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Abstract

We propose a Bayesian expectation-maximization (EM) @lyorfor reconstructing structured approximately
sparse signals via belief propagation. The measuremefitsvf@an underdetermined linear model where the
regression-coefficient vector is the sum of an unknown apprately sparse signal and a zero-mean white Gaussian
noise with an unknown variance. The signal is composed gklaand small-magnitude components identified by
binary state variables whose probabilistic dependencetsite is described by a hidden Markov tree. Gaussian
priors are assigned to the signal coefficients given theaitestariables and the Jeffreys’ noninformative prior is
assigned to the noise variance. Our signal reconstruatioense is based on an EM iteration that aims at maximizing
the posterior distribution of the signal and its state \zlda given the noise variance. We employ a max-product
algorithm to implement the maximization (M) step of our EMrition. The proposed EM algorithm estimates the
vector of state variableags well assolves iteratively a linear system of equations to obtagndbrresponding signal
estimate. We select the noise variance so that the corrdsppestimated signal and state variables (obtained upon
convergence of the EM iteration) have the largest margioatgyior distribution. Our numerical examples show
that the proposed algorithm achieves better reconstrupéoformance compared with the state-of-the-art methods.

Index Terms

Belief propagation, expectation maximization (EM) algiom, hidden Markov tree (HMT), max-product algo-
rithm, structured sparsity, sparse signal reconstruction

. INTRODUCTION

The advent of compressive sampling (compressed sensinpeipast few years has sparked research
activity in sparse signal reconstruction, whose main ge#b iestimate theparsesi x 1 signal coefficient
vectors from the N x 1 measurement vectay satisfying the following underdetermined system of linear
equationsy = H s, whereH is an N x p sensing matrixand N < p.

A tree dependency structure is exhibited by the waveletfiotaits of many natural images [1]-
[5], see also Fig. 1(a) and [2, Fig. 2]. A probabilistic Mavktree structure has been employed to
model the statistical dependency between the state vesiaflwavelet coefficients [1]. An approximate
belief propagation algorithm has been first applied to casgive sampling in [6], which employs
sparse Rademacher sensing matrices for Bayesian sigmalsteaction. Donohet al. [7] simplified the
sum-product algorithm by approximating messages withgusirGaussian distribution specified by two
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scalar parameters, leading to thapproximate message passing (AM&gorithm. Following the AMP
framework, [8] proposed #&rbo-AMP structured sparse signal recovery method based on loojsf bel
propagation and turbo equalization and applied it to rettoosone-dimensional signals; [5] applied the
turbo-AMP approach to reconstruct compressible imagesveder, the above references do not employ
the exact form of the messages and also have the followinigalions: Baronet al. [6] rely on sparsity

of the sensing matrix, the methods by Baedral. [6] and Donohcet al.[7] apply to unstructured signals
only, and the turbo-AMP approach in [5] and [8] needs columhthe sensing matrix to be normalized,
see [5, eq. (22)] and [8, Sec. IV.A].

In this paper, we combine the hierarchical measurement hiod®] with a Markov tree prior on
the binary state variables that identify the large- and bmabnitude signal coefficients and develop
a Bayesian maximuna posteriori (MAP) expectation-maximization (EM) signal reconstroatischeme
that aims at maximizing the posterior distribution of thgrsil and its state variables given the noise
variance, where the maximization (M) step employs a maxhpeco belief propagation algorithm. Unlike
the previous work, welo notapproximate the message form in our belief propagationrseh&nlike the
turbo-AMP scheme in [5] and [8], our reconstruction schatoes notrequire the columns of the sensing
matrix to be normalized. Since there are no loops in the gecapimodel behind our M-step objective
function, the M step of our EM algorithm is exact. In [10], weoposed a similar EM algorithm for a
random signal model [11] with a purely sparse determinstioal component and a noninformative prior
on this component given the binary state variables. We apgkid search to select the noise variance so
that the estimated signal and state variables have thestanggrginal posterior distribution.

In Section I, we introduce our measurement and prior modastion Il describes the proposed EM
algorithm, where the M step implementation via the max-pobélgorithm is presented in Section IlI-A.
The selection of the noise variance parameter is discussefection V. Numerical simulations in
Section V compare reconstruction performances of the m@gpa@and existing methods.

We introduce the notationf,, and 0,,.; denote the identity matrix of size and then x 1 vector
of zeros, respectively;”™ and || - ||, are the transpose amt norm, respectively\'(z; i, 2) denotes
the probability distribution function (pdf) of a multivate Gaussian random vectarwith meanu and
covariance matrix>; Inv-x?(o?; v, 02) denotes the pdf of a scaled inverse chi-square distribwtiidm
v degrees of freedom and a scale paramefersee [12, p. 50 and App. A];7| is the cardinality of
the set7; v(-) is an invertible operator that transforms the two-dimenaianatrix element indices into

one-dimensional vector element indices. Finglly, denotes the largest singular value of a mattixalso



known as the spectral norm &f, and “©” denotes the Hadamard (elementwise) product.

II. MEASUREMENT AND PRIOR MODELS

We model anV x 1 real-valued measurement vectpusing the standard additive white Gaussian noise

measurement model with the likelihood function given by tbkowing pdf [2], [5]:
py\s,UQ(y|8702):N(y; HS,O'ZIP) (l)
whereH is anN x p real-valued sensing matrix wittank(H) = N satisfying (without loss of generality)

s = [s1,82,...,5,)7 is an unknownp x 1 real-valued signal coefficient vector, and is the unknown
noise variance.

We adopt the Jeffreys’ noninformative prior for the variareomponent?:

po2(0?) o (62) 7" ©)

Define the vector of binary state variables = [q1, ¢, ...,q,)" € {0,1}? that determine if the
magnitudes of the signal components: = 1,2,...,p are small { = 0) or large ¢; = 1). Assume

that s; are conditionally independent givenand assign the following prior pdf to the signal coefficients

p

Ps|q02(s]q, 0%) = H[N(si; 0,72 0)]% [N (s;; 0,2 o)) 7% (4a)

=1
where +? and €2 are known positive constants and, typicaly, > 2. Hence, the large- and small-
magnitude signal coefficients corresponding t@; = 1 and¢; = 0 are modeled as zero-mean Gaussian
random variables with variances o2 ande? o2, respectively. Consequenthy? ande? are relative variances

(to the noise variance?) of the large- and small-magnitude signal coefficients. izjantly,
ps|q,a2(8|q7 02) :N(S; OpxlaazD(Q)) (4b)
where
D(q) = diag{(7y*)" (€)', (4*)™ ()7, ..., (v*)* (€)' "} (4c)

We now introduce the Markov tree prior probability mass tioic (pmf) on the state variableg
[1], [5]. To make this probability model easier to understame introduce two-dimensional signal
element indicegi,, i»). Recall that the conversion operatof) is invertible; hence, there is a one-to-one

correspondence between the corresponding one- and twendional signal element indices. A parent



(@) (b)

Fig. 1. (a) Clustering of significant discrete wavelet tfan® coefficients of a compressed ‘Cameraman’ image andy(i®st of wavelet
decomposition coefficients: approximation, root, and,ledfose sets are denoted BY, Troot, and Tieas, respectively.

wavelet coefficient with a two-dimensional position indgx, i») has four children in the finer wavelet
decomposition level with two-dimensional indicési; — 1,214y — 1), (24; — 1,24s), (241,24, — 1) and
(2141,21), see Fig. 1(b). The parent-child dependency assumptiotidsghat, if a parent coefficient in a
certain wavelet decomposition level has small (large) ntade, then its children coefficients in the next
finer wavelet decomposition level tend to have small (lamg@gnitude as well. Denote hy and ¢ the
numbers of rows and columns of the image, andlbthe number of wavelet decomposition levels (tree
depth).

We set the prior pmp,(q) as follows. In the first wavelet decomposition level( 1), assign

1, e A
in(l) = Pr{qi - 1} - { Proot, ZZE 7;00t (5a)
where
A:u({l,z,...,QﬁL}><{1,2,...,23L}) (5b)
C
Troot = 0({1.2, o gr5} x (L2, 1) VA (5¢)

are the sets of indices of the approximation and root nod#éficieats andP,..; € (0, 1) is a known constant
denoting the prior probability that a root node signal coeffit has large magnitude, see Fig. 1(b). In the

levels! = 2,3,..., L, assign

P y  Gr(i :1
pQ’i|‘I1r(i)(1 | qﬂ(i)) = { PIS, (,) 0 (5d)



where (i) denotes the index of the parent of nodeHere, Py € (0,1) and P, € (0,1) are known
constants denoting the probabilities that the signal aoefft s; is large if the corresponding parent signal
coefficient is large or small, respectively.

Our wavelet tree structure consists |Gf,.| trees and spans all signal wavelet coefficients except the

approximation coefficients; hence, the set of indices ofagelet coefficients within the trees is

T=v({1,2,....p} x{1,2,...,¢})\ A (5e)
Define also the set of leaf variable node indices within tlee structure as
C
Troat :U([{l,Q,...,p} X {1,2,...,0}]\[{1,2,...,g} X {1,2,...,5}]) (5f)

see Fig. 1(b). More complex models are possible; see e]ganiB [5], which, however, need at leali
hyperparameters to specify the prior for the same wavedet &nd did not report large-scale examples.
Here, we only need tuning parameter®,..., Pu, P, 72, ande?, each with a clear meaning. A fairly crude

choice of these parameters is sufficient for achieving g@adnstruction performance, see Section V.
The logarithm of the prior pmp,(q) is

lnpq(Q) = C0n5t+ [Zln]l(% = 1)] + [ Z q; In Proot + (1 - QZ) ln(l - Proot)]

€A 1€Tro0t
+[ Z ¢ @iy In P+ (1 — ¢;) ¢y In(1 — Py)
Z'67-\7}0013
+Gi (1 = gr(y) I P+ (1= @) (1 = grpy) In(1 — PL)] (59)

where const denotes the terms that are not functiong of

A. Bayesian Inference
Define the vectors of state variables and signal coefficients

o=1[o7 67 - 67", 6,=[a s . (6)
The joint posterior distribution of ando? is

Do, o2 |y(97 02 | y) o8 py\s,o‘2 (y | S, 02)p8|q,02<8 | q, 02)pq(q) p02(02)

x (02) P expl—0.5 |y — H s|[3/0* ~ 055" D! (q) /07 (;-Z)” @ @
which implies
por10.(0] 0, ) = Inv-y’ <o—2 piy y=tolet o Dta) ) 82)
ol - 2l
~ po(a) (;_‘30.5 25’_1%/ [ ly —H SHEIJS\;F D~ '(q) s} (p+N)/2 (8b)



and

0 5||y _ H8||§ + s D‘l(q)s] <e2)o.525’_1qi
. 2

Pojozy(0] 0% y) o exp | - ral@).  (80)

o2

For a fixedq, (8b) is maximized with respect to at
3(q) = D(q)H" [Iy+ HD(q) H"| ' y. 9)

which is the Bayesian linear-model minimum mean-squarer dMMSE) estimator ofs for a giveng
[13, Theorem 11.1]. As? decreases to zer®(q) becomes more sparse (becoming exactly sparse for
e2 = 0); ase? increasess(q) becomes less sparse.

Substituting (9) into (8b) yields the followingoncentrated (profile) marginal posterior

€2>0.5 Zf_lqi/{yT [Iy + H D(q) HT]—ly}(p+N)/2

maxpo1y (0] y) o< pala) (S N (10)

which is a function of the state variablgsonly.

We wish to maximize (8b) with respect # but cannot perform this task directly. Consequently, we
adopt the following indirect approach: We first develop an &lgbrithm for maximizingg 2 ,(0 | 02, y)
in (8c) for a giveno? (Section Ill) and then propose a grid search scheme for tagjethe best
regularization parameter?> so that the estimated signal and state variables have thestamarginal

posterior distribution (8b) (Section V).

I1l. AN EM ALGORITHM FOR MAXIMIZING pg|,2,(0|0% y)
Motivated by [9, Sec. V.A], we introduce the following hiecaical two-stage model:

Pylzo2(y|2,0°) = N(y; Hz, 0" (Iy — HH")) (11a)
pz\S(z|3) :N(Z§ S,szp) (11b)
wherez is anp x 1 vector ofmissing dataObserve that the assumption (2) guarantees that the aocari
matrix o2 (Iy — H HT) in (11a) is positive semidefinite.
Our EM algorithm for maximizings .2, (6 | %, y) in (8c) consists of iterating between the following

expectation (E) and maximization (M) steps:

Estep: 20 =[7 20, 20T = O 4 HT (y — H sY) (12)
and
| 0) _ g2 4 sT D 2 P
M step: 8YY = arg m;xx{ —0.5 1= SHQ;S (q)s + In[py(q)] + 0.51n (%) qi} (13a)
i=1
= arg meaxlnpmo;z(e |02, 20)) (13b)

where j denotes the iteration index. For any two consecutive itamat; and j + 1, our EM algorithm
ensures that the objective posterior functawes notdecrease [14], i.e.

p0|02,y(0(j+1) | 027 y) > p0|02,y<0(j) | 027 y) (14)
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To simplify the notation, we omit the dependence of the tes&") on 2 in this section. Denote by
0+ g(+°°) andg(+>) the estimates o, s, andg obtained upon convergence of the above EM iteration.
The above EM iteration provides an estimaté>) of the vector of state variableg as well asfinds

the solution (9) of the underlying linear system to obtaie tdorresponding signal estimate:
s+ = 5(g+o). (15)

As ¢ decreases to zera(™>) becomes more sparse; ésincreasess(+>) becomes less sparse.
Appendix A presents the derivation of the E and M steps in @&) (13) and the proofs of the
monotonicity property (14) and the property (15) of the sigestimate upon convergence.
Note that the M step in (13b) is equivalent to maximizing,: .(0 | o2, z) for the missing data vector

z = 2. In the following section, we describe efficient maximipatiof pg |, . (6 | 02, ).

A. M Step: Maximizingyg |,2.(0 | 02, 2)

Before we proceed, define
2 2
~ Y
SZ(O) = W Ziy 82(1) = W Zi (16)
where we omit the dependence ©f0) ands;(1) on z; to simplify the notation.
Observe that

p@\cr?,z(e ‘ 027 Z) X pBA\crz,z<0A | 027 Z) p07—\02,z(9T | 027 Z) (17)
where@ 4, and 8+ consist of@;,i € A and@,,: € T, respectively, and
p0A|U2,z(0A | 027 Z) X { HN(ZZ s Sty UQ)N(Si ) 07 72 02) ﬂ(QZ = 1)} (18a)
€A
Por|o2z(07]0% 2) o { [TV i 50.0%) IV (s35,0,7° 02)] [N (5550, € %) }qu(QT)- (18Db)
€T

Here, (18a) follows from (5a) and (18b) corresponds to tlielém Markov tree (HMT) probabilistic model
that contains no loops. Fig. 2 depicts an HMT that is a parhefgrobabilistic model (18b). Maximizing

Do 022(0.4]0% z9) in (18a) with respect td;, i € A yields
6, =[1, 5(1)]", icA (19)

where we have used the identity (Bla) in Appendix B.

We now apply the max-product belief propagation algoritlifs]£[17] to each tree in our wavelet tree
structure, with the goal to find the mode pj|,2.(07|0? z). We represent the HMT probabilistic
model forpg, |,2 (07|02, 2z) via potential functionsas [see (18b)]

Poro=(0710%2) o | T] 0 timin(aiar)] | TT vi(6)] (20)

iET\'Eoot ieﬂoot



Fig. 2. A hidden Markov tree, part of the probabilistic mod&8b).

where
_ N(z“ 5i,0%) [N (535 0,72 0%)]% [N (s;; 0, € 0%)]' 7%, i € T\ Troot
vl = { N (215 51,0%) [Proot N (515 0,72 028 [(1 = Prood) N (s 0,2 02)[10, i € Troo 210
and, fori € T\ Troot,
Gin(i) (@i Griiy) = [P (1= Pu) 700 [P (1 — P )t 41700, (21b)

Our algorithm for maximizing (20) consists of computing graksing upward and downward messages
and calculating and maximizing beliefs.

1) Computing and Passing Upward Messag&¥e propagate the upward messages from the lowest
decomposition level (i.e., the leaves) towards the roohefttee. Fig. 3(a) depicts the computation of the
upward message from variable noélgeto its parent nodd ;) wherein we also define ehild of 8, as a
variable noded;, with index k € ch(i), wherech(i) is the index set of the children of for i = v(iy,is),
ch(i) = {v((241 — 1,245 — 1), (241 — 1,24s), (241,212 — 1), (2i1,212)) }. Here, we use a circle and an
edge with an arrow to denote a variable node and a messagecti®sly. The upward messages have
the following general form [16]:

M (i) (n(i)) = o max {¢i( D) i) (@ @) [ mnsila } (22)

kECh( )



wherea > 0 denotes a normalizing constant used for computationalliggali 6]. For nodes that have
no children (corresponding to the levg] i.e.,i € T..t), we set the multiplicative terrﬂkeCh(i) My (6;)
in (22) to one.

In Appendix B-I, we show that the only two candidates #igiin the maximization of (22) ar@, 5;(0)]”
and[1,3;(1)]7, see (16).

Substituting these candidates into (22) and normaliziegniessages yields (see Appendix B-l)

M) (Griy) = (117 (0)]1770 [t (1)) (23a)
where [1(0), 1 (D)]" = pf,
 [max{vy; © 9}, max{vy; © ni}"
max{rg,; © 0} + max{v}; © 0}

P =

_ [exp(nmax{rg,; ©my'} — nmax{v}; o ny}), 1]°

1 + exp(Inmax{vg,; © N} — Inmax{v}; © n}'}) (23b)

vi, = [1-P, P ©éx) (23c)

Vi, = [1- Py, Pu] ©o(z) (23d)
lech(z /J’kza S T\ﬂoaf

u— 23e

g { ) 1€ ﬂcaf ( )

¢<Z) = exp —0.5 m)/e, eXp( . 02_,_02 )/7 (23f)

ande = V2 > 0 andy = /72 > 0. A numerically stable implementation of (23b) that we emgplo
is illustrated in the second expression in (23b). Similatihe elementwise products in (23c)—(23e) are

implemented as exponentiated sums of logarithms of theystagrms.

2) Computing and Passing Downward Messagelon obtaining all the upward messages, we now
compute the downward messages and propagate them from dhe¢oveards the lowest level (i.e., the
leaves). Fig. 3(b) depicts the computation of the downwaedsage from the paredt; to the variable
node®;, which involves upward messages@g;, from its other children, i.e. thelbllngsof 0;, marked
as @, k € sib(i). This downward message also requires the message sént;tdrom its parent node,
which is thegrandparentof 6;, denoted byd,, ;. The downward messages ave the following general
form [16]:

M (i)—i(¢) = «Imax {¢w(i)(9w(z)) Vi x() (i () Meap(i)—r (i) (ri)) H Mi—r() (Qr(i )} (24)

(@) kesib(2)
wherea > 0 denotes a normalizing constant used for computationailisyat-or the variable nodes

in the second decomposition level that have no grandpateetsrt(i) € T..0t), We set the multiplicative
term mgp i) —=(i) (¢()) in (24) to one.

In Appendix B-Il, we show that the only two candidates fy;, in the maximization of (24) are
(0,55 (0)]" and[1,5,(;(1)]", see also (16). Substituting these candidates into (24)nanahalizing the

messages Yields (see Appendix B-II)

Meriyi(@i) = [ (0)]1 7% [pagt (1)) (25a)
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(ek )kech(i) (gk)k € sib(i)

@ (b)
Fig. 3. Computing and passing (a) upward and (b) downwardages.

for m(i) € T\ Treat, Where[d(0), ud(1)]” = pf and

max{v{, © ni}, max{v{, © ni}]”

max{u&i © 77?} + maX{V(ll,i ond}

[exp(In max{vd, © 0} — mmax{v{, o nd}), 1]°

i =

= 25b
1+ exp(In max{ug’i ©ond} —1In max{u‘ii © nd}) (25b)
T u
vii=[1-R, 1= P 0o(zp)o[ O wil (25c)
kesib(7)
T u
V(f,i = [Pm PH} © d(2rs)) © [ @ uk} (25d)
kesib(z)
T .

d [1 - Proota Proot} 3 71-(2) € 7;00t 25
— . . e
g { i 7(0) € (T\Troot)\Trat (25¢)

A numerically stable implementation of (25b) that we empigyllustrated in the second expression in
(25b).

The above upward and downward messages have discreteaejatéans, which is practically important
and is a consequence of the fact that we use a Gaussian pribe @ignal coefficients, see (4). Indeed, in
contrast with the existing message passing algorithmsdompressive sampling [5]—[8], our max-product

scheme employsxactmessages.
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3) Maximizing Beliefs:Upon computing and passing all the upward and downward rgessave
maximize the beliefs, which have the following general fdi6]:
b(0:) = avi(0:) magiy i) [ mu—i(a) (26)
kech(i)
for eachi € T, wherea > 0 is a normalizing constant. [In (26), we set.(;)_,;(¢;) = 1 if i € Troor and

erCh(i) mr—i(q;) = 1if i € Tear.] We then use these beliefs to obtain the mode
87 = argmaxpy, |2 -(67 | 0%, 2) (27)
T

where the elements cﬁT are [see (16)]

7

~ T
6:= [ @(@)}T:argrr;axb(ei)z{ F’ S AW Z B0 (g

0, 5(0)] T otherwise
and

— . . T: (67 [1_Proot> Proot]TQ(b(Zi)@n?; 7;67;00t
B, = [6:0), Ai(1)] { I ek I S

Here, «; > 0 is a normalizing constant. The detailed derivation for thars of§; and B; in (28) is

provided in Appendix B-lII.

In summary,
/é:argmeaxp0|02,z(0|g2vz) (29)
whered = [0, @, . 0. " and
_ S (RESTCh] e ieA
0.=[a. s@)] =1 [1, 5], 81)=4(0),ieT (30)

[0, 5O0]", 8(1) <pi(0), ieT
follows by combining (19) and (28a) and we have omitted thpedeence of on z and 6; on z; to

simplify the notation.

IV. SELECTING o2

We can integrate? out, yielding the marginal posterior &f in (8b), and derive an 'outer’ EM iteration
for maximizingpg (0 | y):
0] Fix o2 and apply the EM iteration proposed in Section IlI to obtahrleatimatee(+°°)(o—2) of 9;

(i)  Fix O to the value obtained in (i) and estimaté as

_ly—Hs|5+s" DY (q)s
p+N '
Even though it guarantees monotonic increase of the margiosterior py (60 |y), the 'outer’ EM

() (31)

iteration (i)—(ii) does not work well in practice becausegdts stuck in an undesirable local maximum of
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tDg, (07 (0)1y)

@
: e
Q i |

0 i i i 0
N i i N 9
B bt B hat
2 P | 2 B
Omax Oy Omax Owmax O
d*! d

Fig. 4. Grid search in selecting?.

po|y(0|y). To find a better (generally local) maximum g@f, (0 | y), we apply a grid search over as
follows.

We apply the EM algorithm in Section Il using a range of valué the regularization parametet.
We traverse the grid of¢ values ofc? sequentially and use the signal estimate from the previoids g
point to initialize the signal estimation at the currentdgpioint: in particular, we move from a large#
(say o?,) to the next smaller?, (< 02,) and uses*>)(cs2,) (obtained upon convergence of the EM

new

iteration in Section Il foro? = ¢?,) to initialize the EM iteration at2,,. The largest? on the grid and

new*

the initial signal estimate at this grid point are selectsed a

lyll3
Ul%IAX = I ]2\77 0(0) (Uile> = 02:0><1- (328.)

The consecutive grid points?,, ando?, satisfy

2
T = 28 (320)

whered > 1 is a constant determining the search resolution. Finally,select ther? from the above

grid of candidates that yields the largest marginal postetistribution (8b):

02 = arg max po\y(9(+m)(02) KD (33)

02e{0 ax:Toax/ Do 02 ax/dE 1}

and the final estimates & and s as 8> (¢2) and s(+>)(¢2), respectively, see Fig. 4.

V. NUMERICAL EXAMPLES

We compare the reconstruction performances of the follgwirethods:
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« our proposednax-product EMalgorithm in Section Il with the variance parametérselected using
the marginal-posterior based criterion in Section IV (ledeMP-EM), search resolutiod = 2, and
MATLAB implementations available at http://home.engtzs.edu/~ald/MPEM.html;

« our max-product EM algorithm in Section Il with? tuned manuallyffor good performance (labeled
MP-EMopT) with d = 2;

« the turbo-AMP approach [5] with a MATLAB implementation attf//www.ece.osu.edu/~schniter/
turboAMPimaging and the tuning parameters chosen as tlaillefalues in this implementation;

« the fixed-point continuation active set algorithm [18] @&l FPGs) that aims at minimizing the
Lagrangian cost function

0.5 ||y — H sll3 + 7 sl (34a)

with the regularization parametercomputed as
7=10"|H" y||» (34b)

wherea is a tuning parameter chosen manually to achieve good reactien performance;

. the Barzilai-Borwein version of the gradient-projectiar tparse reconstruction method with debi-
asing in [19, Sec. I11.B] (labeled GPSR) with the convergeticresholdt ol P = 10~° and tuning
parametewr in (34b) chosen manually to achieve good reconstructiofopeance;

« the double overrelaxation (DORE) thresholding method in Bec. 1l1] or its approximation (DORf)
where the(H HT)~! term is approximated by a diagonal matrix, initialized bg rero sparse signal
estimate:

80 =0,.1; (35)

« the normalized iterative hard thresholding (NIHT) scher®@] [initialized by the zeras® in (35);
« the model-based iterative hard thresholding (MB-IHT) aildponn [4] using a greedy tree approxi-
mation [21], initialized by the zera® in (35).
For the MP-EM, DORE, NIHT, and MB-IHT iterations, we use tl@ldwing convergence criterion:

G+ _ g2
||S S ||2 <5 (36)

p
wherej > 0 is the convergence threshold selected in the following gtasso that the performances of
the above methods do not change significantly by furtheredesongo.
The sensing matri¥{ has the following structure:
1

H=—oVU (37)
Pa



14

where ® is the N x p sampling matrix and¥ is the p x p orthogonal sparsifying transform matrix
(satisfying® U7 = [). Note thatH in (37) satisfies (2). In the following examples, the sensimagrices
® are either random Gaussian (Sections V-A and V-B) or stratifurandom [22] (Section V-C) and
the sparsifying transform matricels are either identity (Section V-A) or inverse Haar wavelensform

matrices (Sections V-B and V-C). We set the tree depth 4.

A. Small-scale Structured Sparse Signal Reconstruction

We generated the binary state variahjesf lengthp = 1024 using the Markov tree model in Section Il with
P, = 107°. Conditional ong;, s; are generated according to (4b). Here, the matrix-to-vesiaversion
operatorv(-) corresponds to simple columnwise conversion. The entriethe sampling matrix® in
(37) are independent, identically distributed (i.i.dgrelard Gaussian random variables and the transform
matrix ¥ in (37) is identity: ¥ = I,.

We vary the values of/?, €2, 02, Py, and P, to test the performances of various methods under
different conditions. Our performance metric is tieeragemean-square error (MSE) of an estimate
of the signal coefficient vector:
I5 — sli3

p

computed using00 Monte Carlo trials, wheraveragingis performed over the random Gaussian sampling
matrices®, signals, and measuremenis The expected number of large-magnitude signal coeffisient

E[Xp:qi}:ﬁ@ +3 Lizﬂpl) (39a)
=0

1=

MSE(3) = sl

(38)

where P, is the marginal probability that a state variable in {ktie tree level is equal to one, computed
recursively as follows:

P =P Pu+(1— PP (39b)

initialized by Py = Proot.

NIHT, DORE, and MB-IHT require knowledge of the signal spgrsevel r; in this example, we set
r for these methods to the true signal support size. &0 1, we select the convergence threshold in
(36) tod = 10~* and foro? = 109, we select this convergence thresholdite- 10~'°. For GPSR and
FPGis, we varya within the set{—1, —2, -3, —4, —5, —6, —7, —8, —9} and, for eachV/p and each
of the two methods, we use the optimathat achieves the smallest MSE. For MP-EM, we set the grid
length K = 16.

Recall that the turbo-AMP approach needs normalized cotuofithe sensing matrix, see [5, eq. (22)].

When applying the turbo-AMP method, we scale the sensingixmas Hscae= (1/v/N) ® ¥ so that it
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has approximately normalized columns. With measuremgnasd scaled sensing matrifgcge turbo-
AMP returns the scaled signal estimaigge and we compute the final turbo-AMP signal estimate as
(ps/V'N) sscale Whose performance is evaluated using (38).

Figs. 5 and 6 show the MSEs of different methods for severaicels of+2, 2, ando? where we fix
Py = Poor = 0.5 (corresponding td [> 7| ¢;]/p = 0.0918) and considep? € {1,107°%}, ¢* € {0.1, 10},
and~? € {103,10°}. Here, a larger value of the low-signal relative variamrédémplies that the signal
coefficient vectors is less (approximately) sparse and a larger value of the-siighal relative variance?
implies a relatively higher signal-to-noise (SNR). Obsetivat the noise variane€ = 10~ corresponds
to the noise precision /o? = 10°, which is the mean of the prior pdf for/o? used in [5, Sec. IV,
p. 3444].

In Fig. 5, we show the MSEs of various methods as functiondi®fsubsampling factaW/p for more
sparse signalse{ = 0.1), relatively lower SNR 4% = 10?), and variable noise variane€ € {1,107},
Observe that turbo-AMP is sensitive to the choice of the ee@riances?: It has the largest MSE for
02 =1 and N/p < 0.4, but becomes the second best methodsfbe= 10-% and mostN/p. In contrast,
MP-EM keeps the best reconstruction performance’agaries: The MSE of MP-EM is up td.6 times
smaller than its closest competitor for bath= 1 ando? = 107°.

The MSEs of most methods are roughl§® times smaller in Fig. 5(b) where? = 10~% than the
corresponding MSEs in Fig. 5(@) wheté = 1. However, this is not true for turbo-AMP, which is
very sensitive to the selection of its prior pdf for the nojsecision1/s?. For the noise variance® =
10~°, turbo-AMP performs significantly better than fe# = 1 (upon taking into account the scaling
adjustment by the factot0—°), which is facilitated by the fact that/o? = 10° is the mean of the
prior pdf for 1/0% used in [5, Sec. IV, p. 3444] and in the corresponding MATLABpiementation at
http://www.ece.osu.edu/~schniter/turboAMPimaging thha employ.

The approximate invariance of MP-EM to scaling of the meas@nts can be explained by the fact that
the shape of the concentrated marginal posterior distaby(tLO) (which is a function of state variables
q only) does not change as we scale the measuremehysa constant.

In Fig. 6, we fixc? = 1079, focus onless (approximately) sparse signaldth <2 = 10, and show the
MSEs of various methods as functions of the subsamplingfasyp for 42 = 10° (relatively higher
SNR) andy? = 10% (lower SNRs). Wheny? = 105, turbo-AMP and MP-EM clearly outperform all other
methods: turbo-AMP has the smallest MSE féfp < 0.3. The MSE of turbo-AMP is larger than that of
MP-EM whenN/p > 0.3. When~? = 102, MP-EM outperforms all the other methods except MPdpil
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Fig. 6. MSEs as functions of the subsampling fad¥fp for Py = Proot = 0.5, 0 = 1075, €2 = 10 and (a)y? = 10° and (b)7* = 10°.

for all the subsampling factors.
Parts (b) of Figs. 5 and 6 show the MSE performances of vamoethods for reconstructing signals

that aremoreandless (approximately) sparseespectively, with all other simulation parameters betimg
same. For each method, the more sparse signals can be ractettwith a smaller MSE than the less
sparse signals at each subsampling fad{gp: Compare Figs. 5(b) and 6(b).

In both Figs. 5 and 6, the MSE of MP-EM is close to that of MP-&M which implies that the
marginal-posterior based criterion in Section IV selebts variance parameter well in this example.

Both MP-EM and turbo-AMP yield generally non-sparse sigegtimates, particularly when the under-

lying signal s is less (approximately) sparse, i.€*,= 10.
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Fig. 7 shows the MSEs of different methods as functions ofmitrenalized expected number of large-
magnitude signal coefficients [> ", ¢;]/p (corresponding to thexpected significant coefficient ratio
obtained by varyingPy = P...;, Where we fixo? = 1075, 42 = 103, N/p = 0.35 and considek? &
{0.1,10}. MP-EMopt has the smallest MSE for all expected significant coefficiatios in Fig. 7. MP-EM
provides a relatively poor performance compared with othethods wherk [>~7_, ¢;] is small, implying
that the marginal-posterior based criterion in Section Béslnot select the variance parametémwell
for very small expected significant coefficient ratios anat tnanual tuning of? is needed in this case.

For more (approximately) sparse signals with= 0.1 in Fig. 7(a), MP-EM outperforms all other
methods except MP-ENbrwhenE [>°F_, ¢;]/p > 0.0655. For less sparse signals with= 10 in Fig. 7(b),
MP-EM becomes the closest competitor to MP-gMfor E [>7_, ¢;]/p > 0.0473. For both more and less
sparse signals, the gap between the MSEs of MP-EM and MBgENMecomes smaller aB [ "7, ¢]
increases. Turbo-AMP is the second best method Whén'™”_ ¢;]/p < 0.0655 and E[>""  ¢]/p <
0.0473 for €2 = 0.1 ande? = 10, respectively. However, it achieves a relatively fair periance for larger
B al

For more (approximately) sparse signals with= 0.1 in Fig. 7(a), the convex approaches (GPSR
and FPQGg) outperform the hard thresholding methods (DORE, MB-IHTHN) whenE [>°%_, ¢;]/p >
0.0655. For less sparse signals with = 10 in Fig. 7(b), the convex approaches outperform the hard
thresholding methods over the entire range of expectedfisigmt coefficient ratios. With the exception

of MP-EM and MP-EMypT, GPSR and FPLg have smaller MSEs than all the other methods in Fig. 7(a)
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whenE [>"_ ¢]/p > 0.104.
MB-IHT, which employs a greedy tree approximation and dateistic tree structure, achieves quite
a poor MSE performance in Figs. 5-7. A relatively poor perfance of MB-@SAMP (which employs

the same deterministic tree structure) has also been egport[5, Sec. IV.B].

B. Image Reconstruction Using Gaussian 1.1.D. Samplingrides

We reconstruct thé28 x 128 ‘Cameraman’ image from compressive samples generated uaimdom
sampling matrice® with i.i.d. standard normal elements and the p orthogonal inverse Haar wavelet
transform matrix¥. Here, the matrix-to-vector conversion operat¢) is based on the MATLAB wavelet
decomposition functiomavedec?2 with Haar wavelet, which has also been used in [3] and [5]. Our
performance metric is the average MSE of a signal coeffiotentor estimates:
Eo[|3 — s|f}

p
computed usind0 Monte Carlo trials, where averaging is performed over timeloan Gaussian sampling

MSE{3} = (40)

matrices®.
Here, we employ DORJg, that approximates theH H”)~! = p3 (& 7)~* term by (p3/p) Iy, which
is justified by the fact thak (@] = p Iy holds in this example, see also (37). For DQREwe apply

the following empirical Bayesian estimate of random sigredtor z [11, eq. (16)]:
2% = s+ L gT(HHT) Y (y — Hs™+>)) (41)

where s(+>) denotes the sparse signal estimates obtained upon coneergé DOREyy, iteration and
the (H H™)~! term is approximated byp3 /p) Iy. We set the sparsity level for NIHT and DOREpp
as 2000 N/p and 2500 N/p for MB-IHT, tuned for good MSE performance. The convergetiueshold
in (36) is set tod = 107°. The grid length in MP-EM is set a& = 12 and the tuning parameters for

MP-EM are chosen as
72 =1000, € =0.1, Poy=Py=02 P, =107 (42)

For GPSR and FPfg, we tuned the regularization parametemanually by varyinga with the set
{-1, =2, =3, —4, =5, —6, —7, —8, —9} : the best reconstruction performances are achieved for-3.
When applying the turbo-AMP method, we scale the sensingixnas Hscqe= (1/v/N) ® ¥ and apply
the same scaling correction as in the example in Section V-A.

Fig. 8 shows the MSE performances of different algorithméuastions of the normalized number of

measurements (subsampling factdf)p. MP-EM achieves the best MSE whéeYyp < 0.35. The MSEs



19

e
N ~~ > -
- :g ‘é ) Do D
SN0 TP B>
V- “g,_ -e.
N -9 v
vQ
g2 8 o)
g 10 <> MB-IHT
e DORE__ ,
-¥-NIHT <
O GPSR
- FPC, . .
- 3% - turbo-AMP S
— MP- % <
MP-EM % _
*
101 Il Il Il Il Il J
0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 8. MSEs as functions of the subsampling factofp.

of GPSR and FP£g are close to each other and smaller than those of DREIHT, and MB-IHT for
all N/p and the MSE of MP-EM id 4 to 2.4 times smaller than that of GPSR and F2Csee Fig. 8.
MB-IHT has the largest MSE for mosV/p, which is likely due to the fact that it employs the
deterministic tree structure, as discussed earlier.
For N/p < 0.35, turbo-AMP performs similarly to DORgp, NIHT, and MB-IHT, but it outperforms all
other methods foN/p > 0.35. The reasons why turbo-AMP performs well for laryyep, outperforming
all competitors, are likely the followings:
« it uses a more general prior on the binary state variables dba MP-EM method, which allows the
tree probability parameterBy, P, 2, ande? to vary between the signal decomposition levels, and
« learnsthe tree probability parameters parameters from the meamnts.

In contrast, our MP-EM method employs the crude choicesetrie and other tuning parameters in (42).

C. Large-scale Image Reconstruction Using a Structuraipd®m Sampling Matrix

We now reconstruct the stand&®@b x 256 ‘Lena’ and ‘Cameraman’ images. As in Section V-B, the matrix
to-vector conversion operatex(-) is based on the MATLAB wavelet decomposition functisavedec?2
with Haar wavelet. The sampling matrixis generated from structurally random compressive sanip®s
and the transform matri¥ in (37) is thep x p orthogonal inverse Haar wavelet transform matrix, which
implies that the sensing matri& has orthonormal rowstH H” = Iy and, consequently, = py = 1.

Our performance metric is the peak signal-to-noise rat®NR) of an estimated signat

[( WS)MAX - ( WS)MINP } (43)

PSNR (dB)= 10 log,, { PR
2
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Here, we employ the exact DORE and the exact random signatastin (41), which are computa-
tionally tractable becaus# has orthonormal rows. We set the sparsity levébr NIHT and DORE as
10000 N/p and 15000 N/p for MB-IHT, tuned for good PSNR performance. The convergetiteshold
in (36) is set toé = 0.1. The tuning parameters for MP-EM are given in (42) and the ¢gngth in
MP-EM is set ask = 12, the same as in Section V-B. We tuned the regularizationnpatersr in (34b)
for FPGas and GPSR manually and found that the best performance iswamthiwhernu = —3 for both
algorithms.

When applying the turbo-AMP method, we scale the sensingixnas Hscale = (\/W) o . With
measurementy and scaled sensing matrif{scae turbo-AMP returns the scaled signal estimatg,e
and we compute the final turbo-AMP signal estimate(@vw ) sscale Whose performance is evaluated
using (43). Our empirical experience shows that scalingstiresing matrix improves the reconstruction
performance of the turbo-AMP algorithm in this example.

Fig. 9 shows the PSNRs and CPU times achieved by various oethloen reconstructing ti#s6 x 256
‘Lena’ image. ForN/p < 0.4, the proposed MP-EM method outperforms all other methoderey the
performance improvement compared with the closest comopeiaries betweer.4 dB and2.6 dB. For
N/p > 0.4, turbo-AMP outperforms all other methods. In terms of CPtdetji DORE and NIHT are the
fastest among all the methods compared. It takes ar@sgtonds as the runtime for turbo-AMP at each
measurement point. MP-EM is5 to 2.3 times slower than turbo-AMP, but obviously faster than GPSR
FPCGs, and MB-IHT?

Fig. 10 shows the PSNRs and CPU times achieved by variousoghetithen reconstructing tRé6 x 256
‘Cameraman’ image. FoN/p < 0.4, the proposed MP-EM method outperforms all other methodatby
least2.6 dB. For N/p > 0.4, turbo-AMP outperforms all other methods, but performsteypioorly for
N/p < 0.35: a similar pattern that occurs also in Fig. 9. According tg.HiO(b), both DORE and NIHT
consume less thah s in terms of CPU time. It takes arourtds for turbo-AMP at every measurement
point. MP-EM is still consistently faster than GPSR, RRCand MB-IHT, and required.0 to 10.8 s
more than turbo-AMP.

In Figs. 9 and 10, MB-IHT achieves a fair performance and gores the longest CPU time.

Figs. 11 and 12 show the reconstructgeb x 256 ‘Lena’ and ‘Cameraman’ images by different
methods forN/p = 0.375, respectively: The MP-EM algorithm achieves better retmieted image quality
compared with the other methods.

!Regarding the reported CPU time, note that the turbo-AMReatmkes not use MATLAB only, but combines MATLAB and JAVA codes
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VI. CONCLUDING REMARKS

We presented a Bayesian EM algorithm for reconstructingagdmately sparse signal from compressive
samples using a Markov tree prior for the signal coefficiemt® employed the max-product belief
propagation algorithm to implement the M step of the propgdshkl iteration. Compared with the existing
message passing algorithms in the compressive samplirsy ate method does not approximate the
message form. The simulation results show that our alguoritfien outperforms existing algorithms for
simulated signals and standard test images with differamipéing operators.

Our future work will include the convergence analysis of MEB-EM algorithm, incorporating other

measurement models, using a more general prior on the bétabgy variables, and designing schemes for



Fig. 11.

(g) NIHT (PSNR= 24.98 dB) (h) DORE (PSNR= 25.36 dB)

The ‘Lena’ image reconstructed by various methadsV/p = 0.375.
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Fig.

() NIHT (PSNR= 26.57 dB) (h) DORE (PSNR= 26.82 dB)

12. The ‘Cameraman’ image reconstructed by varioushaus for N/p = 0.375.
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learning the tree parameters from the measurements.

APPENDIX
APPENDIX A
DERIVATION OF THE EM ALGORITHM AND PROOFS OFITS MONOTONICITY AND (15)
Consider the hierarchical two-stage model in (11). The detepdata posterior distribution for knowri is

pe,z\tﬂ,y(eu z‘aza y) 8 py\z,UQ <y|z7 02) pz\s(z‘s) ps\q,UQ (8‘q7 02) pq(‘l) (O-z)_l

~ exp{—%(y — Hz)T[C(gz)]—l(y — Hz)} (62/’}/2)0'5 > a pq(q)

det[C(02)]
-exp[—0.5||z — s|3/0% — 0.58" D7'(q) s/ (Ala)
where
C(0?) = o*(Iy — HHT) (Alb)
and
pz\gQ,y,0<z|U27 Yy, 0) = pz|02,y,s(z‘0-27 Yy, S) = N<Z‘Ez|02,y,s(z‘0-27 Yy, 5)7 COVz|cr2,y,s(z‘O-27 Yy, 8))
(Alc)
where
E o2 y,s(2|0%y,8) = {H[C(0*)] ' H + I,/o*} " {H"[C(0*)] 'y + s/0°} (Ald)
COV, o2y s(2|0°, y, 8) = {H'[C(c®)'H + I,/o°} (Ale)
By using the matrix inversion lemma [23, eq. (2.22), p. 424]:
(R+STU)™ = R'—R'S(T '+ UR'S)"'UR™! (A2a)
and the following identity [23, p. 425]:
(R4 STU)'ST = R'S(IT'+UR1'S)™! (A2b)
we obtain
Ez\a2,y,s(z|g27yas) = S+HT(y_HS) (A3)

which leads to (12).
The objective functionn pg| 2 ,(0 | 02, y) that we aim to maximize in Section IlI satisfies the following
property in the EM iteration:

Inpe|q2y(0]0° y) = Q(010Y)) — 1(6]6Y) (Ada)

where
Q(010Y)) £ E 10240 [Inpo o2,y (0, 2[0°, y) |0, y, 0] (Adb)
7—[(0|9(j)) £ E.o2y0 [lnpz|gz,y,0(z|02,y, 0)|02,y,0(j)} (Adc)
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From (Ala) and (A3)Q(0|0Y)) could be computed as

Q(O\O(j)) =const+E ;2 4 0 { —0.5(y — H2)'[C(e®)] (y — Hz) — 0.5 ||z — s]||2/0?

p
—0.58" D7Y(q) s/0* + In[py(q)] + 0.5 In(€*/4?) Zq,— o2y, G(j)}
i=1
G — g2 T p-1 2 P
_ const— 0.5 12 =8l ;S DS e (q)] + 0.5 In (%) S g (A5)
i=1

where const denotes the terms that are not functiosaofd (13a) follows. Sinc@(6]6") is maximized
at U+ we have

Q(g(j+1)|9(j)) > Q(g(j)w(j)) (AB)
and (14) follows from (A4da) by using the inequalities (A6)dan
H(g(j+1)|9(j)) < H(g(j)‘g(j)) (A7)

where (A7) is a consequence of the fact th&i#|0")) is maximized with respect t6 at 8 = 67,
Proof of (15). For a giveng, (A5) is a quadratic function of that is easy to maximize with respect

to s:

1

arg max Q(0|6Y)) = [D'(q) + I,]  2Y. (A8)

Therefore, the estimates efand g obtained upon convergence of the EM iteration in Sectiondlits
fixed point satisfy:

S(+OO) _ [D—l(q(—l—oo)) + Ip]_l z(-l—oo)

= (D@4 4 1) 7 [ 1 (y - 1) (A9)
where the second equality follows by using (12). Solving A& s(+>) yields
s = [D (g + H'H] 'HTy (A10)
and (15) follows. O
APPENDIX B

DERIVATION OF THE MESSAGES ANDBELIEFS IN SECTION |II-A
Before we proceed, note the following useful identities:
2

2 2 T" Z;
S, 0,7 = —2 Bla
arg ms?xj\/'(z si, 02 ) N (s ) 5 5 ( )
1 22
max N (z;; si,az N(s;; 0,7‘2 = ex (— 0.5 —— ) Blb
. ( YN ) TN p 5 5 ( )
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| Upward Messages

1) Upward Messages from Leaf Node&then passing upward messages from the leaf node$,..:,
we set the multiplicative terni], ., mx—i(¢;) to one, yielding [see (22)]

M (i) (dni)) = @ Ine?x{%( i) Vi) (@5 Gni)) }
= o max {N (i 5i,0%) W (s:50,7°0%)]% [N (i3 0, €0%)] "
[P (1= Pr) 7)o [P (1= PL) o]0} (B2)
For ¢ = 0, we have
Min(i) (0) = 117/ (0) = o max {N (25 50,0%) [N (505 0,7%0%)]% [N (835 0, o) 7% PP (1 — )t~}

22

02+ o2¢2

:almax{(l—PL)exp( 0.5 ) /€, Proexp (— 0502+02 )/7} (B3a)

and, forg,; = 1, we have
Misr(i)(1) = i (1) = max {/\/'(zi; si,0%) [N (si; 0,7%0%)]% [N (s 0, 20 7% P (1 — PH)l—qi}
22 22
= max{(l—PH) exp(—05m>/e Py exp( 05m>/7} (B3b)
where we have used (Blb) with* = o02%¢2 and 72 = 0242 anda > 0 ando; > 0 are appropriate
normalizing constants. It follows from (Bla) that the onlyot candidates fof; in the maximization of

(B2) are[0,5;(0)]” and [L,3;(1)].

In summary,
Misni) (i) = [ (0)]' 9 [ (1)] 0 (B4a)
and (B3a) and (B3b) can be rewritten as
1i'(0) = max{vg; }/(max{vg,;} + max{v],}) (B4b)
pi'(1) = max{ry; }/(max{vg,; } + max{vy;}) (B4c)

andvyg,;, vt ;, andg(z) were defined in (23c), (23d), and (23f).
2) Upward Messages from Non-Leaf Nodd=or i € T\ 7., We can use induction to simplify the
multiplicative termerch(i my—i(g;) in (22) as follows:

I mila) = H e [ I mpca)e (B5)
kech(i) kEch kech(i)

see also Fig. 3(a).
Substituting (B5) into (22) yields

mz—m(z)(%r(z)) =Q IHBE}X {wz )wz m(2) (Jw qﬂ(l H Mk—; (JZ

kech(q)
~ o max {N<zz- 50, 0%) V(o1 0,22 N (s 0, 20)] '~ [RY (1 = P!~
= pegmeol T o=+ IT mor), (®9)

kech(i) kech(i
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For ¢.; = 0, we have
Mm@ (0) = a max {N(zi; 51,0%) [N (si5 0,7°0%)]% [N (s;; 0, €0%)] "% PE (1 — P,)' %

N RO | O

kech(q) kech(i)
2
“i
:almax{l—PL H ,uk eXp —05m)/€
kech(i)
z
kel_h[ ()] exp (= 0.5 m)h} (B7a)

and, forg.; = 1, we have
Misn(i)(1) = @ max {N(Zi§ si,0%) [N (55 0772‘72)]% N (si; 0,0 % PE(1— Py)' %

LTI wo)—= Huk

kech(q) kech
2
2
= max{ 1 - PH H uk exp - 0.5 ‘02 + 0262)/67
kech(z)
_ B7
H pr(1 eXp 0502+02 )/7} (B7Db)
kECh (%)

where we have used (Blb) with* = o02¢2 and 72> = ¢27? anda > 0 and o; > 0 are appropriate

normalizing constants.

In summary,

M) (Gri) = [ (0)]' 4 [ (1))@ (B8a)

where
11 (0) = max{vg; © nj'}/ (max{rg; © nj't + max{vy; © n;'}) (B8b)
pi' (1) = max{ry; © nj'}/(max{vy; © nj'} + max{vy; © n;'}) (B8c)

and
m= O i (B8d)
kech(q)

The general upward message form in (23) follows by combiriB®) and (B8).

Il Downward Messages

Based on the results in Section 11I-A1 and Appendix B-I, wea@ify the product of upward messages
sent from the siblings of nodein (24) as follows [see (23a)]:

H mk—>7r(i)<q7r(2 = H Mk 1 q"” H /~Lk q”(i) (B9)

kesib(i) kesib(z) kesib(i)

see also Fig. 3(b).
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1) Downward Messages from Root Nodér the noder(i) € T.0, We Set the message
Mgp(i)—r() (¢=()) 10 ONe, yielding [see (24)]

mﬂ(z)—)z(%) = Iglax {wﬂ(l)(eﬂ(l)) ¢i,7r (%) qza qr(4) H ME— 7 (3) qﬂ(z )} (BlO)
(@) k651b(z)
Substituting (B9) into (B10) yields
mﬂ(l)—ﬂ(ql) = Oéreﬂé(l})( {¢W(Z)( (%) )'l/)z (%) QM qﬂ(l H Mpg—7(3) (J7r(z )}
T kesib(7)

— a1 { N a9, 0%) [PV (52 0,203 (1= Pra N (s 0, %)
(1)

_[PI%Z- (1— PH)l_Qi]Qn-(z‘) [pgz‘ (1-P) 1- 4] 1- In@) | H i 1 ) | H (1 qﬂi)}. (B11)
kesib(7) kesib(7)

For ¢; = 0, we have

Ma(i)—i(0) = @ max {N(Zn(i) » Sy 02) N (Sn(iy 3 0,7°0)] %0 [N (8r(3) ; 0, €20%)]' 79

0()
{(1 - Proot H ,uk }1 e (2) {Proot PH H :uk }qﬂ( )}
kesib(z) kesib(i)
2
= a; max {(1 — Proot) (1 — PL)[ H 1i(0)] exp ( —05 A) /e
1 024022/
kesib(7)
2

Proot(1 — P w1 <_05 ) } Bl2a
1 H>[k€g(i) ()] exp r o) (B12a)

and forg; = 1, we have

Ma(i)—i(1) = migi {N(Zw(i) s Sn(i)s 07) I (Sa(iy 3 0,7707)] %0 [N (8705 0, €207)] 79

{( - root PL H /~L }1 qﬂ(){ProotPH H /J }qﬂ()}

kesib(7) kesib(7)
0
:almax{( — root PL H ,Uk eXp<—O.5m)/€,
kesib(7)
2(
Prows Pl T mi(]exp (=05 =0 o ) (B12b)

kesib(i)
where we have used (Blb) wit? = o2?¢2 and % = 0%¢? anda > 0 and«; > 0 are appropriate
normalizing constants. The only two candidates to maxin@®0) are(0, 5,(;(0)]” and [1, 5. (1)]”.
In summary,
Moy i () =[5 (0)]' 7% [pag! (1)) (B13a)
where

M?(()) maX{VO ) @ n?}/<maX{V0 ) @ "7?} + max{ul N @ nz }) (Bl3b)
H (1) = maX{Vl,z‘ © n?}/(maX{Vo,i © "7?} + maX{Vl,z‘ ©n; }) (B13c)
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and
vi,=[1=P, 1=Pu] 0¢(p) o[ O m] (B13d)
kesib(4)
vi, =[P, Pu] ©ézm) 0| O (B13e)
kesib(s)

"7? = [1 - Prootu Proot]T (Bl3f)

2) Downward Messages from Non-Root Nod€&sr the noder (i) € (T \Troot)\ Treat, USING the same
strategy as above, (24) simplifies as

m7r(l')—>i(qi>:a%15(i?)<{w7r(i)( ) Vi) (@i e()) Megp(i)—r(i) (r (i) H My (i) (i )}

kesib(i)
g {N(Zw(i); Sr(iys 02) IN (Sn(iy 3 0,7°02)] %D [N (8705 ; 0, €20%)] 00
R (1= Ry [P (= Ry o [T oo [ T mm)eo
kesib(z) kesib(i)
[ O 79 [ (1))9 | (B14)

For ¢; = 0, we have

Ma(i)—i(0) = a max {N (2n(i) 5 Sniy 07) IN (5x(iy 5 0,7°0%)]O [N (8703y 5 0, €0°)] 1740

20
Ll ) =Pl TT s 0 {udy(1) 1 = P)[ [ w(0)]3e=c )}
kesib(7) kesib(7)
2
_almax{,u( 1_PL H ,uk exp( O5ﬁ(o)_€2)/€
kesib(7)
15w (1) (1 — Py)] H f(1 eXp( 050—2+02 )/7} (B15a)
kesib(7)

and forg; = 1, we have

Ma(i)—i(1) = a max {N(zw(i) » Sw(i) o”) N (sr@; 0, v2?)]4n N (8x(i) 5 0, 20?)] @

20
{/”Lw(z PL H ,LL }1 Im (D) {,u PH H ,LL }qﬂ( )}
kesib(2) kesib(z)
2200
_almax{ PL H ,uk exp( O5m)/€
kesib(7)
2
Pl Pl T #i()]exp < 05" + p )/7} (B15b)

kesib(z)

where we have used (Blb) wit? = o02?¢2 and % = 0%7? anda > 0 and«; > 0 are appropriate
normalizing constants. The only two candidates to maxin@®®4) are(0, 5,(;(0)]” and [1, 5, (1)]".

In summary,

Moy i () =[5 (0)]' 7% [pag! (1)) (B16a)
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where
1 (0) = max{vy,; @ 77}/ (max{vf, © ni} + max{v]; © n}) (B16b)
pi (1) = max{v{; @ i}/ (max{vf, © i} + max{v]; © nf}) (B16c)
and
ny = ug (B16d)

The general downward message form in (25) follows by combir{B13) and (B16).

Il Beliefs

Define the vectod, = [3;(0), 3:(1)]”
5i(0) = max b([0, "), Bi(1) = max b([1, s:]") (B17)
whereb(0;) are the beliefs defined in (26).
1) Beliefs for the Root Noded:or root nodes € 7., the beliefsh(8;) in (26) become
b(0;) = a N (zi; 32‘7‘72)[ rootN(s“ ,7202)] (1= Proot) N (555 0,€20%) 170

[T ] ™ [ TT en]™. (B18)

kech(q) kech(q)
and (B17) simplify to

1 2 )
B0 = o e e 2 (09 T ) (1= P ] 80 (B192)
1 2
i 1) = —05——-5— roo B19b
A1) a\/27t02\/27t7202 eXp( 02—1—02 tkecl_h[muk ( )
yielding
/Bi = [62(0)7 52(1)]T = al[]- - Proota Proot]T ®© ¢)(Z,) ®© 77;1 (BZO)

2) Beliefs for the Non-Root Non-Leaf Nodéri € (T \ Troot) \ Ticat, the beliefsh(0;) in (26) become
b0(6;) = aN(z; si,0 2) [N(sz, 0,7%0%)) W(Si; 0, €0)]" % [ (0)]' =% [usg' (1))

T [ ] ma (B21)

kech(i) kech(q)

and (B17) simplify to

1 2
i(0) =« ex —057 B22a
Ai(0) V2mo2V2me2o? p( 0%+ o? 62 kel;[)'uk ( )
1 2
62(1) :()[\/27_(0_2 \/27_(720_2 eXp(—OE)m H /,Lk (BZZb)

kEch (%)

yielding
B, = [6:i(0), Bi(1)]" = 1 gp(2:) © pi @ ' (B23)
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3) Beliefs for the Leaf Noded=or i € Ti..¢, the beliefsh(6;) in (26) become
b(6:) = a N (zi; si,0°) [N (si5 0,7°0%)]% [N (s4; 0, €201 [ (0)]' 9 [pag! (1))

(B24)
and (B17) simplify to
B 1 222 d
Bz(0> =« \/2 g \/27t6202 exp ( —0.5 m) M, (0) (sta)
B 1 22 4
yielding
B; = 18i(0), Bi()]" = (=) © pf. (B26)
In summary,
- ) ) T al[l - Prootu Proot]T @ ¢<Zz> @ 77;17 { c 7;001:
8= s = { " T el O T
Consequently, the mod@ is computed as
3 A~ L,5(1)), Bi(1) = B:i(0
.- s - ooy - { (300 SZA0 e

Note that the normalizing constantsanda; in the above upward and downward messages and beliefs
have been set so that; ,.(;)(0) + M) (1) = 1, Mr)—i(0) + mrp—i(1) = 1, and 3;(0) + B;(1) =1

respectively.
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