.A], we introduce the following hierarchical two-stage model:

py |z,σ2(y | z, σ2) = N
(
y ; H z, σ2 (IN −HHT )

)
(11a)

pz | s(z | s) = N (z ; s, σ2 Ip) (11b)

wherez is anp×1 vector ofmissing data. Observe that the assumption (2) guarantees that the covariance

matrix σ2 (IN −HHT ) in (11a) is positive semidefinite.

Our EM algorithm for maximizingpθ |σ2,y(θ | σ2,y) in (8c) consists of iterating between the following

expectation (E) and maximization (M) steps:

E step: z(j) = [z
(j)
1 , z

(j)
2 , . . . , z(j)p ]T = s(j) +HT (y −H s(j)) (12)

and

M step: θ(j+1) = argmax
θ

{
− 0.5

‖z(j) − s‖22 + sTD−1(q)s

σ2
+ ln[pq(q)] + 0.5 ln

( ǫ2
γ2

) p∑

i=1

qi

}
(13a)

= argmax
θ

ln pθ |σ2,z(θ | σ2, z(j)) (13b)

wherej denotes the iteration index. For any two consecutive iterations j and j + 1, our EM algorithm
ensures that the objective posterior functiondoes notdecrease [14], i.e.

pθ |σ2,y(θ
(j+1) | σ2,y) ≥ pθ | σ2,y(θ

(j) | σ2,y). (14)
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To simplify the notation, we omit the dependence of the iterates θ(j) on σ2 in this section. Denote by

θ(+∞), s(+∞), andq(+∞) the estimates ofθ, s, andq obtained upon convergence of the above EM iteration.

The above EM iteration provides an estimateq(+∞) of the vector of state variablesq as well asfinds

the solution (9) of the underlying linear system to obtain the corresponding signal estimate:

s(+∞) = ŝ(q(+∞)). (15)

As ǫ2 decreases to zero,s(+∞) becomes more sparse; asǫ2 increases,s(+∞) becomes less sparse.

Appendix A presents the derivation of the E and M steps in (12)and (13) and the proofs of the

monotonicity property (14) and the property (15) of the signal estimate upon convergence.

Note that the M step in (13b) is equivalent to maximizingpθ |σ2,z(θ | σ2, z) for the missing data vector

z = z(j). In the following section, we describe efficient maximization of pθ | σ2,z(θ | σ2, z).

A. M Step: Maximizingpθ |σ2,z(θ | σ2, z)

Before we proceed, define

ŝi(0) =
ǫ2

1 + ǫ2
zi, ŝi(1) =

γ2

1 + γ2
zi (16)

where we omit the dependence ofŝi(0) and ŝi(1) on zi to simplify the notation.
Observe that

pθ |σ2,z(θ | σ2, z) ∝ pθA |σ2,z(θA | σ2, z) pθT | σ2,z(θT | σ2, z) (17)

whereθA andθT consist ofθi, i ∈ A andθi, i ∈ T , respectively, and

pθA |σ2,z(θA | σ2, z) ∝
{∏

i∈A

N (zi ; si, σ
2)N (si ; 0, γ

2 σ2)1(qi = 1)
}

(18a)

pθT | σ2,z(θT | σ2, z) ∝
{∏

i∈T

N (zi; si, σ
2) [N (si; 0, γ

2 σ2)]qi [N (si; 0, ǫ
2 σ2)]1−qi

}
pqT

(qT ). (18b)

Here, (18a) follows from (5a) and (18b) corresponds to the hidden Markov tree (HMT) probabilistic model

that contains no loops. Fig. 2 depicts an HMT that is a part of the probabilistic model (18b). Maximizing

pθA |σ2,z(θA | σ2, z(j)) in (18a) with respect toθi, i ∈ A yields

θ̂i =
[
1, ŝi(1)

]T
, i ∈ A (19)

where we have used the identity (B1a) in Appendix B.

We now apply the max-product belief propagation algorithm [15]–[17] to each tree in our wavelet tree

structure, with the goal to find the mode ofpθT | σ2,z(θT | σ2, z). We represent the HMT probabilistic

model forpθT | σ2,z(θT | σ2, z) via potential functionsas [see (18b)]

pθT | σ2,z(θT | σ2, z) ∝
[ ∏

i∈T \Troot

ψi(θi)ψi,π(i)(qi, qπ(i))
] [ ∏

i∈Troot

ψi(θi)
]

(20)
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i iz

Fig. 2. A hidden Markov tree, part of the probabilistic model(18b).

where

ψi(θi) =

{
N (zi ; si, σ

2) [N (si ; 0, γ
2 σ2)]qi [N (si ; 0, ǫ

2 σ2)]1−qi, i ∈ T \Troot

N (zi ; si, σ
2) [ProotN (si ; 0, γ

2 σ2)]qi [(1− Proot)N (si ; 0, ǫ
2 σ2)]1−qi, i ∈ Troot

(21a)

and, fori ∈ T \Troot,

ψi,π(i)(qi, qπ(i)) = [PH
qi (1− PH)

1−qi]qπ(i) [PL
qi (1− PL)

1−qi]1−qπ(i). (21b)

Our algorithm for maximizing (20) consists of computing andpassing upward and downward messages

and calculating and maximizing beliefs.

1) Computing and Passing Upward Messages:We propagate the upward messages from the lowest

decomposition level (i.e., the leaves) towards the root of the tree. Fig. 3(a) depicts the computation of the

upward message from variable nodeθi to its parent nodeθπ(i) wherein we also define achild of θi as a

variable nodeθk with index k ∈ ch(i), wherech(i) is the index set of the children ofi: for i = υ(i1, i2),

ch(i) = {υ
(
(2 i1 − 1, 2 i2 − 1), (2 i1 − 1, 2 i2), (2 i1, 2 i2 − 1), (2 i1, 2 i2)

)
}. Here, we use a circle and an

edge with an arrow to denote a variable node and a message, respectively. The upward messages have

the following general form [16]:

mi→π(i)(qπ(i)) = αmax
θi

{
ψi(θi)ψi,π(i)(qi, qπ(i))

∏

k∈ch(i)

mk→i(qi)
}

(22)
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whereα > 0 denotes a normalizing constant used for computational stability [16]. For nodes that have

no children (corresponding to the levelL, i.e., i ∈ Tleaf ), we set the multiplicative term
∏

k∈ch(i)mk→i(θi)

in (22) to one.

In Appendix B-I, we show that the only two candidates forθi in the maximization of (22) are[0, ŝi(0)]T

and [1, ŝi(1)]T , see (16).

Substituting these candidates into (22) and normalizing the messages yields (see Appendix B-I)

mi→π(i)(qπ(i)) = [µu
i (0)]

1−qπ(i) [µu
i (1)]

qπ(i) (23a)

where[µu
i (0), µ

u
i (1)]

T = µu
i ,

µu
i =

[max{νu
0,i ⊙ ηu

i }, max{νu
1,i ⊙ ηu

i }]T
max{νu

0,i ⊙ ηu
i }+max{νu

1,i ⊙ ηu
i }

=

[
exp(lnmax{νu

0,i ⊙ ηu
i } − lnmax{νu

1,i ⊙ ηu
i }), 1

]T

1 + exp(lnmax{νu
0,i ⊙ ηu

i } − lnmax{νu
1,i ⊙ ηu

i })
(23b)

νu
0,i =

[
1− PL, PL

]T ⊙ φ(zi) (23c)

νu
1,i =

[
1− PH, PH

]T ⊙ φ(zi) (23d)

ηu
i =

{ ⊙
k∈ch(i)µ

u
k, i ∈ T \Tleaf[

1, 1
]T
, i ∈ Tleaf

(23e)

φ(z) =
[
exp(−0.5 z2

σ2+σ2ǫ2
)/ǫ, exp(−0.5 z2

σ2+σ2γ2 )/γ
]T

(23f)

and ǫ =
√
ǫ2 > 0 and γ =

√
γ2 > 0. A numerically stable implementation of (23b) that we employ

is illustrated in the second expression in (23b). Similarly, the elementwise products in (23c)–(23e) are

implemented as exponentiated sums of logarithms of the product terms.
2) Computing and Passing Downward Messages:Upon obtaining all the upward messages, we now

compute the downward messages and propagate them from the root towards the lowest level (i.e., the
leaves). Fig. 3(b) depicts the computation of the downward message from the parentθπ(i) to the variable
nodeθi, which involves upward messages toθπ(i) from its other children, i.e. thesiblingsof θi, marked
asθk, k ∈ sib(i). This downward message also requires the message sent toθπ(i) from its parent node,
which is thegrandparentof θi, denoted byθgp(i). The downward messages have the following general
form [16]:

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))mgp(i)→π(i)(qπ(i))

∏

k∈sib(i)

mk→π(i)(qπ(i))
}

(24)

whereα > 0 denotes a normalizing constant used for computational stability. For the variable nodesi

in the second decomposition level that have no grandparents(i.e., π(i) ∈ Troot), we set the multiplicative

termmgp(i)→π(i)(qπ(i)) in (24) to one.

In Appendix B-II, we show that the only two candidates forθπ(i) in the maximization of (24) are

[0, ŝπ(i)(0)]
T and [1, ŝπ(i)(1)]

T , see also (16). Substituting these candidates into (24) andnormalizing the

messages yields (see Appendix B-II)

mπ(i)→i(qi) = [µd
i (0)]

1−qi [µd
i (1)]

qi (25a)
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( ) ( )( )i i im q

i

( )i

ch( )( )k k i

(a)

( ) ( )i i im q

i

  sib( )( )k k i

( )i

gp( )i

(b)

Fig. 3. Computing and passing (a) upward and (b) downward messages.

for π(i) ∈ T \Tleaf , where[µd
i (0), µ

d
i (1)]

T = µd
i and

µd
i =

[max{νd
0,i ⊙ ηd

i }, max{νd
1,i ⊙ ηd

i }]T
max{νd

0,i ⊙ ηd
i }+max{νd

1,i ⊙ ηd
i }

=

[
exp(lnmax{νd

0,i ⊙ ηd
i } − lnmax{νd

1,i ⊙ ηd
i }), 1

]T

1 + exp(lnmax{νd
0,i ⊙ ηd

i } − lnmax{νd
1,i ⊙ ηd

i })
(25b)

νd
0,i =

[
1− PL, 1− PH

]T ⊙ φ(zπ(i))⊙
[ ⊙

k∈sib(i)

µu
k

]
(25c)

νd
1,i =

[
PL, PH

]T ⊙ φ(zπ(i))⊙
[ ⊙

k∈sib(i)

µu
k

]
(25d)

ηd
i =

{ [
1− Proot, Proot

]T
, π(i) ∈ Troot

µd
π(i), π(i) ∈ (T \Troot)\Tleaf

. (25e)

A numerically stable implementation of (25b) that we employis illustrated in the second expression in

(25b).

The above upward and downward messages have discrete representations, which is practically important

and is a consequence of the fact that we use a Gaussian prior onthe signal coefficients, see (4). Indeed, in

contrast with the existing message passing algorithms for compressive sampling [5]–[8], our max-product

scheme employsexactmessages.
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3) Maximizing Beliefs:Upon computing and passing all the upward and downward messages, we

maximize the beliefs, which have the following general form[16]:

b(θi) = αψi(θi)mπ(i)→i(qi)
∏

k∈ch(i)

mk→i(qi) (26)

for eachi ∈ T , whereα > 0 is a normalizing constant. [In (26), we setmπ(i)→i(qi) = 1 if i ∈ Troot and
∏

k∈ch(i)mk→i(qi) = 1 if i ∈ Tleaf .] We then use these beliefs to obtain the mode

θ̂T = argmax
θT

pθT | σ2, z(θT | σ2, z) (27)

where the elements of̂θT are [see (16)]

θ̂i =
[
q̂i, ŝi(q̂i)

]T
= argmax

θi

b(θi) =

{ [
1, ŝi(1)

]T
, βi(1) ≥ βi(0)[

0, ŝi(0)
]T
, otherwise

, i ∈ T (28a)

and

βi =
[
βi(0), βi(1)

]T
=

{
α1

[
1− Proot, Proot

]T ⊙ φ(zi)⊙ ηu
i , i ∈ Troot

α1φ(zi)⊙ µd
i ⊙ ηu

i , i ∈ T \ Troot
. (28b)

Here,α1 > 0 is a normalizing constant. The detailed derivation for the forms of θ̂i and βi in (28) is

provided in Appendix B-III.

In summary,

θ̂ = argmax
θ

pθ | σ2,z(θ | σ2, z) (29)

whereθ̂ = [ θ̂
T

1 θ̂
T

2 ··· θ̂
T

p
]T and

θ̂i =
[
q̂i, ŝi(q̂i)

]T
=





[
1, ŝi(1)

]T
, i ∈ A[

1, ŝi(1)
]T
, βi(1) ≥ βi(0), i ∈ T[

0, ŝi(0)
]T
, βi(1) < βi(0), i ∈ T

(30)

follows by combining (19) and (28a) and we have omitted the dependence of̂θ on z and θ̂i on zi to

simplify the notation.

IV. SELECTING σ2

We can integrateσ2 out, yielding the marginal posterior ofθ in (8b), and derive an ’outer’ EM iteration

for maximizingpθ |y(θ |y):

(i) Fix σ2 and apply the EM iteration proposed in Section III to obtain an estimateθ(+∞)(σ2) of θ;

(ii) Fix θ to the value obtained in (i) and estimateσ2 as

σ̂2(θ) =
‖y −H s‖22 + sT D−1(q) s

p+N
. (31)

Even though it guarantees monotonic increase of the marginal posterior pθ |y(θ |y), the ’outer’ EM

iteration (i)–(ii) does not work well in practice because itgets stuck in an undesirable local maximum of
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Fig. 4. Grid search in selectingσ2.

pθ |y(θ |y). To find a better (generally local) maximum ofpθ |y(θ |y), we apply a grid search overσ2 as

follows.

We apply the EM algorithm in Section III using a range of values of the regularization parameterσ2.

We traverse the grid ofK values ofσ2 sequentially and use the signal estimate from the previous grid

point to initialize the signal estimation at the current grid point: in particular, we move from a largerσ2

(sayσ2
old) to the next smallerσ2

new(< σ2
old) and uses(+∞)(σ2

old) (obtained upon convergence of the EM

iteration in Section III forσ2 = σ2
old) to initialize the EM iteration atσ2

new. The largestσ2 on the grid and

the initial signal estimate at this grid point are selected as

σ2
MAX

=
‖y‖22
p+N

, θ(0)(σ2
MAX

) = 02p×1. (32a)

The consecutive grid pointsσ2
new andσ2

old satisfy

σ2
new =

σ2
old

d
(32b)

whered > 1 is a constant determining the search resolution. Finally, we select theσ2 from the above

grid of candidates that yields the largest marginal posterior distribution (8b):

σ2
⋆ = arg max

σ2∈{σ2
MAX,σ2

MAX/d,...,σ2
MAX/dK−1}

pθ |y(θ
(+∞)(σ2) |y) (33)

and the final estimates ofθ ands asθ(+∞)(σ2
⋆) ands(+∞)(σ2

⋆), respectively, see Fig. 4.

V. NUMERICAL EXAMPLES

We compare the reconstruction performances of the following methods:
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• our proposedmax-product EMalgorithm in Section III with the variance parameterσ2 selected using

the marginal-posterior based criterion in Section IV (labeled MP-EM), search resolutiond = 2, and

MATLAB implementations available at http://home.eng.iastate.edu/~ald/MPEM.html;

• our max-product EM algorithm in Section III withσ2 tuned manuallyfor good performance (labeled

MP-EMOPT) with d = 2;

• the turbo-AMP approach [5] with a MATLAB implementation at http://www.ece.osu.edu/~schniter/

turboAMPimaging and the tuning parameters chosen as the default values in this implementation;

• the fixed-point continuation active set algorithm [18] (labeled FPCAS) that aims at minimizing the

Lagrangian cost function

0.5 ‖y −H s‖22 + τ ‖s‖1 (34a)

with the regularization parameterτ computed as

τ = 10a ‖HT y‖∞ (34b)

wherea is a tuning parameter chosen manually to achieve good reconstruction performance;

• the Barzilai-Borwein version of the gradient-projection for sparse reconstruction method with debi-

asing in [19, Sec. III.B] (labeled GPSR) with the convergence thresholdtolP = 10−5 and tuning

parametera in (34b) chosen manually to achieve good reconstruction performance;

• the double overrelaxation (DORE) thresholding method in [11, Sec. III] or its approximation (DOREapp)

where the(HHT )−1 term is approximated by a diagonal matrix, initialized by the zero sparse signal

estimate:

s(0) = 0p×1; (35)

• the normalized iterative hard thresholding (NIHT) scheme [20] initialized by the zeros(0) in (35);

• the model-based iterative hard thresholding (MB-IHT) algorithmn [4] using a greedy tree approxi-

mation [21], initialized by the zeros(0) in (35).

For the MP-EM, DORE, NIHT, and MB-IHT iterations, we use the following convergence criterion:

‖s(j+1) − s(j)‖22
p

< δ (36)

whereδ > 0 is the convergence threshold selected in the following examples so that the performances of

the above methods do not change significantly by further decreasingδ.

The sensing matrixH has the following structure:

H =
1

ρΦ
ΦΨ (37)
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where Φ is the N × p sampling matrix andΨ is the p × p orthogonal sparsifying transform matrix

(satisfyingΨΨT = Ip). Note thatH in (37) satisfies (2). In the following examples, the sensingmatrices

Φ are either random Gaussian (Sections V-A and V-B) or structurally random [22] (Section V-C) and

the sparsifying transform matricesΨ are either identity (Section V-A) or inverse Haar wavelet transform

matrices (Sections V-B and V-C). We set the tree depthL = 4.

A. Small-scale Structured Sparse Signal Reconstruction

We generated the binary state variablesq of lengthp = 1024 using the Markov tree model in Section II with

PL = 10−5. Conditional onqi, si are generated according to (4b). Here, the matrix-to-vector conversion

operatorυ(·) corresponds to simple columnwise conversion. The entries of the sampling matrixΦ in

(37) are independent, identically distributed (i.i.d.) standard Gaussian random variables and the transform

matrix Ψ in (37) is identity:Ψ = Ip.

We vary the values ofγ2, ǫ2, σ2, PH, andProot to test the performances of various methods under

different conditions. Our performance metric is theaveragemean-square error (MSE) of an estimates̃

of the signal coefficient vector:

MSE{s̃} =
E Φ,s,y[‖s̃ − s‖22]

p
(38)

computed using500 Monte Carlo trials, whereaveragingis performed over the random Gaussian sampling
matricesΦ, signals, and measurementsy. The expected number of large-magnitude signal coefficients is

E
[ p∑

i=1

qi

]
=

p

4L

(
1 + 3

L−1∑

l=0

4l Pl

)
(39a)

wherePl is the marginal probability that a state variable in thelth tree level is equal to one, computed

recursively as follows:

Pl = Pl−1PH + (1− Pl−1)PL (39b)

initialized byP0 = Proot.

NIHT, DORE, and MB-IHT require knowledge of the signal sparsity level r; in this example, we set

r for these methods to the true signal support size. Forσ2 = 1, we select the convergence threshold in

(36) to δ = 10−4 and forσ2 = 10−6, we select this convergence threshold toδ = 10−10. For GPSR and

FPCAS, we varya within the set{−1, −2, −3, −4, −5, −6, −7, −8, −9} and, for eachN/p and each

of the two methods, we use the optimala that achieves the smallest MSE. For MP-EM, we set the grid

lengthK = 16.

Recall that the turbo-AMP approach needs normalized columns of the sensing matrix, see [5, eq. (22)].

When applying the turbo-AMP method, we scale the sensing matrix asHscale= (1/
√
N) ΦΨ so that it
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has approximately normalized columns. With measurementsy and scaled sensing matrixHscale, turbo-

AMP returns the scaled signal estimatesscale, and we compute the final turbo-AMP signal estimate as

(ρΦ/
√
N) sscale, whose performance is evaluated using (38).

Figs. 5 and 6 show the MSEs of different methods for several choices ofγ2, ǫ2, andσ2 where we fix

PH = Proot = 0.5 (corresponding toE [
∑p

i=1 qi]/p = 0.0918) and considerσ2 ∈ {1, 10−6}, ǫ2 ∈ {0.1, 10},

and γ2 ∈ {103, 105}. Here, a larger value of the low-signal relative varianceǫ2 implies that the signal

coefficient vectors is less (approximately) sparse and a larger value of the high-signal relative varianceγ2

implies a relatively higher signal-to-noise (SNR). Observe that the noise varianceσ2 = 10−6 corresponds

to the noise precision1/σ2 = 106, which is the mean of the prior pdf for1/σ2 used in [5, Sec. IV,

p. 3444].

In Fig. 5, we show the MSEs of various methods as functions of the subsampling factorN/p for more

sparse signals (ǫ2 = 0.1), relatively lower SNR (γ2 = 103), and variable noise varianceσ2 ∈ {1, 10−6}.

Observe that turbo-AMP is sensitive to the choice of the noise varianceσ2: It has the largest MSE for

σ2 = 1 andN/p < 0.4, but becomes the second best method forσ2 = 10−6 and mostN/p. In contrast,

MP-EM keeps the best reconstruction performance asσ2 varies: The MSE of MP-EM is up to4.6 times

smaller than its closest competitor for bothσ2 = 1 andσ2 = 10−6.

The MSEs of most methods are roughly106 times smaller in Fig. 5(b) whereσ2 = 10−6 than the

corresponding MSEs in Fig. 5(a) whereσ2 = 1. However, this is not true for turbo-AMP, which is

very sensitive to the selection of its prior pdf for the noiseprecision1/σ2. For the noise varianceσ2 =

10−6, turbo-AMP performs significantly better than forσ2 = 1 (upon taking into account the scaling

adjustment by the factor10−6), which is facilitated by the fact that1/σ2 = 106 is the mean of the

prior pdf for 1/σ2 used in [5, Sec. IV, p. 3444] and in the corresponding MATLAB implementation at

http://www.ece.osu.edu/~schniter/turboAMPimaging that we employ.

The approximate invariance of MP-EM to scaling of the measurements can be explained by the fact that

the shape of the concentrated marginal posterior distribution (10) (which is a function of state variables

q only) does not change as we scale the measurementsy by a constant.

In Fig. 6, we fixσ2 = 10−6, focus onless (approximately) sparse signalswith ǫ2 = 10, and show the

MSEs of various methods as functions of the subsampling factor N/p for γ2 = 105 (relatively higher

SNR) andγ2 = 103 (lower SNRs). Whenγ2 = 105, turbo-AMP and MP-EM clearly outperform all other

methods: turbo-AMP has the smallest MSE forN/p < 0.3. The MSE of turbo-AMP is larger than that of

MP-EM whenN/p ≥ 0.3. Whenγ2 = 103, MP-EM outperforms all the other methods except MP-EMOPT
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Fig. 5. MSEs as functions of the subsampling factorN/p for PH = Proot = 0.5, γ2 = 103, ǫ2 = 0.1 and (a)σ2 = 1 and (b)σ2 = 10−6.
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Fig. 6. MSEs as functions of the subsampling factorN/p for PH = Proot = 0.5, σ2 = 10−6, ǫ2 = 10 and (a)γ2 = 105 and (b)γ2 = 103.

for all the subsampling factors.

Parts (b) of Figs. 5 and 6 show the MSE performances of variousmethods for reconstructing signals

that aremoreand less (approximately) sparse, respectively, with all other simulation parameters beingthe

same. For each method, the more sparse signals can be reconstructed with a smaller MSE than the less

sparse signals at each subsampling factorN/p: Compare Figs. 5(b) and 6(b).

In both Figs. 5 and 6, the MSE of MP-EM is close to that of MP-EMOPT, which implies that the

marginal-posterior based criterion in Section IV selects the variance parameter well in this example.

Both MP-EM and turbo-AMP yield generally non-sparse signalestimates, particularly when the under-

lying signals is less (approximately) sparse, i.e.,ǫ2 = 10.
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Fig. 7. MSEs as functions of the expected significant coefficient ratioE [
∑p

i=1 qi]/p for σ2 = 10−6, γ2 = 103, N/p = 0.35 and (a)
ǫ2 = 0.1 and (b)ǫ2 = 10.

Fig. 7 shows the MSEs of different methods as functions of thenormalized expected number of large-

magnitude signal coefficientsE [
∑p

i=1 qi]/p (corresponding to theexpected significant coefficient ratio),

obtained by varyingPH = Proot, where we fixσ2 = 10−6, γ2 = 103, N/p = 0.35 and considerǫ2 ∈
{0.1, 10}. MP-EMOPT has the smallest MSE for all expected significant coefficientratios in Fig. 7. MP-EM

provides a relatively poor performance compared with othermethods whenE [
∑p

i=1 qi] is small, implying

that the marginal-posterior based criterion in Section IV does not select the variance parameterσ2 well

for very small expected significant coefficient ratios and that manual tuning ofσ2 is needed in this case.

For more (approximately) sparse signals withǫ2 = 0.1 in Fig. 7(a), MP-EM outperforms all other

methods except MP-EMOPT whenE [
∑p

i=1 qi]/p ≥ 0.0655. For less sparse signals withǫ2 = 10 in Fig. 7(b),

MP-EM becomes the closest competitor to MP-EMOPT for E [
∑p

i=1 qi]/p ≥ 0.0473. For both more and less

sparse signals, the gap between the MSEs of MP-EM and MP-EMOPT becomes smaller asE [
∑p

i=1 qi]

increases. Turbo-AMP is the second best method whenE [
∑p

i=1 qi]/p < 0.0655 and E [
∑p

i=1 qi]/p <

0.0473 for ǫ2 = 0.1 andǫ2 = 10, respectively. However, it achieves a relatively fair performance for larger

E [
∑p

i=1 qi].

For more (approximately) sparse signals withǫ2 = 0.1 in Fig. 7(a), the convex approaches (GPSR

and FPCAS) outperform the hard thresholding methods (DORE, MB-IHT, NIHT) when E [
∑p

i=1 qi]/p ≥
0.0655. For less sparse signals withǫ2 = 10 in Fig. 7(b), the convex approaches outperform the hard

thresholding methods over the entire range of expected significant coefficient ratios. With the exception

of MP-EM and MP-EMOPT, GPSR and FPCAS have smaller MSEs than all the other methods in Fig. 7(a)
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whenE [
∑p

i=1 qi]/p ≥ 0.104.

MB-IHT, which employs a greedy tree approximation and deterministic tree structure, achieves quite

a poor MSE performance in Figs. 5–7. A relatively poor performance of MB-COSAMP (which employs

the same deterministic tree structure) has also been reported in [5, Sec. IV.B].

B. Image Reconstruction Using Gaussian I.I.D. Sampling Matrices

We reconstruct the128 × 128 ‘Cameraman’ image from compressive samples generated using random

sampling matricesΦ with i.i.d. standard normal elements and thep× p orthogonal inverse Haar wavelet

transform matrixΨ. Here, the matrix-to-vector conversion operatorυ(·) is based on the MATLAB wavelet

decomposition functionwavedec2 with Haar wavelet, which has also been used in [3] and [5]. Our

performance metric is the average MSE of a signal coefficientvector estimatẽs:

MSE{s̃} =
E Φ[‖s̃ − s‖22]

p
(40)

computed using10 Monte Carlo trials, where averaging is performed over the random Gaussian sampling

matricesΦ.

Here, we employ DOREapp that approximates the(HHT )−1 = ρ2Φ (ΦΦT )−1 term by(ρ2Φ/p) IN , which

is justified by the fact thatE Φ[ΦΦ
T ] = p IN holds in this example, see also (37). For DOREapp, we apply

the following empirical Bayesian estimate of random signalvectorz [11, eq. (16)]:

z(+∞) = s(+∞) +HT (HHT )−1(y −Hs(+∞)) (41)

wheres(+∞) denotes the sparse signal estimates obtained upon convergence of DOREapp iteration and

the (HHT )−1 term is approximated by(ρ2Φ/p) IN . We set the sparsity levelr for NIHT and DOREapp

as 2000N/p and 2500N/p for MB-IHT, tuned for good MSE performance. The convergencethreshold

in (36) is set toδ = 10−5. The grid length in MP-EM is set asK = 12 and the tuning parameters for

MP-EM are chosen as

γ2 = 1000, ǫ2 = 0.1, Proot = PH = 0.2, PL = 10−5. (42)

For GPSR and FPCAS, we tuned the regularization parameterτ manually by varyinga with the set

{−1, −2, −3, −4, −5, −6, −7, −8, −9} : the best reconstruction performances are achieved fora = −3.

When applying the turbo-AMP method, we scale the sensing matrix asHscale= (1/
√
N) ΦΨ and apply

the same scaling correction as in the example in Section V-A.

Fig. 8 shows the MSE performances of different algorithms asfunctions of the normalized number of

measurements (subsampling factor)N/p. MP-EM achieves the best MSE whenN/p ≤ 0.35. The MSEs
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of GPSR and FPCAS are close to each other and smaller than those of DOREapp, NIHT, and MB-IHT for

all N/p and the MSE of MP-EM is1.4 to 2.4 times smaller than that of GPSR and FPCAS, see Fig. 8.

MB-IHT has the largest MSE for mostN/p, which is likely due to the fact that it employs the

deterministic tree structure, as discussed earlier.

ForN/p ≤ 0.35, turbo-AMP performs similarly to DOREapp, NIHT, and MB-IHT, but it outperforms all

other methods forN/p > 0.35. The reasons why turbo-AMP performs well for largeN/p, outperforming

all competitors, are likely the followings:

• it uses a more general prior on the binary state variables than our MP-EM method, which allows the

tree probability parametersPH, PL, γ2, andǫ2 to vary between the signal decomposition levels, and

• learns the tree probability parameters parameters from the measurements.

In contrast, our MP-EM method employs the crude choices of the tree and other tuning parameters in (42).

C. Large-scale Image Reconstruction Using a Structurally Random Sampling Matrix

We now reconstruct the standard256×256 ‘Lena’ and ‘Cameraman’ images. As in Section V-B, the matrix-

to-vector conversion operatorυ(·) is based on the MATLAB wavelet decomposition functionwavedec2

with Haar wavelet. The sampling matrixΦ is generated from structurally random compressive samples[22]

and the transform matrixΨ in (37) is thep× p orthogonal inverse Haar wavelet transform matrix, which

implies that the sensing matrixH has orthonormal rows:H HT = IN and, consequently,ρΦ = ρH = 1.

Our performance metric is the peak signal-to-noise ratio (PSNR) of an estimated signal̃s:

PSNR (dB)= 10 log10

{ [(Ψs)MAX − (Ψs)MIN]
2

‖s̃− s‖22/p
}
. (43)
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Here, we employ the exact DORE and the exact random signal estimate in (41), which are computa-

tionally tractable becauseH has orthonormal rows. We set the sparsity levelr for NIHT and DORE as

10000N/p and 15000N/p for MB-IHT, tuned for good PSNR performance. The convergence threshold

in (36) is set toδ = 0.1. The tuning parameters for MP-EM are given in (42) and the grid length in

MP-EM is set asK = 12, the same as in Section V-B. We tuned the regularization parametersτ in (34b)

for FPCAS and GPSR manually and found that the best performance is achieved whena = −3 for both

algorithms.

When applying the turbo-AMP method, we scale the sensing matrix asHscale= (
√
p/N) ΦΨ. With

measurementsy and scaled sensing matrixHscale, turbo-AMP returns the scaled signal estimatesscale,

and we compute the final turbo-AMP signal estimate as(
√
p/N) sscale, whose performance is evaluated

using (43). Our empirical experience shows that scaling thesensing matrix improves the reconstruction

performance of the turbo-AMP algorithm in this example.

Fig. 9 shows the PSNRs and CPU times achieved by various methods when reconstructing the256×256

‘Lena’ image. ForN/p < 0.4, the proposed MP-EM method outperforms all other methods, where the

performance improvement compared with the closest competitor varies between2.4 dB and2.6 dB. For

N/p ≥ 0.4, turbo-AMP outperforms all other methods. In terms of CPU time, DORE and NIHT are the

fastest among all the methods compared. It takes around7 seconds as the runtime for turbo-AMP at each

measurement point. MP-EM is1.5 to 2.3 times slower than turbo-AMP, but obviously faster than GPSR,

FPCAS, and MB-IHT.1

Fig. 10 shows the PSNRs and CPU times achieved by various methods when reconstructing the256×256

‘Cameraman’ image. ForN/p < 0.4, the proposed MP-EM method outperforms all other methods byat

least2.6 dB. ForN/p ≥ 0.4, turbo-AMP outperforms all other methods, but performs quite poorly for

N/p < 0.35: a similar pattern that occurs also in Fig. 9. According to Fig. 10(b), both DORE and NIHT

consume less than4 s in terms of CPU time. It takes around7 s for turbo-AMP at every measurement

point. MP-EM is still consistently faster than GPSR, FPCAS, and MB-IHT, and requires4.0 to 10.8 s

more than turbo-AMP.

In Figs. 9 and 10, MB-IHT achieves a fair performance and consumes the longest CPU time.

Figs. 11 and 12 show the reconstructed256 × 256 ‘Lena’ and ‘Cameraman’ images by different

methods forN/p = 0.375, respectively: The MP-EM algorithm achieves better reconstructed image quality

compared with the other methods.

1Regarding the reported CPU time, note that the turbo-AMP code does not use MATLAB only, but combines MATLAB and JAVA codes.
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Fig. 9. (a) PSNRs and (b) CPU times as functions of the subsampling factorN/p for the 256× 256 ‘Lena’ image.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
18

20

22

24

26

28

30

32

34

36

N / p

P
S

N
R

(d
B

)

 

 

MP−EM
turbo−AMP
GPSR
FPC

AS

DORE
MB−IHT
NIHT

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

0

10
1

10
2

10
3

N / p

C
P

U
 ti

m
e(

s)

 

 

MB−IHT
FPC

AS

GPSR
MP−EM
turbo−AMP
DORE
NIHT

(b)

Fig. 10. (a) PSNRs and (b) CPU times as functions of the subsampling factorN/p for the 256 × 256 ‘Cameraman’ image.

VI. CONCLUDING REMARKS

We presented a Bayesian EM algorithm for reconstructing approximately sparse signal from compressive

samples using a Markov tree prior for the signal coefficients. We employed the max-product belief

propagation algorithm to implement the M step of the proposed EM iteration. Compared with the existing

message passing algorithms in the compressive sampling area, our method does not approximate the

message form. The simulation results show that our algorithm often outperforms existing algorithms for

simulated signals and standard test images with different sampling operators.

Our future work will include the convergence analysis of theMP-EM algorithm, incorporating other

measurement models, using a more general prior on the binarystate variables, and designing schemes for
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(a) True Image (b) MP-EM (PSNR= 28.40 dB)

(c) turbo-AMP (PSNR= 24.85 dB) (d) MB-IHT (PSNR= 25.36 dB)

(e) GPSR (PSNR= 26.01 dB) (f) FPCAS (PSNR= 25.86 dB)

(g) NIHT (PSNR= 24.98 dB) (h) DORE (PSNR= 25.36 dB)

Fig. 11. The ‘Lena’ image reconstructed by various methods for N/p = 0.375.
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(a) True Image (b) MP-EM (PSNR= 30.53 dB)

(c) turbo-AMP (PSNR= 27.95 dB) (d) MB-IHT (PSNR= 26.68 dB)

(e) GPSR (PSNR= 27.53 dB) (f) FPCAS (PSNR= 27.50 dB)

(g) NIHT (PSNR= 26.57 dB) (h) DORE (PSNR= 26.82 dB)

Fig. 12. The ‘Cameraman’ image reconstructed by various methods forN/p = 0.375.
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learning the tree parameters from the measurements.

APPENDIX

APPENDIX A
DERIVATION OF THE EM ALGORITHM AND PROOFS OFITS MONOTONICITY AND (15)

Consider the hierarchical two-stage model in (11). The complete-data posterior distribution for knownσ2 is

pθ,z|σ2,y(θ, z|σ2,y) ∝ py|z,σ2(y|z, σ2) pz|s(z|s) ps|q,σ2(s|q, σ2) pq(q) (σ
2)−1

∝ exp{−1
2
(y −Hz)T [C(σ2)]−1(y −Hz)}√

det[C(σ2)]
(ǫ2/γ2)0.5

∑p

i=1 qi pq(q)

· exp[−0.5 ‖z − s‖22/σ2 − 0.5 sT D−1(q) s/σ2] (A1a)

where

C(σ2) = σ2(IN −HHT ) (A1b)

and

pz|σ2,y,θ(z|σ2,y, θ) = pz|σ2,y,s(z|σ2,y, s) = N (z|E z|σ2,y,s(z|σ2,y, s), covz|σ2,y,s(z|σ2,y, s))

(A1c)

where

E z|σ2,y,s(z|σ2,y, s) = {HT [C(σ2)]−1H + Ip/σ
2}−1{HT [C(σ2)]−1y + s/σ2} (A1d)

covz|σ2,y,s(z|σ2,y, s) = {HT [C(σ2)]−1H + Ip/σ
2}−1 (A1e)

By using the matrix inversion lemma [23, eq. (2.22), p. 424]:

(R + STU)−1 = R−1 − R−1S(T−1 + UR−1S)−1UR−1 (A2a)

and the following identity [23, p. 425]:

(R + STU)−1ST = R−1S(T−1 + UR−1S)−1 (A2b)

we obtain

E z|σ2,y,s(z|σ2,y, s) = s +HT (y −Hs) (A3)

which leads to (12).
The objective functionln pθ | σ2,y(θ | σ2,y) that we aim to maximize in Section III satisfies the following

property in the EM iteration:

ln pθ | σ2,y(θ | σ2,y) = Q(θ|θ(j))−H(θ|θ(j)) (A4a)

where

Q(θ|θ(j)) , E z|σ2,y,θ

[
ln pθ,z|σ2,y(θ, z|σ2,y)|σ2,y, θ(j)

]
(A4b)

H(θ|θ(j)) , E z|σ2,y,θ

[
ln pz|σ2,y,θ(z|σ2,y, θ)|σ2,y, θ(j)

]
(A4c)
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From (A1a) and (A3),Q(θ|θ(j)) could be computed as

Q(θ|θ(j)) = const+ E z|σ2,y,θ

{
− 0.5(y −Hz)T [C(σ2)]−1(y −Hz)− 0.5 ‖z − s‖22/σ2

−0.5 sT D−1(q) s/σ2 + ln[pq(q)] + 0.5 ln(ǫ2/γ2)

p∑

i=1

qi

∣∣∣σ2,y, θ(j)
}

= const− 0.5
‖z(j) − s‖22 + sT D−1(q) s

σ2
+ ln[pq(q)] + 0.5 ln

( ǫ2
γ2
) p∑

i=1

qi (A5)

where const denotes the terms that are not functions ofθ and (13a) follows. SinceQ(θ|θ(j)) is maximized
at θ(j+1), we have

Q(θ(j+1)|θ(j)) ≥ Q(θ(j)|θ(j)) (A6)

and (14) follows from (A4a) by using the inequalities (A6) and

H(θ(j+1)|θ(j)) ≤ H(θ(j)|θ(j)) (A7)

where (A7) is a consequence of the fact thatH(θ|θ(j)) is maximized with respect toθ at θ = θ(j).

Proof of (15): For a givenq, (A5) is a quadratic function ofs that is easy to maximize with respect

to s:

argmax
s

Q(θ|θ(j)) =
[
D−1(q) + Ip

]−1
z(j). (A8)

Therefore, the estimates ofs andq obtained upon convergence of the EM iteration in Section IIIto its
fixed point satisfy:

s(+∞) =
[
D−1(q(+∞)) + Ip

]−1
z(+∞)

=
[
D−1(q(+∞)) + Ip

]−1 [
s(+∞) +HT (y −H s(+∞))

]
(A9)

where the second equality follows by using (12). Solving (A9) for s(+∞) yields

s(+∞) =
[
D−1(q(+∞)) +HTH

]−1
HTy (A10)

and (15) follows.

APPENDIX B
DERIVATION OF THE MESSAGES ANDBELIEFS IN SECTION III-A

Before we proceed, note the following useful identities:

argmax
si

N (zi ; si, σ
2)N (si ; 0, τ

2) =
τ 2 zi

σ2 + τ 2
(B1a)

max
si

N (zi ; si, σ
2)N (si ; 0, τ

2) =
1√

2π σ2
√
2π τ 2

exp
(
− 0.5

z2i
σ2 + τ 2

)
. (B1b)
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I Upward Messages
1) Upward Messages from Leaf Nodes:When passing upward messages from the leaf nodesi ∈ Tleaf ,

we set the multiplicative term
∏

k∈ch(i)mk→i(qi) to one, yielding [see (22)]

mi→π(i)(qπ(i)) = α max
θi

{ψi(θi)ψi,π(i)(qi, qπ(i))}

= α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ǫ

2σ2)]1−qi

·[P qi
H (1− PH)

1−qi]qπ(i) [P qi
L (1− PL)

1−qi]1−qπ(i)
}
. (B2)

For qπ(i) = 0, we have

mi→π(i)(0) = µu
i (0) = α max

θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ǫ

2σ2)]1−qi P qi
L (1− PL)

1−qi
}

= α1 max
{
(1− PL) exp

(
− 0.5

z2i
σ2 + σ2ǫ2

)
/ǫ, PL exp

(
− 0.5

z2i
σ2 + σ2γ2

)
/γ
}

(B3a)

and, forqπ(i) = 1, we have

mi→π(i)(1) = µu
i (1) = α max

θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ǫ

2σ2)]1−qi P qi
H (1− PH)

1−qi
}

= α1 max
{
(1− PH) exp

(
− 0.5

z2i
σ2 + σ2ǫ2

)
/ǫ, PH exp

(
− 0.5

z2i
σ2 + σ2γ2

)
/γ
}

(B3b)

where we have used (B1b) withτ 2 = σ2ǫ2 and τ 2 = σ2γ2 and α > 0 and α1 > 0 are appropriate

normalizing constants. It follows from (B1a) that the only two candidates forθi in the maximization of

(B2) are[0, ŝi(0)]T and [1, ŝi(1)]T .

In summary,

mi→π(i)(qπ(i)) = [µu
i (0)]

1−qπ(i) [µu
i (1)]

qπ(i) (B4a)

and (B3a) and (B3b) can be rewritten as

µu
i (0) = max{νu

0,i}/(max{νu
0,i}+max{νu

1,i}) (B4b)

µu
i (1) = max{νu

1,i}/(max{νu
0,i}+max{νu

1,i}) (B4c)

andνu
0,i,ν

u
1,i, andφ(z) were defined in (23c), (23d), and (23f).

2) Upward Messages from Non-Leaf Nodes:For i ∈ T \Tleaf , we can use induction to simplify the
multiplicative term

∏
k∈ch(i)mk→i(qi) in (22) as follows:

∏

k∈ch(i)

mk→i(qi) = [
∏

k∈ch(i)

µu
k(0)]

1−qi [
∏

k∈ch(i)

µu
k(1)]

qi (B5)

see also Fig. 3(a).
Substituting (B5) into (22) yields

mi→π(i)(qπ(i)) = α max
θi

{
ψi(θi)ψi,π(i)(qi, qπ(i))

∏

k∈ch(i)

mk→i(qi)
}

= α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ǫ

2σ2)]1−qi [P qi
H (1− PH)

1−qi]qπ(i)

·[P qi
L (1− PL)

1−qi]1−qπ(i)[
∏

k∈ch(i)

µu
k(0)]

1−qi [
∏

k∈ch(i)

µu
k(1)]

qi
}
. (B6)
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For qπ(i) = 0, we have

mi→π(i)(0) = α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ǫ

2σ2)]1−qi P qi
L (1− PL)

1−qi

·[
∏

k∈ch(i)

µu
k(0)]

1−qi [
∏

k∈ch(i)

µu
k(1)]

qi
}

= α1 max
{
(1− PL) [

∏

k∈ch(i)

µu
k(0)] exp

(
− 0.5

z2i
σ2 + σ2ǫ2

)
/ǫ,

PL [
∏

k∈ch(i)

µu
k(1)] exp

(
− 0.5

z2i
σ2 + σ2γ2

)
/γ
}

(B7a)

and, forqπ(i) = 1, we have

mi→π(i)(1) = α max
θi

{
N (zi ; si, σ

2) [N (si ; 0, γ
2σ2)]qi [N (si ; 0, ǫ

2σ2)]1−qi P qi
H (1− PH)

1−qi

·[
∏

k∈ch(i)

µu
k(0)]

1−qi [
∏

k∈ch(i)

µu
k(1)]

qi
}

= α1 max
{
(1− PH) [

∏

k∈ch(i)

µu
k(0)] exp

(
− 0.5

z2i
σ2 + σ2ǫ2

)
/ǫ,

PH [
∏

k∈ch(i)

µu
k(1)] exp

(
− 0.5

z2i
σ2 + σ2γ2

)
/γ
}

(B7b)

where we have used (B1b) withτ 2 = σ2ǫ2 and τ 2 = σ2γ2 and α > 0 and α1 > 0 are appropriate

normalizing constants.

In summary,

mi→π(i)(qπ(i)) = [µu
i (0)]

1−qπ(i) [µu
i (1)]

qπ(i) (B8a)

where

µu
i (0) = max{νu

0,i ⊙ ηu
i }/(max{νu

0,i ⊙ ηu
i }+max{νu

1,i ⊙ ηu
i }) (B8b)

µu
i (1) = max{νu

1,i ⊙ ηu
i }/(max{νu

0,i ⊙ ηu
i }+max{νu

1,i ⊙ ηu
i }) (B8c)

and

ηu
i =

⊙

k∈ch(i)

µu
k. (B8d)

The general upward message form in (23) follows by combining(B4) and (B8).

II Downward Messages

Based on the results in Section III-A1 and Appendix B-I, we simplify the product of upward messages

sent from the siblings of nodei in (24) as follows [see (23a)]:

∏

k∈sib(i)

mk→π(i)(qπ(i)) = [
∏

k∈sib(i)

µu
k(0)]

1−qπ(i) [
∏

k∈sib(i)

µu
k(1)]

qπ(i) (B9)

see also Fig. 3(b).
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1) Downward Messages from Root Nodes:For the nodeπ(i) ∈ Troot, we set the message
mgp(i)→π(i)(qπ(i)) to one, yielding [see (24)]

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))

∏

k∈sib(i)

mk→π(i)(qπ(i))
}
. (B10)

Substituting (B9) into (B10) yields

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))

∏

k∈sib(i)

mk→π(i)(qπ(i))
}

= α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [ProotN (sπ(i) ; 0, γ
2σ2)]qπ(i) [(1− Proot)N (sπ(i) ; 0, ǫ

2σ2)]1−qπ(i)

·[P qi
H (1− PH)

1−qi]qπ(i) [P qi
L (1− PL)

1−qi]1−qπ(i) [
∏

k∈sib(i)

µu
k(0)]

1−qπ(i) [
∏

k∈sib(i)

µu
k(1)]

qπ(i)

}
. (B11)

For qi = 0, we have

mπ(i)→i(0) = α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ǫ

2σ2)]1−qπ(i)

·{(1− Proot)(1− PL)[
∏

k∈sib(i)

µu
k(0)]}1−qπ(i) {Proot(1− PH)[

∏

k∈sib(i)

µu
k(1)]}qπ(i)

}

= α1max
{
(1− Proot)(1− PL)[

∏

k∈sib(i)

µu
k(0)] exp

(
− 0.5

z2π(i)
σ2 + σ2ǫ2

)
/ǫ,

Proot(1− PH)[
∏

k∈sib(i)

µu
k(1)] exp

(
− 0.5

z2π(i)
σ2 + σ2γ2

)
/γ
}

(B12a)

and forqi = 1, we have

mπ(i)→i(1) = α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ǫ

2σ2)]1−qπ(i)

·{(1− Proot)PL [
∏

k∈sib(i)

µu
k(0)]}1−qπ(i) {Proot PH [

∏

k∈sib(i)

µu
k(1)]}qπ(i)

}

= α1max
{
(1− Proot)PL [

∏

k∈sib(i)

µu
k(0)] exp

(
− 0.5

z2π(i)
σ2 + σ2ǫ2

)
/ǫ,

Proot PH [
∏

k∈sib(i)

µu
k(1)] exp

(
− 0.5

z2π(i)
σ2 + σ2γ2

)
/γ
}

(B12b)

where we have used (B1b) withτ 2 = σ2ǫ2 and τ 2 = σ2γ2 and α > 0 and α1 > 0 are appropriate

normalizing constants. The only two candidates to maximize(B10) are[0, ŝπ(i)(0)]T and [1, ŝπ(i)(1)]T .

In summary,

mπ(i)→i(qi) = [µd
i (0)]

1−qi [µd
i (1)]

qi (B13a)

where

µd
i (0) = max{νd

0,i ⊙ ηd
i }/(max{νd

0,i ⊙ ηd
i }+max{νd

1,i ⊙ ηd
i }) (B13b)

µd
i (1) = max{νd

1,i ⊙ ηd
i }/(max{νd

0,i ⊙ ηd
i }+max{νd

1,i ⊙ ηd
i }) (B13c)
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and

νd
0,i =

[
1− PL, 1− PH

]T ⊙ φ(zπ(i))⊙
[ ⊙

k∈sib(i)

µu
k

]
(B13d)

νd
1,i =

[
PL, PH

]T ⊙ φ(zπ(i))⊙
[ ⊙

k∈sib(i)

µu
k

]
(B13e)

ηd
i =

[
1− Proot, Proot

]T
. (B13f)

2) Downward Messages from Non-Root Nodes:For the nodeπ(i) ∈ (T \Troot)\Tleaf , using the same
strategy as above, (24) simplifies as

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))mgp(i)→π(i)(qπ(i))

∏

k∈sib(i)

mk→π(i)(qπ(i))
}

= α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ǫ

2σ2)]1−qπ(i)

·[P qi
H (1− PH)

1−qi]qπ(i) [P qi
L (1− PL)

1−qi]1−qπ(i) [
∏

k∈sib(i)

µu
k(0)]

1−qπ(i) [
∏

k∈sib(i)

µu
k(1)]

qπ(i)

·[µd
π(i)(0)]

1−qπ(i) [µd
π(i)(1)]

qπ(i)

}
(B14)

For qi = 0, we have

mπ(i)→i(0) = α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ǫ

2σ2)]1−qπ(i)

·{µd
π(i)(0) (1− PL)[

∏

k∈sib(i)

µu
k(0)]}1−qπ(i) {µd

π(i)(1) (1− PH)[
∏

k∈sib(i)

µu
k(1)]}qπ(i)

}

= α1max
{
µd
π(i)(0) (1− PL)[

∏

k∈sib(i)

µu
k(0)] exp

(
− 0.5

z2π(i)
σ2 + σ2ǫ2

)
/ǫ,

µd
π(i)(1) (1− PH)[

∏

k∈sib(i)

µu
k(1)] exp

(
− 0.5

z2π(i)
σ2 + σ2γ2

)
/γ
}

(B15a)

and forqi = 1, we have

mπ(i)→i(1) = α max
θπ(i)

{
N (zπ(i) ; sπ(i), σ

2) [N (sπ(i) ; 0, γ
2σ2)]qπ(i) [N (sπ(i) ; 0, ǫ

2σ2)]1−qπ(i)

·{µd
π(i)(0)PL [

∏

k∈sib(i)

µu
k(0)]}1−qπ(i) {µd

π(i)(1)PH [
∏

k∈sib(i)

µu
k(1)]}qπ(i)

}

= α1max
{
µd
π(i)(0)PL [

∏

k∈sib(i)

µu
k(0)] exp

(
− 0.5

z2π(i)
σ2 + σ2ǫ2

)
/ǫ,

µd
π(i)(1)PH [

∏

k∈sib(i)

µu
k(1)] exp

(
− 0.5

z2π(i)
σ2 + σ2γ2

)
/γ
}

(B15b)

where we have used (B1b) withτ 2 = σ2ǫ2 and τ 2 = σ2γ2 and α > 0 and α1 > 0 are appropriate

normalizing constants. The only two candidates to maximize(B14) are[0, ŝπ(i)(0)]T and [1, ŝπ(i)(1)]T .

In summary,

mπ(i)→i(qi) = [µd
i (0)]

1−qi [µd
i (1)]

qi (B16a)
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where

µd
i (0) = max{νd

0,i ⊙ ηd
i }/(max{νd

0,i ⊙ ηd
i }+max{νd

1,i ⊙ ηd
i }) (B16b)

µd
i (1) = max{νd

1,i ⊙ ηd
i }/(max{νd

0,i ⊙ ηd
i }+max{νd

1,i ⊙ ηd
i }) (B16c)

and

ηd
i = µd

π(i) (B16d)

The general downward message form in (25) follows by combining (B13) and (B16).

III Beliefs

Define the vectorβi = [βi(0), βi(1)]
T as

βi(0) = max
si

b([0, si]
T ), βi(1) = max

si
b([1, si]

T ) (B17)

whereb(θi) are the beliefs defined in (26).
1) Beliefs for the Root Nodes:For root nodesi ∈ Troot, the beliefsb(θi) in (26) become

b(θi) = αN (zi ; si, σ
2) [ProotN (si ; 0, γ

2σ2)]qi [(1− Proot)N (si ; 0, ǫ
2σ2)]1−qi

·
[ ∏

k∈ch(i)

µu
k(0)

]1−qi [ ∏

k∈ch(i)

µu
k(1)

]qi. (B18)

and (B17) simplify to

βi(0) = α
1√

2π σ2
√
2π ǫ2σ2

exp
(
− 0.5

z2i
σ2 + σ2ǫ2

)
(1− Proot)

∏

k∈ch(i)

µu
k(0) (B19a)

βi(1) = α
1√

2π σ2
√

2π γ2σ2
exp

(
− 0.5

z2i
σ2 + σ2γ2

)
Proot

∏

k∈ch(i)

µu
k(1) (B19b)

yielding

βi = [βi(0), βi(1)]
T = α1[1− Proot, Proot]

T ⊙ φ(zi)⊙ ηu
i . (B20)

2) Beliefs for the Non-Root Non-Leaf Nodes:For i ∈ (T \ Troot) \ Tleaf , the beliefsb(θi) in (26) become

b(θi) = αN (zi ; si, σ
2) [N (si ; 0, γ

2σ2)]qi [N (si ; 0, ǫ
2σ2)]1−qi [µd

i (0)]
1−qi [µd

i (1)]
qi

·
[ ∏

k∈ch(i)

µu
k(0)

]1−qi [ ∏

k∈ch(i)

µu
k(1)

]qi (B21)

and (B17) simplify to

βi(0) = α
1√

2π σ2
√
2π ǫ2σ2

exp
(
− 0.5

z2i
σ2 + σ2ǫ2

)
µd
i (0)

∏

k∈ch(i)

µu
k(0) (B22a)

βi(1) = α
1√

2π σ2
√

2π γ2σ2
exp

(
− 0.5

z2i
σ2 + σ2γ2

)
µd
i (1)

∏

k∈ch(i)

µu
k(1) (B22b)

yielding

βi = [βi(0), βi(1)]
T = α1φ(zi)⊙ µd

i ⊙ ηu
i . (B23)
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3) Beliefs for the Leaf Nodes:For i ∈ Tleaf , the beliefsb(θi) in (26) become

b(θi) = αN (zi ; si, σ
2) [N (si ; 0, γ

2σ2)]qi [N (si ; 0, ǫ
2σ2)]1−qi [µd

i (0)]
1−qi [µd

i (1)]
qi

(B24)

and (B17) simplify to

βi(0) = α
1√

2π σ2
√
2π ǫ2σ2

exp
(
− 0.5

z2i
σ2 + σ2ǫ2

)
µd
i (0) (B25a)

βi(1) = α
1√

2π σ2
√

2π γ2σ2
exp

(
− 0.5

z2i
σ2 + σ2γ2

)
µd
i (1) (B25b)

yielding

βi = [βi(0), βi(1)]
T = α1φ(zi)⊙ µd

i . (B26)

In summary,

βi = [βi(0), βi(1)]
T =

{
α1[1− Proot, Proot]

T ⊙ φ(zi)⊙ ηu
i , i ∈ Troot

α1φ(zi)⊙ µd
i ⊙ ηu

i , i ∈ T \ Troot
.

Consequently, the modêθi is computed as

θ̂i = (q̂i, ŝi(q̂i)) = argmax
θi

b(θi) =

{
(1, ŝi(1)), βi(1) ≥ βi(0)
(0, ŝi(0)), otherwise

. (B27)

Note that the normalizing constantsα andα1 in the above upward and downward messages and beliefs

have been set so thatmi→π(i)(0) +mi→π(i)(1) = 1, mπ(i)→i(0) +mπ(i)→i(1) = 1, andβi(0) + βi(1) = 1

respectively.
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