General Relativity and Quantum Cosmology

Canonical Formulation of Spin in General Relativity

Jan Steinhoff
(Submitted on 21 Jun 2011)

> The present thesis aims at an extension of the canonical formalism of Arnowitt, Deser, and Misner from self-gravitating point-masses to objects with spin. This would allow interesting applications, e.g., within the post-Newtonian (PN) approximation. The extension succeeded via an action approach to linear order in the single spins of the objects without restriction to any further approximation. An order-by-order construction within the PN approximation is possible and performed to the formal 3.5PN order as a verification. In principle both approaches are applicable to higher orders in spin. The PN next-toleading order spin(1)-spin(1) level was tackled, modeling the spin-induced quadrupole deformation by a single parameter. All spin-dependent Hamiltonians for rapidly rotating bodies up to and including 3PN are calculated.

Comments: 59 pages. Dissertation, Friedrich-Schiller-Universit|"at, Jena, 2010. This thesis was submitted in June 2010. Cite as Ann. Phys. (Berlin) 523:296 (2011)
Subjects: General Relativity and Quantum Cosmology (gr-qc); Mathematical Physics (math-ph)
Journal reference: Ann. Phys. (Berlin) 523:296 (2011)
DOI:
Cite as
10.1002/andp. 201000178
arXiv:1106.4203 [gr-qc]
(or arXiv:1106.4203v1 [gr-qc] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse context:
gr-qc
< prev | next >
new | recent | 1106
Change to browse by: math
math-ph

References \& Citations

- INSPIRE HEP

> (refers to | cited by)

- NASA ADS

Bookmark(what is this?)


```
#ms
```


Submission history

From: Jan Steinhoff [view email]
[v1] Tue, 21 Jun 2011 13:45:40 GMT (151kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

