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Theory

John F. Donoghue

Department of Physics and Astronomy
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Abstract

The techniques of dispersion relations match very well with those

of effective field theory. I describe the techniques for using dispersion

relations effectively, and give some pedagogical examples to illustrate

the range of applications.

UMHEP-426, hep-ph/9607351 Lecture presented at the International School
on Effective Field Theory, Almunecar, Spain, June 1995
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Dispersive techniques were common in the 1960’s, but have been less pop-
ular since then due to the triumph of field theory. Why should we bother to
resurrect them at this time? Besides being a useful aspect of the toolkit for
any theorist, I feel that they have a special utility in effective field theory.
More particulars will be given below, but briefly stated they are useful in
effective theories because they can accurately describe the low energy propa-
gation of the light degrees of freedom as well as, and sometimes better than,
perturbative Feynman diagrams. This can lead to new and/or better types
of calculation as well as increasing our insight into the workings of effective
field theory.

In this lecture, I briefly explore the methods, successes and limitations
of combining dispersion relations with effective field theory. The goal is to
first demonstrate that one can reproduce the low energy content of Feyn-
man diagram calculations in an effective theory by simply using the lowest
order vertices as the input to a dispersion relation. Then we address what is
needed to improve on this lowest order calculation and how to do the match-
ing of the dispersion relation with the effective field theory method. I will
describe various examples to illustrate the method, and finally summarize
the advantages and disadvantages of this approach.[1]

1 Dispersion relations - general

Scattering amplitudes and vertex functions will in general contain both real
and imaginary parts.[2] The imaginary portions are due to the propagation
of on-shell intermediate states. Causality implies certain properties for the
analytic structure of the amplitudes that allows us to relate the real and
imaginary parts. Such dispersion relations have the general form

Ref(s) =
1

π
P
∫

∞

0

ds′

s′ − s
Imf(s′) (1)

With the identity

1

x − x0 − iǫ
= P

1

x − x0
+ iπδ(x − x0) (2)

one can write the full amplitude as an integral over its imaginary part,
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f(s) =
1

π

∫

∞

0
ds′

Imf(s′)

s′ − s − iǫ
(3)

Notice that the dispersive integral involves all s′. In order to know f(s)
at small s, we need to know Imf(s′) also at large s′. We will see that
subtractions can lessen the dependence on large s′, but the integral still runs
over all s′. We in general need to know the properties of on-shell intermediate
states.

Given a dispersion relation, one may also write a “subtracted” relation
for (f(s) − f(0))/s, i.e.,

f(s) − f(0)

s
=

1

π

∫

ds′

s′ − s − iǫ
Im

[

f(s′) − f(0)

s′

]

(4)

which, since Imf(0) = 0, is equivalent to

f(s) = f(0) +
s

π

∫ ds′

s′
Imf(s′)

s′ − s − iǫ
(5)

Subtractions may be needed if f(z) 6= 0 as | z |→ ∞, as a good behavior
at infinity is required for the derivation of the dispersion relation. However,
even if subtractions are not required, it may still be desirable to perform
them. This is especially true in effective field theories, where we are inter-
ested primarily in the low energy quantum effects, while we do not know how
to calculate the higher energy physics. Generally the input to the dispersion
relation, Imf(s), is not well known at high energy. The subtracted disper-
sion integral weights lower energies more heavily and lessens the influence
of the high energy region. The previous ignorance of the high energy ef-
fects of Imf(s) is reduced to a single number, the subtraction constant. We
will see that these subtraction constants are equivalent to the parameters in
the effective lagrangians. Further subtractions may be performed, with the
introduction of further subtraction constants.

2 Calculating with Dispersion Relations

The pion form factor obeys dispersion relations. An unsubtracted form is

fπ(q2) =
1

π

∫

∞

4m2
π

ds′
Imfπ(s′)

s′ − q2 − iǫ
(6)
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while with one subtraction the form is

fπ(q2) = 1 +
q2

π2

∫

∞

4m2
π

ds′

s′
Imfπ(s′)

s′ − q2 − iǫ
(7)

Here the subtraction constant has been fixed to unity by the normalization
of the form factor. A twice subtracted form is

fπ(q2) = 1 + cq2 +
q4

π

∫

∞

4m2
π

ds′

s′2
Imfπ(s′)

s′ − q2 − iǫ
(8)

where c is presently unknown.
The key step in a complete dispersion relation calculation is in specifying

the input into the dispersion integral, i.e. the imaginary part of the function.
In this case, the imaginary part is known experimentally up to about 1.5GeV .
The good news is that the physics of the imaginary part is relatively simple.
It is well known that the largest effect in the pion form factor is the rho inter-
mediate state. This of course has lead to the technique of vector dominance.
The simplicity of intermediate states in dispersion relations can help in their
implementation. However before turning to phenomenology, let us see how
this technique can be reconciled with a Feynman diagram approach.

All Feynman diagrams have the same analytic structure as the amplitude
that they contribute to. They can therefore be rewritten as dispersion rela-
tions, most often with subtractions. Therefore the content of chiral loops can
equally well be specified as a particular choice for Imf(s′) in a dispersion
integral. Let us see how this occurs for the pion form factor.

In chiral perturbation theory, a one loop calculation involves all the ma-
chinery of field theory including a full set of diagrams, regularization of di-
vergent integrals, and renormalization of the parameters in the Lagrangian.
This is a well functioning machine and beautifully extracts the predictions of
the theory. However much of this effort is irrelevant for the real dynamical
content of an effective theory. The effective theory is only able to predict
the low energy behavior of the light degrees of freedom of the theory. All of
the high energy effects associated with divergences, regularization and renor-
malization are irrelevant to the final answer. One needs to carry out the full
field-theoretic procedure because otherwise the Feynman diagram machine
breaks down and gives wrong answers, but the high energy portions of the
calculation do not express the real physics of the effective theory.
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In the case of the pion electromagnetic form factor, at lowest order O(E2),
one predicts simply that fπ(q2) = 1. The analysis to O(E4) is described in
detail in Ref [3]. The two important ingredients are the low energy constant
L9 and the effect of loops. The tree level contribution involves the parameter
L9, which occurs in the general chiral Lagrangian at order E4 [4], plus other
constants i.e.,

f (tree)
π (q2) = 1 +

2L9

F 2
π

q2 +
8m2

π

F 2
π

(2L4 + L5) (9)

Of the loop diagrams, Fig. 1b, c, that of Fig. 1b has no q2 dependence,
contributing only a constant. Since we know that the pion form factor is
absolutely normalized to unity at q2 = 0, we know that all corrections which
are independent of q2 must be canceled by the wavefunction renormalization
constant along with constant terms in Eq. 9 and the diagram of Fig. 1c.
Thus diagram 1b and the renormalization constant are dynamically irrelevant
although in this method of calculation they enforce the constraint on the
normalization of the formfactor.

However, Fig. 1c is more interesting because it also contains important
dynamical information of the propagation of the two pion state, including
the imaginary part of the amplitude due to on-shell intermediate states, and
the result involves a nontrivial function of q2,

∆f (1c)
π (q2) =

1

16π2F 2
π

{

(

m2
π − 1

6
q2
)

[

2

d − 4
+ γ − 1 − ln4π + ln

m2
π

µ2

]

(10)

+
1

6

(

q2 − 4m2
π

)

H(q2) − 1

18
q2
}

with

H(q2) = 2 + β

[

ln

(

1 − β

1 + β

)

+ iπθ(q2 − 4m2
π)

]

(11)

β =

√

1 − 4m2
π

q2

Multiplying by the wavefunction renormalization constant and defining the
renormalized value of L9
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Lr
9 = L9 −

1

192π2

[

2

d − 4
− ln4π + γ − 1

]

(12)

we get the final result

fπ(q2) = 1 +
2Lr

9

F 2
π

q2 +
1

96π2F 2
π

[

(q2 − 4m2
π)H(q2) − q2ln

m2
π

µ2
− q2

3

]

(13)

All of the dynamical content of the effective theory was in the vertices and
propagation of the two pion state in Fig. 1c. This represents low energy-long
range propagation that the effective theory is capable of predicting.

Now let us get this same physics in a dispersion relation.[5] The key
feature is the choice of what to use for the imaginary part of the amplitude.
The one loop diagram, Fig. 1c, involves the ππ I = 1 scattering amplitude,
and the tree level ππ → γ vertex, so that

2(p1−p2)µImfπ(s) =
∫ d3p′1d

3p′2
(2π)62E ′

12E
′

2

(2π)4δ4(s−p′1−p′2)〈ππ | T | ππ〉〈ππ | Jµ | 0〉
(14)

If we choose the forms for these amplitudes which is predicted at lowest order
in chiral symmetry, we obtain

Imfπ(s) =
1

96πF 2
π

(s − 4m2
π)

3

2

√
s

θ(s − 4m2
π) (15)

We use this in the twice subtracted form, Eq. 8, and the dispersion integral
can be exactly done using

∫

∞

4m2

ds

s2

(

1 − 4m2

s

)
1

2
(

a + bs

s − q2 − iǫ

)

=
(a + bq2)

q4
H(q2) − a

6m2q2
(16)

to give

fπ(q2) = 1 + cq2 +
1

96π2F 2
π

[

(q2 − 4m2
π)H(q2) +

2

3
q2
]

(17)

Comparing this with the chiral calculation, Eq. 7, leads to the identification
of the subtraction constant

5



c =
2L

(r)
9 (µ)

F 2
π

− 1

96π2F 2
π

(

ln
m2

π

µ2
+ 1

)

(18)

We see that we can reproduce the content of the Feynman diagram ap-
proach simply by using the lowest order vertices and propagators in the
dispersion integral. When it is phrased this way, it is clear that the content
of chiral loop diagrams such as Fig. 1c and the content of a dispersive inte-
gral are similar. The chiral calculations uses a predicted approximation to
Imf(s′), while a properly performed dispersion integral uses the real world
data for Imf(s′). We also see that the chiral parameters (Li) play a similar
role to the subtraction constants in dispersion relations.

The logic of effective theories is even clearer with dispersion relations than
with Feynman diagrams, although both are adequate tools. When giving
talks on chiral perturbation theory, one routinely encounters individuals who
think that the use of effective Lagrangians in loop diagrams is not allowed.
Their confusion generally centers on the fact that effective Lagrangians only
predict the low energy behavior, yet loops involve an integration over all
energies, which they mistakenly interpet as a prohibition on performing loop
calculations. A dispersive analysis, such as is given above, is presumably
more acceptable to this way of thinking since, when twice subtracted, it
is only sensitive to the chiral amplitude at low energies. The equivalence
of the dispersive treatment and the Feynman diagrams can then be used
to demonstrate that the output of chiral loops is also the result of the low
energy amplitude.

3 Relative Strengths

The above example does not display the full power of either chiral symmetry
or dispersion relations. Both can bring new information to the calculation.
Let us discuss these special features before we attempt to combine the best
of the two methods.

The special feature of the chiral symmetry is that it provides relations
between amplitudes with different numbers of pions. Most symmetries, such
as isospin, relate amplitudes of states that belong to the same multiplets.
For a dynamically broken symmetry with Goldstone bosons, the symmetry
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transformation does not relate states within a multiplet, but rather it re-
lates states with greater or fewer zero energy Goldstone bosons. Corrections
to this limit can be given in an expansion in the energy. There exist vari-
ous reduced matrix elements which are not predicted by the symmetry and
which therefore must be measured. These are the parameters in the chiral
Lagrangian. The outputs of chiral perturbation theory are relations between
amplitudes, order by order in the expansion in E, mq. At any given order,
these relations form low energy theorems of QCD. In the above example,
chiral symmetry is more powerful than dispersion relations when it comes to
the subtraction constant, because an extended chiral analysis can also tell
us that the same constant L9 appears in other reactions. For example, L9

also contributes to radiative pion decay, π → eνγ, and can be independently
measured in that process.[4]

On the other hand, dispersion relations can ultimately do a better job on
the low energy dynamical effects, as captured in the dispersive integral. The
one loop chiral analysis is equivalent to the lowest order vertices and propa-
gators, while a dispersive treatment can use instead the full answer given by
Nature. In this particular example, there is in fact quite a substantial dif-
ference, because there is a resonance in the I=1 channel of ππ interactions.
In Fig. 2, I display the integrand of the dispersion relation as a function of
energy E =

√
s. Specifically, for the twice subtracted relation

fπ(q2) = 1 + cq2 +
q4

π

∫

∞

2mπ

dEN(E)
E2

E2 − q2 − iǫ
(19)

with

N(E) =
(2E)Imf(E)

E6
(20)

Fig 2 plots N(E), whose integral determines the low q2 behavior of the
dispersive integral. The dashed line is the lowest order chiral amplitude
that is the integrand discussed in the previous section, equivalent to the
one loop answer. In contrast, the solid line is the full answer from a fit
to the experimental imaginary part. We see that the results agree at very
low energy, but that at moderate energies the resonance is much larger than
the lowest order chiral result. This is not a problem of principle because it
describes physics that would appear in the chiral expansion at higher order.
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However it does indicate that the dispersive analysis can be used to obtain
a more accurate answer than can the one loop chiral analysis.

4 Matching Conditions

We have seen that chiral symmetry can provide a more extensive analysis of
the subtraction constants, while dispersion relations are capable of yielding
more accurate information on the intermediate states. This suggests that it
may sometimes be advantageous to combine the best of both techniques. To
do this we need to be able to tie the two formalisms together in the most
accurate way.

In dispersion relations involving subtraction constants we need a precise
identification of them. Chiral perturbation theory provides these constants.
The key is to reformulate chiral calculations as dispersion relations, order by
order. An important point is that the matching is different at order E2 [6,7]
and at order E4 [5,8].

At order E2 one needs to reproduce only the tree level chiral results,
which do not involve imaginary parts. Thus we only need to ensure that
the normalization at low energy is correct. The dispersion integral will then
produce new effects at order E4 which are equivalent to the prediction of
the low energy constants at order E4, i.e., of the Li. This procedure will be
more sensitive to high energy effects because one will be using a dispersion
integral with at most one subtraction.

At order E4 one knows more about the low energy structure so one can
use a dispersion relation with an extra subtraction. The low energy constants
Li are no longer predicted, but are inputs to fix the subtraction constants
[The dispersion integral then produces new effects at order E6 and higher].
To match at this order one must reproduce the one loop chiral calculation.
Therefore the inputs to the dispersive integral must involve the lowest order
vertices, and will only have free propagations of the intermediate state, i.e.,
the same inputs that go into the Feynman diagram calculation.

To actually carry this out, we need three steps. First, the chiral calcu-
lation needs to be carried out to the given order. Then we reformulate the
problem as a dispersion relation, requiring that the dispersion relation give
the same result when treated to the same order. This fixes the subtraction
constants in terms of chiral parameters. Finally we need to use a representa-
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tion of the full imaginary part which is compatible with the low energy chiral
constraints. This procedure will exactly reproduce the chiral calculation to
the order that it is valid, yet add more physics at higher orders in the energy
expansion.

The example of the pion formfactor that was used above illustrates the
matching technique at O(E4). We determined the subtraction constant in
a way which was accurate to O(E4) by a comparison with a direct chiral
calculation, and then to complete the calculation we feed the experimental
imaginary part, given in Fig 2, into the dispersion integral. The use of the
experimental Imfπ(s) then generates the full fπ(q2) at all q2. In principle,
the only inaccuracy in this calculation is that we have given the subtraction
constant c by an expression which is exact only to order E4. There can be
corrections to this by extra factors of m2

π or m2
πlnm2

π.
Let us also briefly consider the same quantity matched at O(E2), using

Eq. 7. Now the only matching is the simple constraint fπ(0) = 1, and the
effect of the dispersive integral starts at q2. This leads to a prediction of the
low energy constant

2Lr
9(µ) +

1

96π2

(

ln
m2

π

µ2
+ 1

)

= F 2
π

∫

∞

4m2
π

ds′

s′2
Imfπ(s′) (21)

Note that the lowest order form of Imfπ(s) cannot be inserted in the once
subtracted dispersion integral, as the result diverges. The lowest order form
for Imfπ(s) is not valid at high energies, but the twice subtracted integral
used above was not sensitive to this. The use of the real data for Imfπ(s′)
leads to a successful prediction of Lr

9 in terms of the mass of the rho meson.
As a side point, let me note that the dispersive treatment also gives

us the answer to a previously puzzling feature in the application of vector
dominance to the prediction of the chiral parameters.[9,10] The renormalized
chiral parameters are scale dependent and it was never clear at what scale
they were supposed to equal the prediction of vector dominance. A commonly
used but ad-hoc answer is that the predictions were valid at a scale equal to
the mass of the rho meson[10]. The dispersive treatment shows the correct
result. Rather than predicting the constant Lr

9(µ) itself, one is predicting the
physical scale-invariant combination given by the dispersive sum rule. This
has no scale ambiguities, and is directly physically relevant.

Once one has provided an accurate matching of the two techniques, one
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can use the dispersive integral to extend the calculation beyond the range of
the chiral result. Thus in the best of all worlds (full data on Imf(s), many
related reactions) the two techniques form a powerful combination which
allows rigorous results at all energies. Chiral perturbation theory provides
the subtraction constants from symmetry relations and dispersion relations
allows the extrapolation to higher energy.

5 Example: The Weinberg sum rules and

some relatives

The simplest amplitudes are two point functions, and within QCD the sim-
plest of these are the particular combination of vector and axial vector cur-
rents.

πµν
V (q2) − πµν

A (q2) ≡ i
∫

d4xeiq·x〈0 | T [V µ(x)V ν(0) − Aµ(x)Aν(0)] | 0〉 (22)

This combination is analytic in the complex q2 plane, except for a pole at
q2 = m2

π and a cut for q2 > 4m2
π. The vector current is conserved. The axial

current is conserved in the mq → 0 limit, but with a Goldstone boson. If we
define scalar function by

πµν
V (q2) = (qµqν − gµνq2)πV (q2) (23)

πµν
A (q2) = (qµqν − gµνq2)πA(q2) − qµqνπ

(0)
A (q2)

we can prove the dispersion relations

πV (q2) − πA(q2) =
F 2

π

q2
+
∫

∞

4m2
π

ds′
ρV (s′) − ρA(s′)

s′ − q2 − iǫ
(24)

with the imaginary parts conventionally named via

ρV/A(s) =
1

π
ImπV/A(s) (25)

What is known theoretically about these amplitudes? At low energy,
chiral perturbation theory predicts the form[4]
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πµν
V (q2) − πµν

A (q) =

[

qµqν

q2 − m2
π + iǫ

− gµν

]

F 2
π (26)

+ (qµqν − gµνq
2)

[

1

48π2

(

1 − 4m2
π

q2

)

H(q2) − 4Lr
10

− 1

48π2

(

ln
m2

π

µ2
+

1

3

)]

ρV (s) =
1

48π2

[

1 − 4m2
π

s

]
3

2

θ(s − 4m2
π) + O(s)

ρA(s) =
s

96(4πFπ)2
+ O(s2)

Here Lr
10 is a low energy constant measured in radiative pion decay, π → eνγ.

At high energy, perturbative QCD may be used to analyze the two point
function. In the chiral limit, mq = 0, which will be used for the rest of this
section, the operator product expansion can be used to show that the dif-
ference πV − πA falls as 1

q6 and ρV (s) − ρA(s) ∼ 1
s3 . In terms of four quark

operators, which are here evaluated in the vacuum saturation approxima-
tion[11], one has

πV (q2) − πA(q2) =
32π

9

〈√αsq̄q〉20
q6

{

1 +
αs(q

2)

4π

[

247

12
+ ln

µ2

−q2

]}

(27)

ρV (s) → ρA(s) → 1

8π2

[

1 +
αs(s)

π

]

, s → ∞

ρV (s) − ρA(s) ∼ 8

9

αs〈
√

αsq̄q〉2∞
s3

We see that πV − πA and ρV − ρA are very well behaved at large q2, s.
We can combine up this information to get a set of sum rules. The

requirement that, as q2 → ∞, there is no 1
q2 term in the dispersion relation

Eq.24 , requires

F 2
π =

∫

∞

0
ds(ρV (s) − ρA(s)) (28)

while the absence of 1
q4 implies

11



0 =
∫

∞

0
dss(ρV (s) − ρA(s)) (29)

These are the Weinberg sum rules[12], the second of which is only true in the
mq → 0 limit. At low energy, expansion of the dispersion integral and chiral
results in powers of q2 imply[13,4]

− 4L̄10 =
∫

∞

4m2
π

ds

s
(ρV (s) − ρA(s)) (30)

with

L̄10 = Lr
10(µ) +

1

192π2

[

ln
m2

π

µ2
+ 1

]

(31)

= (−0.7 ± 0.03) × 10−2 (Expt : π → eνγ)

Here I have given the sum rule for finite m2
π since there is a behavior pro-

portional to lnm2
π at the low energy end of the integral. These sum rules

illustrate one of the uses of chiral dispersion relations, which is the predic-
tion/calculation of low energy constants (here Fπ and L10). When these
constraints are satisfied we have an accurate matching of the two descrip-
tions, valid to O(E4).

Another use of chiral dispersion relations is in extending the reach of
calculations and even opening up the possibility of entirely new types of
calculations. Consider the Compton amplitude γπ → γπ. In the soft pion
limit, chiral symmetry relates this to the vacuum polarization tensors

lim
p→0

〈π+(p) | T (V µ(x)V ν(0)) | π+(p)〉 (32)

= − 1

F 2
π

〈0 | T (V µ(x)V ν(0) − Aµ(x)Aν(0)) | 0〉

= − 1

F 2
π

[πµν
V (x) − πµν

A (x)]

If one takes the Compton amplitude and ties together the two electromag-
netic currents with a photon propagator, one obtains the pion electromag-
netic mass shift.[14] Clearly the chiral representation, Eq. 26, would be
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inadequate to calculate this, as the photon loop integral goes over all values
of q2. However, after some algebra plus the application of the Weinberg sum
rules, the dispersive representation allows one to write this as [14]

m2
π+ − m2

π0 = − 3e2

16π2F 2
π

∫

∞

0
dsslns [ρV (s) − ρA(s)] (33)

which is an exact relation in the chiral limit. Note that here chiral symmetry
was used to relate different amplitudes in Eq. 32 and to provide low energy
constraints, as in the Weinberg sum rules, while dispersion relations were
needed to provide a predictive framework for the intermediate energy region.

In a similar way, one can calculate reliably a new weak nonleptonic matrix
element.[15] Consider the hypothetical weak Hamiltonian

HV =
g2
2

8

∫

d4xiDµν
F (x, Mw)T

(

d̄(x)γµu(x)ū(0)γνs(0)
)

(34)

Up to some KM factors, this would be the usual weak Hamiltonian if the
vector currents were replaced by γµ(1 + γ5). In the chiral limit, we have
another chiral sum rule

〈π− | HV | K−〉 =
3iGF

32π2
√

2F 2
π

A (35)

with

A = M2
w

∫

∞

0
ds

s2ln(s/M2
w)

s − M2
w + iǫ

[ρV (s) − ρA(s)] (36)

which is exact in the chiral limit.
Gene Golowich and I have provided a phenomenological analysis of these

sum rules.[16] The physics of the spectral functions ρV,A is basically simple.
At intermediate energies they are measured in τ decay and e+e− annihilation,
and the largest features are the ρ and a1 resonances, with very much smaller
4π, 5π etc. contributions. At low energy this can be merged smoothly to chi-
ral predictions and at high energy ρV − ρA vanishes rapidly and we matched
the data to QCD around s = 5GeV 2. There are some experimental uncer-
tainties, but these can in principle be reduced in the future.

The L10 sum rule works well with very little uncertainty as it is sensitive
to the lowest energy contributions. The Weinberg sum rules and that for
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∆m2
π work within the experimental uncertainties. We have proceeded by

imposing them exactly on our ρV −ρA, which requires only minor adjustments
within the allowed error bars. That this is possible is a nontrivial test of
the theoretical framework. Finally the weak matrix element is predicted
(A = −0.062 ± 0.017GeV 2). This can perhaps be compared with future
lattice calculations.

6 The Elastic Approximation and the Omnes

Problem

The pion formfactor and the Weinberg sum rules are particularly powerful
because we have a direct measurement of the required imaginary parts. In
many other cases, we do not have this luxury. Nevertheless, much of the dy-
namics of the intermediate states follows from the behavior of ππ scattering,
about which we know a good deal. This allows us to predict the behavior
of the imaginary part of the desired amplitude, with the modest additional
assumption that the only important intermediate state is the ππ channel, i.e.
the elastic approximation.

Consider some two particle amplitude f(s) of a given isospin and angular
momentum which is analytic in complex s plane except for a cut above two
particle threshold s0 = 4m2. The inelastic thresholds are somewhat higher,
for example sinel = 16m2. In the elastic region, Watson’s theorem tells us
that the phase of the amplitude is that of the corresponding two particle
scattering amplitude

f(s) = eiδ(s) | f(s) | (37)

In practice inelasticities do not play a significant role in low energy pion
physics up to 1 GeV (KK̄ threshold), and one often assumes an approxi-
mation of keeping only the elastic channel. While probably reasonable, it is
important to realize that the elastic approximation relies on more than just
Watson’s theorem and produces more than just the phase of the amplitude.

The Omnes problem[17] is the mathematical exercise of finding functions
which are analytic except for a cut 4m2 < s < ∞, which are real when s is
real and less than 4m2 and for which f(s)e−iδ(s) is real when s is real and
greater than 4m2. The solution is given by
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f(s) = P (s)D−1(s) (38)

D−1(s) ≡ exp

{

s

π

∫

∞

4m2

dt

t

δ(t)

t − s − iǫ

}

as long as

lim
s→∞

δ(s) = finite ; lim
s→∞

| f(s) |
s

→ 0 (39)

In the above P (s) is a polynomial in s, and D−1(s) is called the Omnes
function.

Note that this is not exactly the right problem for QCD. The assumption
that f(s)e−iδ(s) is real above the cut implies that the reaction is elastic at all

energies. Once inelastic channels open up, the quantity f(s)e−iδ(s) rapidly
deviates from being real. In QCD, once one is above 1 GeV, the inelastic
channels open rapidly and become quite numerous, leading to perturbative
QCD behavior at precociously low energies. It is not known how to provide a
general solution to the QCD type problem (although the form of the solution
to the two channel problem is also known), nor is it known how much of an
effect the multiple inelasticities of QCD have on the Omnes function.

7 Example: γγ → ππ

The reaction γγ → π+π− and γγ → π0π0 are of interest in the development
of chiral theory because γγ → π0π0 first arises as a pure loop effect as there
are not tree level contributions at O(E2) or O(E4). For these reactions, we
have both a one-loop [18]and two loop [19] chiral analysis as well as dispersive
treatments[20,8] and experimental data. This makes these reactions excellent
illustrations of chiral techniques and of the ties with dispersion relations.

The γγ → ππ matrix elements can be decomposed into isospin amplitudes

f+−(s) =
1

3
[2f0(s) + f2(s)] (40)

f 00(s) =
2

3
[f0(s) − f2(s)]
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The dominant partial waves at low energy are the S waves and these are
predicted in a one loop chiral analysis to be

f chiral
I (s) =

1 − β2

2β
ln

(

1 + β

1 − β

)

− (1 − β2)

4π
tCA
I (s)ln2 β + 1

β − 1
(41)

−1

π
tCA
I (s) +

2

F 2
π

(Lr
9 + Lr

10) s

where

β =

√

1 − 4m2
π

s
(42)

and tCA
I (s) are the lowest order ππ scattering amplitudes

tCA
0 =

2s − mπ

32πF 2
π

; tCA
2 = −(s − sm2

π)

32πF 2
π

(43)

The dispersion relation has been derived by Morgan and Pennington[20],
in terms of an amplitude pI(s) which has the same left-hand singularity
structure as fI(s) but which is real for s > 0. Then [fI(s) − pI(s)]DI(s)
satisfies a twice subtracted dispersion relation and we have

fI(s) = D−1
I (s)

[

(cI + dIs) + pI(s)DI(s) −
s2

π

∫

∞

4m2
π

ds′

s′2
pI(s

′)ImDI(s
′)

s′ − s − iǫ

]

(44)
with two subtaction constants per channel cI , dI . As a prelude to the match-
ing we note that Low’s theorem requires that fI(s) be the Born scattering
amplitude at low energies. Therefore

pI(s) = fBorn
I (s) + O(s) =

1 − β2

2β
ln

(

1 + β

1 − β

)

+ O(s) (45)

This is the O(E2) result. To proceed to order E4 we note that the leading
piece of ImDI(s) is also known, i.e.,

ImDI(s) = −βtCA
I (s) (46)
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as this is the lowest order ππ scattering amplitude. Using this, the dispersive
integral can be done exactly, leading to

fI(s) = D−1(s)

[

cI + s

(

dI −
tCA
I (0)

12πm2
π

)

+ DI(s)
1 − β2

2β
ln

(

1 + β

1 − β

)

(47)

− 1

4π
(1 − β2)tCA

I (s)ln2

(

β + 1

β − 1

)]

+ . . .

A comparison of this with the O(E4) chiral results then indicates that this
procedure has reproduced all of the one loop results, as long as we choose
the subtraction constants as[8]

cI = 0 ; dI =
2

F 2
π

(Lr
9 + Lr

10) +
tCA
I (0)

12πm2
π

(48)

Again we see that the dynamical content of the one loop chiral calculation
is also contained in the dispersive treatment when the imaginary part is
taken to be the lowest order scattering amplitude. However, chiral symmetry
also predicts the subtraction constants, which in this case are known from
measurements in radiative pion decay.

Having identified the subtraction constants one can add the ingredients
to complete the calculation. The most important at threshold is the use of
the real world D−1

I (s)[7]. This change alone produces a significant effect in
the amplitude even near threshold in the neutral case. The second step is a
better determination of pI(s) which includes the O(E4) chiral corrections to
it as well as the ρ, ω, A1 poles which are known (from ρ → πγ etc. data) to
occur in the Compton amplitude. Figure 3 shows the data for the reaction
γγ → π0π0 along with the one-loop chiral prediction (dashed line) and the
modification obtained by the dispersive treatment (solid line). The one-
loop chiral result is of the right rough size, its slope is low at threshold and
it grows unphysically at high energy. Near threshold the difference in the
two calculations comes almost exclusively from the rescattering corrections
generated through the dispersion relation. The change is sizable even at low
energy, since the rescattering in in the I = 0, J = 0 channel. The Omnes
function alone has brought the threshold region into better agreement with
the data. It has also tamed the high energy growth. The final result (with
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no free parameters) matches the data very well, and also gives the charged
channel correctly.

Bellucci, Gasser and Sainio[19] have performed the enormously difficult
two loop calculation. [In fact, technically they employ dispersive methods to
do portions of this.] At two loop order, new low energy constants appear,
which are not measured in any other process. Therefore the authors have
to step outside of pure chiral perturbation theory in order to model these
constants, using vector meson dominance. Much like the dispersive work
described above, these constants play little role in the threshold region, but
are important for the shape of the amplitude for moderate energy. It is very
interesting that their results look very similar to the dispersive treatment
described above.

Both of these methods have potential limitations. In principle, the only
limitation of the dispersive treatment is the fact that it can miss O(E6)
terms in the subtraction constants cI , dI . These would be corrections to
results given above by factors of m2

π or m2
πlnm2

π. In practice we also need to
model the higher order terms in pI(s). As for the two loop chiral result, its
only limitation in principle is the fact that it misses higher order dependence
in the energy. By construction it is valid to order E6, but does not contain
higher order s dependence, and so would be expected to fall apart soon after
the E6 dependence became important. In practice, this approach also needs
to do some modeling in order to estimate the unknown low energy constants.
The fact that the results agree so well with each other and with the data
indicates that these limitations are not very important at these energies.
Both capture the important physics, and do so in a reasonably controlled
fashion. There is of course a significant practical advantage to the dispersive
approach–it is far easier!

8 Other uses of dispersion relations in effec-

tive field theories

The examples given above have all been in the context of chiral perturbation
theory. We have a detailed knowledge of the behavior of chiral amplitudes at
low energy as well as measurements of various reactions which can be used
in dispersive integrals. However, other effective field theories can also benefit
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from the dispersive method of analysis.
The main obstacle to many applications of dispersion relations is the lack

of an experimental measurement of the imaginary part of the amplitude.
This will of course preclude a rigorous model independent calculation, but
one may still be able to use approximations or modeling to make progress on
the problem. Dispersive calculations open up new methods of approximation.

An example is in the electroweak corrections due to TeV scale physics.
Peshkin and Takeuchi have defined a variable S which describes some of the
low energy effects on W and Z propagation due to new physics, and have
given a dispersive sum rule for it[21]. The sum rule is equivalent to the L10

sum rule, Eq. 30, where the vacuum polarization functions are those for the
W and Z self-energies. These sum rules have been applied extensively to
Technicolor theories.[22] One potential new application is to the effect of a
heavy Higgs boson. While this has been calculated in detail in perturbation
theory[23], as the Higgs mass gets heavier, perturbation theory ultimately
becomes inapplicable because the theory becomes strongly coupled. How-
ever in the strongly coupled regime we still know various features of the full
amplitudes, such as threshold behavior and unitarity bounds, even if we can-
not calculate precisely. Preliminary analysis suggests that that one can use
the dispersive sum rule plus the general behavior of the amplitude to argue
that the perturbative estimate is not far wrong[24].

There have also been a set of interesting applications of dispersive tech-
niques to the Heavy Quark Effective Theory[25]. It is not possible to sum-
marize all the types of applications that dispersion relations have in effective
field theory. However, the main point of this lecture is that these techniques
are well adapted to the type of questions that we ask in effective field theories
and can sometimes be useful in extracting features that are not visible in the
usual Feynman diagram methods.

9 Summary

We have seen how dispersion relations can add power to effective field theory.
At its best it uses more physics input. It can match all perturbative effects
to whichever order that they are known, and can be used to replace the
modeling of unknown physics by using data instead of models. However
there are some limitations, coming both from incomplete data and from the
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fact that we can only determine the subtraction constants to a given order
in the energy expansion.

The technology for combining these techniques is now developed. This
involves first knowing the chiral analysis of the amplitude to a given order in
the energy expansion. One also needs a dispersion relation for the amplitude
in question. The number of subtractions is determined partially by the high
energy behavior of the amplitude, but the use of more subtractions than
are required can help in the matching with the effective field theory chiral
result. The matching occurs order by order in the energy expansion. When
it can be done, it is preferable to perform the matching at O(E4) because
the resulting dispersive treatment is less sensitive to what happens at high
energy since a twice subtracted dispersion relation can be used. Finally, the
real world data has to be found to use in the dispersive integral. Often, in
chiral perturbation theory, the use of the elastic approximation is made for
this, allowing the use of known ππ scattering data.

The output of these efforts can be several. Most commonly, these tech-
niques are used to extend the range and accuracy of the chiral calculations,
by getting around the limitation of the energy expansion. The method can
be used to predict unknown chiral coefficients, as was shown for the case of
L10. We can use these techniques to remove or reduce the model dependence
of some result. Finally, dispersive techniques allow us to perform completely
new types of calculations, such as the hadronic matrix elements of Section 5.
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