Mathematical Physics

Snub 24-Cell Derived from the Coxeter-Weyl Group W(D4)

Mehmet Koca, Nazife Ozdes Koca, Muataz Al-Barwani

(Submitted on 17 Jun 2011 (v1), last revised 11 Dec 2011 (this version, v2))
Snub 24-cell is the unique uniform chiral polytope in four dimensions consisting of 24 icosahedral and 120 tetrahedral cells. The vertices of the 4-dimensional semi-regular polytope snub 24-cell and its symmetry group $\$\left\{\left(\mathrm{~W}\left(D_{-}\{4\}\right) \backslash m a t h o r d\left\{/\left\{\backslash v p h a n t o m ~\left\{\left(W\left(D _\{4\}\right)\right.\right.\right.\right.\right.\right.$ C_\{2\}\}\}. \kern-Inulldelimiterspace $\}$ C_\{2\}\}):S_\{3\} \$ of order 576 are obtained from the quaternionic representation of the Coxeter-Weyl group \textbf\{\$W(D_\{4\}).\$\}The symmetry group is an extension of the proper subgroup of the Coxeter-Weyl group \textbf\{\$W(D_\{4\})\$\}by the permutation symmetry of the Coxeter-Dynkin diagram ltextbf\{\$D_\{4\} .\$\} The 96 vertices of the snub 24-cell are obtained as the orbit of the group when it acts on the vector \textbf\{\$\Lambda =(\tau, 1, \tau, \tau)\$\}orltextbf\{\}on the vectorltextbf\{\$\Lambda = (\sigma, 1, \sigma, \sigma)\$\}in the Dynkin basis with\textbf\{\$\tau = \frac\{1+\sqrt\{5\}\}\{2\} \{\rm and\}\sigma $=\backslash f r a c\{1-\backslash s q r t\{5\}\}\{2\}\{\backslash r m\} \$$.$\} The two different sets represent the mirror images of the snub 24-cell.$ When two mirror images are combined it leads to a quasi regular 4D polytope invariant under the Coxeter-Weyl group \textbf\{\$W(F_\{4\}).\$\}Each vertex of the new polytope is shared by one cube and three truncated octahedra. Dual of the snub 24 cell is also constructed. Relevance of these structures to the Coxeter groups \textbf\{\$W(H_\{4\})\{\rm and\}W(E_\{8\})\$\}has been pointed out.

Comments: 15 pages, 8 figures
Subjects: Mathematical Physics (math-ph)
MSC classes: 08, 14, 20, 31, 52
Journal reference: International Journal of Geometric Methods in Modern Physics (IJGMMP) Vol: 09 Iss: 8 (2012)
DOI:
Cite as:
10.1142/S0219887812500685
arXiv:1106.3433 [math-ph]
(or arXiv:1106.3433v2 [math-ph] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse cont math-ph < prev | next > new | recent | 1106

Change to browse b math

References \& Citatic

- NASA ADS

Bookmark (what is this?)

Submission history

From: Nazife Ozdes Koca [view email]
[v1] Fri, 17 Jun 2011 10:11:00 GMT (148kb)
[v2] Sun, 11 Dec 2011 04:42:12 GMT (237kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

