Quantum Physics

Pedagogical applications of the onedimensional Schrödinger's equation to proximity effect systems: Comparison of Dirichlet and Neumann boundary conditions

P.R. Broussard

(Submitted on 19 Jan 2009)

Proximity effect systems in superconducting films can be modeled by a one-dimensional Schr\"odinger equation. Several systems are studied using Dirichlet and Neumann boundary conditions. It is observed that the two boundary conditions have a dramatic effect on the lowest eigenstate allowed in these systems, and points to unusual behavior for solutions of Schr\"odinger's equation in certain potential wells and proximity effect systems.

Comments:	10 pages, 7 figures. To be published in American Journal of Physics
Subjects:	Quantum Physics (quant-ph)
Journal reference:	Am. Journal of Phys., Volume 77, 360 (2009)
DOI:	10.1119/1.3078414
Cite as:	arXiv:0901.2894v1 [quant-ph]

Submission history

From: Phillip Broussard [view email] [v1] Mon, 19 Jan 2009 19:36:07 GMT (318kb,D)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- Other formats

Current browse context: quant-ph

< prev | next >

new | recent | 0901

References & Citations

- SLAC-SPIRES HEP (refers to | cited by)
- CiteBase

Bookmark(what is this?)
CiteULike logo
Connotea logo
BibSonomy logo
Mendeley logo
Facebook logo
🗙 del.icio.us logo
■ Digg logo ■ Reddit logo