Quantum Physics

The cryptohermitian smearedcoordinate representation of wave functions

Miloslav Znojil

(Submitted on 9 Jul 2011)
The one-dimensional real line of coordinates is replaced, for simplification or approximation purposes, by an N-plet of the so called Gauss-Hermite grid points. These grid points are interpreted as the eigenvalues of a tridiagonal matrix \$ $\$$ mathfrak\{q\}_0\$ which proves rather complicated. Via the "zeroth" Dyson-map \$1Omega_0\$ the "operator of position" \$\mathfrak\{q\}_0\$ is then further simplified into an isospectral matrix \$Q_0\$ which is found optimal for the purpose. As long as the latter matrix appears non-Hermitian it is not an observable in the manifestly "false" Hilbert space $\$\{\backslash \text { cal } H\}^{\wedge}\{(F)\}:=\backslash m a t h b b\{R\}$ ${ }^{\wedge} N \$$. For this reason the optimal operator \$Q_0\$ is assigned the family of its isospectral avatars \$\mathfrak\{h\}_lalpha\$, \$\alpha=(0,)
,1,2,..\$. They are, by construction, selfadjoint in the respective \$lalpha-\$dependent image Hilbert spaces $\$\{\backslash c a l ~ H\} \wedge\{(P)\}$ _lalpha\$ obtained from $\$\{\backslash c a l ~ H\} \wedge\{(F)\} \$$ by the respective "new" Dyson maps \$\Omega_lalpha\$. In the ultimate step of simplification, the inner product in the F-superscripted space is redefined in an \{lit ad hoc\}, \$lalpha-\$dependent manner. The resulting "simplest", S-superscripted representations $\$\{\backslash \text { cal } H\}^{\wedge}\{(S)\}$ _lalpha\$ of the eligible physical Hilbert spaces of states (offering different dynamics) then emerge as, by construction, unitary equivalent to the (i.e., indistinguishable from the) respective awkward, P superscripted and \$\alpha-\$subscripted physical Hilbert spaces.

Comments: 13. pp, 3 figs
Subjects: Quantum Physics (quant-ph); Mathematical Physics (math-ph)
Journal reference: Physics Letters A 375 (2011), pp. 3176-3183
DOI:
Cite as:
10.1016/j.physleta.2011.07.026
arXiv:1107.1770 [quant-ph] (or arXiv:1107.1770v1 [quant-ph] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse context: quant-ph < prev | next > new | recent | 1107

Change to browse by: math math-ph

References \& Citations

- INSPIRE HEP
(refers to | cited by)
- NASA ADS

Bookmark(what is this?)


```
|misi
```


Submission history

From: Miloslav Znojil [view email]
[v1] Sat, 9 Jul 2011 10:43:10 GMT (189kb)

Link back to: arXiv, form interface, contact.

