2001 Vol. 36 No. 3 pp. 331-334 DOI:

Normal Ordering Solution to Quantum Dissipation and Its Induced Decoherence

JIN Guang-Ri,¹ ZHOU Duan-Lu,¹ LIU Yu-Xi,² YI Xue-Xi¹ and SUN Chang-Pu¹

¹ Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China
² The Graduate University for Advanced Studies (SOKEN) Hayama, Kanagawa 240-0193, Japan (Received: 2001-3-15; Revised:)

Abstract: We implement the normal ordering technique to study the quantum dissipation of a single mode harmonic oscillator system. The dynamic evolution of the system is investigated for a reasonable initial state by solving the Schrödinger equation directly through the normal ordering technique. The decoherence process of the system for the cases T=0 K and $T\neq 0$ K is investigated as an application.

PACS: 42.50.Fx, 03.65.-Bz Key words: normal ordering technique, quantum decoherence

[Full text: PDF]

Close