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The f(R)-gravitational theory with torsion is considered for one family of leptons; it is found that
the torsion tensor gives rise to interactions having the structure of the weak forces while the intrinsic
non-linearity of the f(R) function provides an energy-dependent coupling: in this way, torsional
f(R) gravity naturally generates both structure and strength of the electroweak interactions among
leptons. This implies that the weak interactions among the lepton fields could be addressed as a
geometric effect due to the interactions among spinors induced by the presence of torsion in the
most general f(R) gravity. Phenomenological considerations are addressed.
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I. INTRODUCTION

So far back as forty years ago, all the elementary par-
ticles that were known at the time have been placed into
a schematic and unique frame, thus called the Weinberg-
Salam Standard Model (SM); such SM has further gained
much consensus due to the fact that the predictions it
was able to make have been experimentally measured to
a very high precision level.

The fundamental structure of the SM is summarized in
its Lagrangian LSM, which can be written in the general
form as

LSM = LDirac + LSU(2)L×U(1) + LHiggs . (1)

The term LDirac describes dynamics of Dirac massless
spinors; further it is assumed that these massless spinors
have their left-hand projections mixing according to the
SU(2)L isospinorial symmetry beyond the U(1) hyper-
charge symmetry, so the term LSU(2)L×U(1) is added to
describe dynamics of the complete SU(2)L ×U(1) gauge
interactions, giving rise to massless interactions; how-
ever, in nature, we observed interactions mediated by
massive vector bosons, and then it is assumed that these
gauge massless fields lose their gauge symmetry while
getting masses, and the term LHiggs is eventually added
to describe dynamics of the Higgs scalar field that would
induce the gauge symmetry breaking and mass gener-
ation mechanism. When in the Lagrangian LSM, the
Higgs field is in a specific vacuum configuration, the ini-
tial SU(2)L × U(1) gauge symmetry is broken and all
fields coupled to the Higgs acquire their masses; in order
for the Lagrangian LSM to adequately represent the el-
ementary particles observed in nature, the Higgs terms
LHiggs is necessary. Albeit within the Lagrangian LSM,
the fermionic and interacting terms have been experimen-
tally confirmed, there is for the Higgs term no evidence
yet and the detection of such a field can be considered as

one of the biggest challenges for LHC experiments now
running at CERN.

Clearly, the fact that the Higgs field has not been ob-
served at the moment does not mean it could not be
observed in the future; however, its discovery was sup-
posed to be within the reach of present accelerators: as
this situation persists as reported by ATLAS collabora-
tion at CERN [1] and CDF collaboration at Fermi Lab
[2], it becomes more and more compelling the possibility
that the Higgs field may not even exist. On the other
hand however, if the Higgs field does not exist then also
the predicted phenomenology cannot be obtained after
gauge symmetry breaking and mass generation from the
Lagrangian LSM: therefore if within the Lagrangian LSM

there is no LHiggs term then no breaking of the symme-
try for the SU(2)L × U(1) gauge group can be achieved
and furthermore no generation of the masses of the ele-
mentary particles can be possibly accomplished; since the
SU(2)L × U(1) gauge group is allowed precisely because
the spinors are massless then to suppress the existence of
at least the SU(2)L sector of the gauge group, we have
to require the spinors to be massive from the very be-
ginning. This requirement however means that the mass
of elementary particles has to be present at any energy
scale generating a dramatic hierarchy problem [3].

Because of the presence of the mass terms there can be
no gauge symmetry, and therefore there can be no fun-
damental W± and Z boson, so that whatever will play
the role of the W± and Z bosons must be a composite
vector field, yet able to recover the phenomenology of the
fermionic weak forces we have already observed, as long
as the energy is low enough not to probe their composite-
ness; and this model would have no Higgs boson, whether
fundamental or composite. Now the question we have to
ask is: what could give rise to W± and Z bosons with
composite structure, and no Higgs field at all?

The answer to this question has to find place in a new
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type of physics that could eventually involve the gravita-
tional sector. Actually, there is a type of physics that is
relatively new in its applications to the physics of elemen-
tary particles because, in the past, people almost never
thought to employ it to study high-energy systems: this
type of physics might well be based on the Cartan the-
ory of torsion [4] and the so-called Extended Theories of

Gravity (ETGs) [5–7] involving further degrees of free-
dom for the gravitational field.

As we shall better discuss in the following, Cartan tor-
sion tensor is indeed a quantity that is an integral part
of the most general connection in the General Theory of
Relativity, and it is actually capable of introducing new
dynamical effects by endowing with non-linear potentials
the fermionic field equation; these potentials are intrigu-
ingly similar to the weak forces of the Fermi Model as
it has been remarked since the beginning of the 1970s in
the seminal works [8–12] and references therein. That
torsion induces electroweak-like interactions not only at
the low-energy scale of the effective Fermi Model but
also up to the higher-energy scale of the SM has been
shown in [13, 14]; eventually, a model in which the torsion
induces electroweak interactions not as gauge fields be-
fore the symmetry breaking but directly as effective weak
forces has been developed in [15]: all results exposed in
[8, 10, 13–15] collected together show that by starting
from a theory of gravity in which both metric and tor-
sional degrees of freedom are considered, it is possible
to build a model for the system of two fermions. Tor-
sion induces fermions to couple as if they were actually
weakly coupled, as experimentally observed [16]. More
importantly, in the present construction, the weak cou-
pling looks as if mediated by composite massive bosons
whereas in the SM they are supposed to be elemen-
tary; this means that in these approaches the W± and
Z bosons have an internal structure they should display
at high-energy scales, whereas in the SM they must be
structureless at any energy scale. But even more impor-
tantly, there is here no hint of any Higgs boson, whatever
composite or fundamental. All this is certainly intrigu-
ing, but, in order for the entire idea to be acceptable,
there is a fundamental obstacle that must first be over-
come: it concerns the fact that torsion should become
relevant not little before or at the Fermi or Electroweak
scale but well beyond it. The mechanism by which to
achieve such a result could be provided by ETGs which
naturally induce a gravitational running coupling, as it
has been shown in [17].

Indeed, in all models in which torsion is thought to give
rise to electroweak interactions or weak forces, a mech-
anism for an energy-dependent running of the gravita-
tional coupling must take place, in order for the gravita-
tional effects to reach the Fermi scale while starting from
the Planck scale. Interestingly, this mechanism might
come from a straightforward generalization of the grav-
itational interaction, e.g. f(R) gravity, because it con-
cerns a Lagrangian function that is not simply linear in
Ricci scalar R but a generic function of it as discussed in

[19–22] and in more general instances in [5]. This theory,
and in general ETGs, has recently acquired great interest
in cosmology and astrophysics in addressing problems re-
lated to the dark sector of the matter-energy content of
the universe [23, 24]. In principle, as discussed in [7, 25],
it is possible to reconstruct all phases of cosmic history
by suitable f(R) models. This means that inflation, ra-
diation dominated, matter dominated and dark energy
phases can be addressed without adding new exotic in-
gredients but just supposing that the effective theory of
gravity can be scale dependent. On the other hand, the
same philosophy works for self-gravitating systems: in
[26–28], it is shown that dynamics of low surface bright-
ness spiral galaxies, clusters of galaxies and elliptical
galaxies can be matched by corrections to the Newto-
nian potential coming from f(R) gravity. In particular,
Taylor expansions of analytic f(R) models give rise to
Yukawa corrections to the gravitational potential that
fix the characteristic scales of such astrophysical systems
without dark matter. Furthermore, such corrections well
evade Solar System tests of General Relativity [29] since
their effects become relevant from the Galactic scale and
beyond. This means that General Relativity works well
at local scales but it has to be revised at infrared scales.
The point is now to show that a similar paradigm, as-
suming different couplings, can work also at ultraviolet
scales.

Recently f(R) gravity has been considered at high-
energy scales in connection to the hierarchy problem and
mass generation [17] and in presence of Dirac matter
fields [18]: in particular, by applying f(R) gravity to
the specific case of Dirac matter fields, the non-linearity
of the function f(R) is equivalent to the presence of a
suitable scalar field depending on the bilinear scalar ob-
tained from the Dirac field alone, scaling the potential
of the Dirac matter fields within the Dirac matter field
equation. Henceforth, if the idea of exploiting torsion to
produce electroweak-like forces is performed within the
framework of f(R) gravity for the Dirac matter field, then
we may expect that all torsion interactions may not only
have the form but also the strength of the weak forces
at the electroweak energy scale if a suitable fine-tuning
is chosen.

The aim of this paper is to show that taking into ac-
count f(R) gravity with torsion, it is possible to achieve
a natural model for electroweak interactions with a run-
ning coupling induced by gravitational degrees of freedom
where interactions with fermions are considered. First
of all, we shall recall the general properties of torsional
f(R) gravity when Dirac matter is present as source;
then we shall study the two fermion field model, one of
which massless and left-handed; eventually, we are going
to show that, for this two-lepton system, the torsional
interactions among the two leptons may be written in
the form of the weak interactions, mediated by compos-
ite W± and Z bosons, without Higgs field at all: these
torsional weak interactions, mediated by the W± and
Z bosons, present a coupling constant that runs thanks
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to the non-linearity of f(R) gravity, and it may eventu-
ally be fine-tuned on the value we expect to observe. A
phenomenological discussion of gravitational cut-off and
electroweak interactions at TeV scales is given.

II. DIRAC MATTER FIELDS IN f(R) GRAVITY

In this paper, we shall employ both coordinate and
tetrad formalisms, the former in Latin and the latter in
Greek indices; in the coordinate formalism, Latin indices
are lowered and raised by means of the metric gij and gij ,
while in the tetrad formalism, Greek indices are lowered
and raised by means of the metric ηµν and ηµν having
the Minkowskian form diag(1,−1,−1,−1): the passage
between the two formalism is achieved by means of the
tetrad bases eiµ and e

µ
i . The differential properties are

given in terms of the covariant derivative ∇i, whose com-
mutators define the Riemann curvature tensor Rstij and
the Cartan torsion tensor Tijh; the only contraction of the
Riemann curvature tensor defined asRstijgsi = Rtj is the
Ricci curvature tensor, whose contraction Rstgst = R is
the Ricci curvature scalar, while the contraction of the
Cartan torsion tensor T j

ij = Ti is the Cartan torsion
vector, useful in the following. For all properties of these
geometrical objects and their relationships, we refer the
reader to references [18–20, 22].

The general theory of f(R) gravity possessing both
metric and torsional degrees of freedom can be formu-
lated within both the metric-affine and the tetrad-affine
framework. According to the basic paradigm of f(R)
gravity, the gravitational Lagrangian of the theory is as-
sumed to be a real scalar function f(R), where R is the
Ricci curvature scalar written in terms of a metric g and
a g-compatible connection Γ with torsion, or equivalently
in terms of a tetrad field e and a spin-connection ω; the
pairs (g,Γ) or equivalently (e, ω) represent the gravita-
tional dynamical fields of the theory in the metric-affine
and tetrad-affine approaches respectively: by varying the
Lagrangian with respect to (g,Γ) or (e, ω) we get in
any case the system of field equations for the curvature-
energy and torsion-spin couplings

f ′(R)Rij − 1
2f(R)gij = Σij (2a)

f ′(R)Tijh = 1
2 (gih∂jf

′(R)− gjh∂if
′(R)) +

+
(

Sijh + 1
2gihS

q
jq − 1

2gjhS
q

iq

)

(2b)

where Σij and Sijh are the stress-energy and the spin
density tensors of matter fields. It is possible to see that
from (2b) there could be torsion even in absence of the
spin density tensor: therefore we may say that while the
energy is the source of the curvature of the spacetime,
both the non-linearity of f(R) gravity and the spin are
the sources of the spacetime torsion [19, 20, 22].

Then, making use of the Bianchi identities, it is possi-
ble to derive the conservation laws

∇iΣ
ij + TiΣ

ij − ΣpiT
jpi − 1

2SstiR
stij = 0 (3a)

∇hS
ijh + ThS

ijh +Σij − Σji = 0 (3b)

which the stress-energy and spin density tensors of mat-
ter fields must satisfy, once the matter field equations are
assigned. These results have been proven to hold in the
most general case [18].

Because in this paper we will deal with f(R) gravity
coupled to the Dirac matter field, we need to define the
Dirac matrices γµ = γie

µ
i verifying the Clifford algebra

as usual; the commutator Sij = 1
8 [γi, γj] will be used in

the following. To extend the covariant derivative to Dirac
spinor fields ψ and Dirac conjugate spinor field ψ̄ = ψ†γ0

as Diψ = ∂iψ − Ωiψ and Diψ̄ = ∂iψ̄ + ψ̄Ωi we have to
define the spinorial connection

Ωi =
1
4ω

µν
i γµγν = − 1

4

(

Γ j
ik − ejµ∂ie

µ
k

)

γjγ
k (4)

in terms of the spin connection ω
µν
i or the coordinate

connection Γ j
ik equivalently.

With these geometrical quantities, it is possible to de-
fine the stress-energy and spin density tensors

Σij =
i
4

(

ψ̄γiDjψ −Djψ̄γiψ
)

(5a)

Sijh = i
2 ψ̄ {γh, Sij}ψ ≡ − 1

4ǫijhk
(

ψ̄γ5γ
kψ

)

(5b)

in terms of the parity-odd γ5 = iγ0γ1γ2γ3 and because of
the presence of the parity-odd completely antisymmetric
tensor of Levi–Civita shows that the Dirac spin density
tensor is completely antisymmetric as well.

Finally, the Dirac equations are given by

iγkDkψ + i
2γ

kTkψ −mψ = 0 (6)

in terms of the mass m of the Dirac matter field.
By substituting the energy and spin density tensors in

the field equations (2) we finally have

f ′(R)Rij − 1
2f(R)gij =

i
4

(

ψ̄γiDjψ −Djψ̄γiψ
)

(7a)

f ′(R)Tijh = 1
2 (gih∂jf

′(R)− gjh∂if
′(R))−

− 1
4ǫijhk

(

ψ̄γ5γ
kψ

)

(7b)

linking the Dirac matter to the spacetime geometry.
Of course, once the matter field equations (6) are used

for the conserved quantities given by the energy and spin
density tensors in the right-hand side of the field equa-
tions (2), then we have that the conservation laws are ver-
ified identically, showing that the theory is consistently
defined [18].

In the following, we suppose that the trace of the field
equation (7a)

f ′(R)R− 2f(R) = Σi
i = Σ (8)

gives rise to an invertible relation between the Ricci cur-
vature scalar R and the trace of the stress-energy tensor;
also, because the case f(R) = kR2 is only compatible
with the traceless energy condition, then, for the sake
of generality, we assume that f(R) 6= kR2. Under the
assumed conditions, from equation (8), it is possible to
derive the expression of R as function of Σ as R = F (Σ)
(see [18–22]). Due to the irreducibility of the Dirac spin
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density tensor, the torsion tensor has only two irreducible
decompositions, given by the completely antisymmetric
part, that is

f ′(R)Tijhǫ
ijhk = 3

2

(

ψ̄γ5γ
kψ

)

(9)

as standard and the trace part

f ′(R)Ti = − 3
2∂if

′(R) (10)

which is now completely determined by the non-linearity
of the f(R)-function.

Let us introduce now the scalar field

ϕ = f ′(F (Σ)) (11)

related to the f(R) further degrees of freedom and the
effective potential

V (ϕ) =
1

4

[

ϕF−1((f ′)−1(ϕ)) + ϕ2(f ′)−1(ϕ)
]

(12)

which clearly disappears as soon as f(R) = R. Such a
scalar field is used to separate the Levi–Civita contri-
butions from the torsional ones. According to this as-
sumption, we call R̃ijhk and ∇̃i with D̃i the Riemann
curvature tensor and the covariant derivatives of the tor-
sionless Levi–Civita connection.

With these definitions, it is possible to prove that the
field equations for the spin-torsion coupling (7b) imply
the antisymmetric part of the field equations for the
energy-curvature coupling (7a), so that only their sym-
metric part turns out to be significant; after having sub-
stituted (7b) into (7a), we indeed get the symmetrised
Einstein-like equations in the form

R̃ij =
1
ϕ2

(

− 3
2∇̃iϕ∇̃jϕ+ ϕ∇̃j∇̃iϕ+ 1

2ϕ∇̃2ϕgij

)

+

+ i
8ϕ

(

ψ̄γiD̃jψ + ψ̄γjD̃iψ − D̃jψ̄γiψ − D̃iψ̄γjψ
)

+

+ 1
ϕ2V (ϕ)gij − m

4ϕ ψ̄ψgij (13)

and, upon substitution into (6), we get the Dirac-like
equations as in the following

iγkD̃kψ − 3
16ϕ (ψ̄γ

kψ)γkψ −mψ = 0 (14)

as it has already been discussed in [18].
From now on, we shall focus only on the Dirac-like field

equation (14), in which the torsional contributions are
given as self-interactions of the spinor field with itself; to
be more precise, the torsion-spin coupling forces the left-
and right-hand projections of the spinor field to interact
according to a potential of the Nambu-Jona-Lasinio type
[33, 34]. This fact was already noticed in [32], and then
generalized for the f(R)-gravity in [18]; specifically, the
non-linearity of the f(R) function has the effect of in-
troducing a scale factor modifying the normalization of
the Dirac field, and therefore acting as a running cou-
pling for the potential: therefore, if we have that the
torsion influences the spinor dynamics by giving rise to
spinorial self-interactions, we also have that the intrinsic

non-linearity of f(R) function has the effect of endowing
these interactions with an energy-dependent coupling.

In the following, we shall exploit this approach in the
case of a model of leptons, showing that the spinorial self-
interactions for the two spinors will be accompanied by
spinorial interactions among the two spinors that can be
written in the form of electroweak interactions, featured
by an energy-dependent scaling.

III. ELECTROWEAK-LIKE INTERACTIONS

FROM TORSION

In order to model a pair of leptons our starting point
will be a coupled system of Dirac matter fields of which
one is considered to be a left-handed spinor; however as
we have discussed in the introduction, the double-handed
spinor will be taken already massive: when in the cou-
pled matter field equations the torsional contributions
are separated away and eventually written in terms of
the spin density, the fact that the spin density is the sum
of the spin densities of all spinors involved implies that
now there will be more interactions modelled as

iγkD̃ke− 3
16ϕeγkeγ

ke− 3
16ϕνγkνγ

kγ5e−me = 0(15)

iγkD̃kν − 3
16ϕeγkγ5eγ

kν = 0 (16)

where e and ν denote the electron and neutrino fields.
In these equations again all the interactions are among

the left- and right-hand projections, but because the neu-
trino has no right-hand projection then the neutrino self-
interactions are lost in the neutrino field equation, leav-
ing electron self-interactions in the electron field equation
and neutrino-electron interactions in both field equations.

By employing some Fierz rearrangement, it is possible
to see that the torsional potentials for the spinor fields
can be transformed into the following

iγkD̃ke − 3
8ϕ(cos θ)

2eγkeγke+ q tan θZkγ
ke−

− g
2 cos θZkγ

keL + g√
2
W ∗

k γ
kν −me = 0 (17)

iγkD̃kν +
g

2 cos θZkγ
kν + g√

2
Wkγ

keL = 0 (18)

once we name

Zk = −
[

2(sin θ)2eγke− eLγ
keL + νγkν

]

(

3 cot θ
16ϕq

)

(19)

W k = −
(

eLγ
kν

)

[

12(sin θ)2−3

16ϕq
√
2 sin θ

]

(20)

where m and q are the mass and charge of the electron
field, the parameter θ is determined by q = g sin θ and
the parameter g is totally arbitrary; of course this pa-
rameter might have been different, but precisely because
it is totally arbitrary we are free to choose it as we like,
and our choice is motivated by the fact that eventually
we want to recover the same set of parameters of the SM,
so to have the ease of having a direct comparison.

We notice that, on the one hand, there has been a shift
in the coupling constant of the electron self-interaction
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in the electron field equation, and on the other hand, all
interactions among electron and neutrino in both field
equations have been written in a form that is exactly
that of the weak interactions among leptons; then we
have that the mediators of such weak-like forces among
leptons are composite, being them built in terms of lep-
ton bound states whose binding is due to the presence
of torsion; finally, we remark that there is no Higgs field
whether composite or not appearing whatsoever: cor-
respondingly, we notice that, firstly, as the interactions
among spinors have precisely the form of the weak forces
for leptons, then both this and the SM give rise to the
same effective forces at the Fermi scale; secondly, since
here it is in terms of leptonic bound states that the weak
vector mediators are constructed while in the SM they
are fundamental, then in this model we must expect the
weak-like bosons to display internal structure when the
energy is high enough to probe their compositeness while
in the SM they must remain structureless at any energy
scale, and so discrepancies at high energies must arise;
finally, because the present model predicts the absence
of the Higgs field, then it will be more and more con-
firmed as the Higgs boson is shown to be more and more
elusive. The problem that now needs to be addressed is
that, where the two models are supposed to give rise to
the same phenomenology, there they have to yield the
same predictions: we have already noticed that for both
models the weak interactions for leptons have structure
that are identical, and we need now to see whether their
strengths can also be tuned as well.

In fact, that starting from torsion one can get weak-
like forces among leptons has already been shown in [15],
although in that paper the problem of the strength is
left open; here the same results regarding the employ-
ment of torsion to get weak-like forces among leptons are
obtained, but they are found, but it is in the general-
ized f(R) gravity that they are obtained: therefore we
can here exploit the presence of the field ϕ as a running
coupling to fit an energy-dependent scaling [18].

IV. THE PROBLEM OF GRAVITY AND

ELECTROWEAK INTERACTIONS

According to the above considerations, in the present
approach, the weak vector bosons are the effective re-
sult of the interactions induced by torsion among lepton
fields; therefore the present approach must be able to
address all problems that in the SM are solved by the
presence of fundamental weak bosons and Higgs boson,
whether it is composite or fundamental. In the SM, the
Higgs boson is necessary to give rise to the Higgs mech-
anism, which is a process that allows to break the gauge
symmetry generating the masses of the electroweak gauge
bosons; to preserve the perturbative unitarity of the S-
matrix; and, finally, to preserve the renormalizability of
the theory. The masses of the electroweak bosons can be
written in a gauge invariant form using either the non-

linear sigma model [35] or a gauge invariant formulation
of the electroweak bosons. However if there is no propa-
gating Higgs boson, quantum field amplitudes describing
modes of the electroweak bosons grow too fast, violating
the unitarity around TeV scales [36–39]. There are sev-
eral ways in which unitarity could be restored, but the
SM without a Higgs boson is non-renormalizable at per-
turbative level. This means that if Higgs boson is not
detected then a dramatic puzzle would come out in order
to describe the observed masses and their hierarchies of
the particles.

A way out could be that the electroweak interactions
may become strongly coupled at the TeV scales and
then the related gauge theory becomes unitary at non-
perturbative level. Yet another possibility for models
without a Higgs boson may consist in introducing weakly
coupled new particles to delay the unitarity problem into
the multi TeV regime where the ultraviolet limit of the
SM is expected to become relevant. These ideas are very
intriguing and show several features of electroweak inter-
actions: first of all, the Higgs mechanism is strictly nec-
essary to generate masses for the electroweak bosons if
these electroweak boson are initially fundamental gauge
fields; beside, some mechanisms can be unitary but not
renormalizable or vice-versa. In summary, the paradigm
is that three different criteria should be fulfilled: i) the
masses of electroweak bosons must be generated if they
initially are gauge fields or be always present if they are
composite fields; ii) the perturbative unitarity must be
respected; iii) the renormalizability of the theory must
be ensured at any scale of energy.

In any case, it is possible to define an action in terms of
an expansion in the scale of the electroweak interactions
v: the action can be written as [40]

LSM = LSM Higgsless +
∑

i

Ci

vN
O4+N

i , (21)

where O4+N
i are operators compatible with the symme-

tries of the model.
The analogy between the effective action for the elec-

troweak interactions (21) and f(R) gravity is striking as-
suming a gravitational Taylor series of the form

Lf(R)−gravity = f(R) ≡ Λ +
∑

k

1

k!
f
(k)
0 Rk , (22)

where the coefficients f
(k)
0 are the k-order derivatives of

f(R) at a certain value of R; it is straightforward that
the extra gravitational degrees of freedom can be suitably
transformed into the above scalar field ϕ which allows to
avoid the hierarchy problem. It is clear that both the
electroweak interaction and f(R) gravity have a dimen-
sional energy scale: the Planck mass sets the strength
of gravitational interactions while a given weak scale λ
determines the range and the strength of the electroweak
interactions. If gravity shows a running coupling, these
scales can be compared at TeV energies and then probed
at LHC. If this is done, the electroweak-like interactions
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would have the right strength, beside the already noticed
correct structure, of the known electroweak interactions,
and the electroweak bosons would not be the standard
gauge bosons but they would be recovered from the fur-
ther gravitational degrees of freedom coming from torsion
in f(R) gravity. In this case however, the masses cannot
be generated by a mechanism of mass generation but they
will have to be always present; actually this is precisely
what happens in the present construction.

Specifically, in the Standard Model, the W and Z
bosons are the result of a spontaneous symmetry break-
ing being originally gauge fields. In our case, they are
not gauge fields from the beginning but they naturally
arise from torsional interactions among leptons and do
not come from any symmetry breaking. However, in a
more general approach, as that discussed in [17], W and
Z bosons, as well as SU(2)L and SU(3) interactions, can
be related to a gravitationally induced symmetry break-
ing connected to a dimensional reduction.

In the present case, by considering the expressions for
the weak-like bosons (19-20) we have the following equa-
tions

∇µZ
µ +

(

3 cot θ
16

)

m
q

ieγ5e
ϕ

+ Zµ∂µ lnϕ = 0 (23)

∇µW
µ −

[

12(sin θ)2−3

16
√
2 sin θ

]

m
q

ieγ5ν
ϕ

+Wµ∂µ lnϕ = 0 (24)

showing that the vector bosons are indeed massive as
they satisfy partially conserved axial currents, and the
problem related to the masses of the vector boson is ad-
dressed. These expressions, given in terms of ϕ as ob-
tained here, and the corresponding expressions in the SM,
given in terms of the Higgs field, as shown for instance
[41], can be compared, and the partially conserved axial
currents display in both cases astonishing similarities.

A gravitational action like (22) is in principle non-
perturbatively renormalizable if, as shown by Weinberg,
there is a non-trivial fixed point which makes the gravity
asymptotically free [42]; this scenario implies that only a
finite number of Wilson coefficients in the effective action
would need to be measured and the theory would thus be
predictive and probed at LHC. Measuring the strength of
the electroweak interactions in the electroweak W -boson
scattering could easily reveal a non-trivial running of the
electroweak scale v; if such an electroweak fixed point
exists, an increase in the strength of the electroweak in-
teractions could be found, as in the strongly interacting
W-bosons scenario, before the electroweak interactions
become very weak and eventually irrelevant in the fixed
point regime. In analogy to the non-perturbative run-
ning of the non-perturbative Planck mass, it is possible
to introduce an effective weak scale

v2eff = v2
(

1 +
ω

8π

µ2

v2

)

, (25)

where µ is an arbitrary mass scale, ω a non-perturbative
parameter which determines the running of the effective
weak scale and v is the weak scale measured at low ener-
gies: if ω is positive, the electroweak interactions would

become weaker with increasing center of mass energy, and
this asymptotically free weak interaction would be renor-
malizable at non-perturbative level without the need of
a Higgs boson, solving the issue raised above to pre-
serve the perturbative unitarity of the S-matrix. Besides,
asymptotically free weak interactions induced by gravity
could solve the unitarity problem of SM (see e.g. [40]).

In summary, problems like unitarity, renormalization
and mass generation, could be, in principle, addressed
by a model even without the Higgs boson, if specific dy-
namics, settling a suitable running coupling is found; as
we will see below, such a dynamics can be implemented
by the function ϕ.

V. ENERGY-DEPENDENT COUPLING

INDUCED BY f(R)-GRAVITY

Let us assume now the action (22). Specifically, the
f(R) function is assumed analytic, the least-order is the
Einstein action; the second-order does not contribute to
the energy trace condition, and therefore we will consider
the third-order power, truncating all the following higher-
order powers. The Taylor coefficients can be written as

f(R) = R+ 1
4εR

2 + 1
27η

2ε2R3 (26)

in terms of the two parameters ε and η that have to be
determined eventually. The Λ term has been discarded
at the moment since it is unessential for the following
considerations.

In this situation, equation (8) is a cubic equation in R
with three solutions, of which we are going to take the
only solution that is always real; this is also the only solu-
tion for which R vanishes as the energy trace Σ vanishes:
with it we have that ϕ is

ϕ = 3
(

1− 3
8η2

)

+
(

3
4η +

3

√

s+ 2
√
s2 − 1

)2

+

+
(

3
4η +

3

√

s− 2
√
s2 − 1

)2

(27)

function of the energy 1
2ηεΣ = s in the parameter η alone.

Therefore in the torsionally induced electroweak inter-
actions, we have that the coupling 1

ϕ
is energy dependent

and expressed as a scale factor in one parameter; as an
easy analysis shows, this coupling starts from the unity
and then it increases up to its maximum value before
eventually decreasing to vanish asymptotically as the en-
ergy starting from zero increases to infinity. Henceforth
the leptons would start with negligible interactions but
then they would get larger scattering amplitudes before
finally being asymptotically free.

An important remark is in order at this point. The
form of action (26) is extremely relevant since it can be
shown that it passes several viability conditions as an al-
ternative gravitational theory to General Relativity. In
[30], it is shown that a large class of analytic f(R) models
can be recast in this way leading to self-consistent New-
tonian and post-Newtonian limits of the theory. This
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means that the coefficients of the expansion are the lead-
ing parameters setting the scale of the interaction. Ex-
amples of stable self-gravitating systems constructed ac-
cording to an action of the form (26) are discussed in
[27, 28]. Cosmological tests according to such an action
are discussed in [31].

In the following we shall discuss some phenomenologi-
cal consequences of this approach at electroweak scales.

VI. PROBING GRAVITY AT TEV SCALES

The results we have found show that torsion induces
between a couple of leptons interactions whose struc-
ture is identical to that of the weak forces, while the
mass generation of the resulting composite weak vector
boson in unitary-renormalizable Higgsless models is ad-
dressed within the frame of f(R) gravity with an energy-
dependent scale by exploiting the ϕ function as a running
coupling: these theoretical results are extremely intrigu-
ing in themselves, and especially if we think that they all
could be investigated in the range between GeV and TeV
scales at LHC by experiments such as ATLAS and CMS.

It is important to stress that any ultraviolet model
of gravity (e.g. at TeV scales) have to explain also
the observed weakness of gravitational effects at largest
(infrared) scales; this means that massless (or quasi-
massless) modes have to be considered in any case so that
the results of standard General Relativity are reproduced
in the low energy regime [43]. What this implies is that
the effective gravitational energy scale (Planck scale) has
to be rescaled according to 1

ϕ
. In terms of the mass pa-

rameter, being M2
P = c~

GN

the constraint coming from

the ultraviolet limit of the theory (1019 GeV), we can
generically set M2

eff = M2
PG(ϕ), where Meff is a cut-off

mass that becomes relevant as soon as the Lorentz in-
variance is violated and G(ϕ) is a function of ϕ that has
to be determined. Such a scale in the context discussed
here could be at TeV scales. As shown above, it is quite
natural to have effective theories containing scalar fields
of gravitational origin; in this sense Meff would result as
a running coupling. To be more explicit, the dynamics
is led by the above effective potential V (ϕ) in equation
(12) and the non-minimal coupling f ′(ϕ); such functions
could be experimentally tested since they are related to
massive states: in particular, the effective potential can
be phenomenologically chosen to be

V (ϕ) =
M2

eff

2
ϕ2 − λ2

4
ϕ4 , (28)

from which it is easy to derive the vacuum expectation
value of ϕ as the fundamental scale of the theory that has
to be eventually compared to the Higgs vacuum expecta-
tion value measured to be 246 GeV. This is the standard
choice of quantum field theory which perfectly fits the
above arguments, although here the choice is not ad hoc

because the scalar field ϕ is not put by hand into dy-
namics, being it given by the extra degrees of freedom of

gravitational field that are naturally present in the gen-
eral set-up of the f(R) gravity.

To be more precise, the form of the effective potential
(28) can be reconstructed from the conformal potential

V (ϕ)

ϕ2
= −1

2

f(R)− f ′(R)R

f ′(R)
, (29)

which gives Eq. (12) starting from the position (11). The
effective mass Meff and the self-interaction parameter λ
are related to the effective Klein-Gordon equation that
comes out from the conformal transformation of f(R)
gravity. For details see [17] and [19].

Let us discuss now a couple of features of the model.
First of all, we have the hierarchy problem. It is impor-
tant to recall that the hierarchy problem occurs when
couplings and masses of effective theories are very differ-
ent from the parameters measured by experiments, hap-
pening because the measured parameters are related to
the fundamental parameters by renormalization so that
cancellations between fundamental quantities and quan-
tum corrections are necessary. The hierarchy problem is
essentially a fine-tuning problem: if Meff is larger than
Higgs mass, then the hierarchy problem is circumvented.
A second feature concerns the relative strengths of weak
and gravitational forces. As it has been noticed in [9], in
units ~ = c = 1 both electromagnetic and strong interac-
tions have dimensionless couplings while both weak and
gravitational interactions have couplings with dimensions
of a length; although this does point toward the fact that
unifications between weak and gravitational forces may
be possible, nevertheless any of these unifications shall
be possible only after that the two fundamental lengths
given by lweak ∼ 10−18m and lgravity ∼ 10−34m have been
set to the same value, that is the Fermi constant for the
weak force and the Newton constant for gravity must be
equal. However the weak force is much stronger than
gravity, unless a cancellation between the bare value of
Fermi constant and its quantum corrections occurs, or
alternatively the Higgs boson is much lighter than the
Planck mass, unless what occurs is a fine-tuning between
the quadratic radiative corrections and the Higgs bare
mass; present data suggest the Higgs mass should be
between 115 GeV and 350 GeV with different selected
decay channels from bb̄ to tt̄ [44], but with this state of
the art, the problem cannot be formulated in the context
of SM, where the Higgs mass cannot be calculated, and
this problem would be solvable only if, in a given effec-
tive theory of particles in which the Higgs boson mass
can be calculated, no fine-tuning is present. If one ac-
cepts the big-desert assumption and the existence of a
hierarchy problem, then some new mechanism at Higgs
scale becomes necessary to avoid fine-tuning. The model
we are discussing contains a running coupling that allows
us not to set the Higgs scale: if the mass of the field ϕ is
in the TeV region, there is none of the above problems,
being ϕ a gravitational scale; in this case, the SM holds
up plus an extended gravitational sector with torsion.
In other words, the Planck scale can be dynamically de-
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rived from the vacuum expectation value of the function
ϕ; such a scale can be recovered, as soon as the coupling
λ is of the order of 10−31, and our f(R)-model with tor-
sion is valid up to the cut-off scale Meff ∼ TeV. The tiny
value of λ allows the presence of physical (quasi-) mass-
less gravitons with very large interaction lengths. It is
important to stress that, via a conformal transformation
from the Jordan frame to the Einstein frame, the Planck
scale is decoupled from the vacuum expectation of the
scalar field ϕ; on the other hand however, the scalar field
redefinition has to preserve the vacuum of the underly-
ing background. Besides, the gauge couplings and masses
depend on the vacuum expectation value of ϕ and they
are dynamically determined. This means that both the
SM and Einstein Gravity (in the above conformal-affine
sense) could be recovered without the hierarchy problem.

To conclude, we wish to go back to the problem of
mass generation. In the present model we have described
the vector bosons as composite fermionic bound states;
fermion scattering producing bound states has also been
discussed in [45, 46], while compositeness was discussed
in [47]: assuming that the particles of the SM have sizes
that are related to the cut-off, then the vector bosons
would have corresponding ranges related to the same
cut-off, that is of the order of M−1

eff . Potentially, the
formation of bound states could mimic the decay of semi-
classical quantum black holes and, at lower energies, it
could be useful to investigate substructures of the SM.
Strong scattering effects could emerge in the TeV region
involving the field ϕ coupled to the SM fields. Bounds on
the production of mini-black holes can be derived from
astroparticle physics [48–52], where in particular in [49],
a bound on the cross-section is given as

σνN→BH+X <
0.5

TeV2 . (30)

The cross-section σ ≃M−2
eff gives a bound at TeV scales:

this means that strong scattering processes at LHC would
have the cross-section of the order of magnitude of

σpp→grav.modes+X ∼ 1× 107fb , (31)

which dominates the cross-sections expected for the SM.
In this case, the hierarchy problem would not be present.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have considered f(R)-gravity with
torsion in relation to electroweak interactions. The pres-
ence of torsion tensor gives rise to interactions that have
the structure of the weak interactions among the leptons
and the induced coupling results energy-dependent. As-
suming analytical f(R)-functions, it is possible to show
that the coupling is running with initial weak strength
able to further increase before vanishing in the end. This
phenomenology gives rise, for interacting fermions, to a
scattering amplitude that, even if it is low at the be-
ginning can become larger before vanishing: as it is

widely known, torsion is very weak in low-energy and
non-renormalizable in high-energy systems, and there-
fore these torsionally induced electroweak-like interac-
tion would correspondingly be very weak in the infrared
and non-renormalizable in the ultraviolet regime; never-
theless, in f(R) models, the coupling can become rele-
vant even for large-scale before vanishing at the short-
scale physics, and henceforth the torsionally induced
electroweak-like interaction in f(R)-gravity can become
relevant at the Higgs scale before becoming renormaliz-
able at the Planck scale. The approach based on the
presence of torsion in f(R)-gravity gives the possibility
to have torsion both relevant before the Planck scale and
negligible at the Planck scale, achieving a double-take
only in terms of the single assumption of being in a spe-
cific f(R) model. In this way, torsion gives the possibil-
ity to induce electroweak-like interactions bypassing the
Higgs mechanism and the hierarchy problem. Therefore
f(R)-gravity could ensure the possibility to properly fit
the scale of specific interactions whose form is given by
torsion to be that of the weak forces.

This is, we believe, important in view of the solution
of the problem of unification in physics: in fact, as our
analysis has shown, it is possible to employ a specific
f(R) model to fit the running coupling of some inter-
actions and to use torsion to give rise to those interac-
tions; hence, interactions like the weak forces are, both in
strength and in structure, entirely derived within the con-
text of gravitational interactions. Furthermore, in this
context, there is no need to postulate any new particle,
since the non-linearity of the f(R) function comes from
the requirement that the action of gravitational field is
not restricted to be the simplest Einstein-Hilbert action;
on the other hand, the presence of torsion comes from
the requirement of a connection that is not restricted
to be the simplest Levi–Civita symmetric connection. If
the action has to be written in terms of the Ricci scalar
curvature, then f(R)-gravity is the most general action
that we may consider; besides, if the covariant derivatives
have to be given in terms of metric-compatible connec-
tions, then connections with torsion are the most general
one we may have. The further geometric degrees of free-
dom, not present in general relativity, naturally acquire
the role of a scalar field enriching the dynamics [5].

In this sense, the electroweak interactions may be the
effect of the presence of torsion in f(R)-gravity, a the-
ory that is the most general and straightforward geomet-
ric background for any model we want to develop upon
it. The philosophical implications of this approach are
profound, as this would force us to rethink the issue of
unification in physics, an issue that is still open and for
which no advance has been obtained since the when the
decay of the proton, foreseen by the grand unification and
promised by the SU(5)-model, failed to be discovered.
On the other hand, the results that we have presented
here seem to fit very well the behavior of the weak inter-
actions between GeV and TeV scales. This fact does not
imply that such fitness will be maintained at any scale,
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and on the contrary, discrepancies between this and the
SM could appear beyond the TeV scale, making our ap-
proach hopefully more predictive than the SM itself.

As the present generation of accelerators is already

running up toward those energies we think that a very
interesting moment for physics is coming, and the ap-
proach we have presented here could fuel the debate in a
different but not less important direction.
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