
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst

Physics Department Faculty Publication Series Physics

1995

RADIATIVE WEAK DECAYS OF CHARM
MESONS
G BURDMAN

E Golowich
golowich@physics.umass.edu

JL HEWETT

S PAKVASA

Follow this and additional works at: http://scholarworks.umass.edu/physics_faculty_pubs
Part of the Physical Sciences and Mathematics Commons

This Article is brought to you for free and open access by the Physics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Physics
Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

BURDMAN, G; Golowich, E; HEWETT, JL; and PAKVASA, S, "RADIATIVE WEAK DECAYS OF CHARM MESONS" (1995).
Physics Department Faculty Publication Series. Paper 483.
http://scholarworks.umass.edu/physics_faculty_pubs/483

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics_faculty_pubs?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics_faculty_pubs?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics_faculty_pubs/483?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F483&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


ar
X

iv
:h

ep
-p

h/
95

02
32

9v
1 

 1
6 

Fe
b 

19
95

FERMILAB−Pub−94/412−T
UMHEP−415

SLAC−PUB−6692
UH−511−811−94

Radiative Weak Decays of Charm Mesons

Gustavo Burdman(a), Eugene Golowich(b)

JoAnne L. Hewett(c) and Sandip Pakvasa(d)

(a)Fermilab
Batavia, IL 60510, USA

(b)Department of Physics and Astronomy
University of Massachusetts, Amherst MA 01003, USA

(c)Stanford Linear Accelerator Center
Stanford CA 94309, USA

(d)Department of Physics and Astronomy
University of Hawaii, Honolulu HI 96822, USA

Abstract

We address Standard Model predictions for flavor-changing radiative
transitions of the pseudoscalar charm mesons. Short-distance con-
tributions in D radiative transitions are contrasted with those in B

decays. A full analysis is presented of the c → u + γ electromagnetic
penguin amplitude with QCD radiative corrections included. Given
the importance of long-range effects for the charm sector, special at-
tention is paid to such contributions as the vector dominance and pole
amplitudes. A number of two-body final states in exclusive charm ra-
diative decays is considered and the corresponding branching ratio
predictions are given.
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1 Introduction

Important milestones in the study of the b-quark system were reached with
the recent observations of both the exclusive decay B → K∗γ[1]

BB→K∗γ = (4.5 ± 1.5 ± 0.9) × 10−5 , (1)

and of the inclusive transition[2]

Bb→sγ = (2.32 ± 0.57 ± 0.35) × 10−4 . (2)

To first approximation, these flavor-changing radiative decays can be inter-
preted at the quark level in terms of the b → sγ transition. The Standard
Model allows for such a process by means of a one-loop penguin-type ampli-
tude. Within errors, agreement of the measured branching ratios and Stan-
dard Model predictions appears to be reasonable. The small magnitudes of
these branching ratios indicate just how sensitive experimental probes of b-
quark hadrons have become. However, an outstanding question is the size of
the long distance contributions[3, 4] to such radiative B decays relative to
the short distance penguin amplitude. This issue must be addressed in order
to establish the viability of determining the value of the ratio of CKM matrix
elements, |Vtd|/|Vts|, from a measurement of the ratio of exclusive branching
fractions BB→ργ/BB→K∗γ.

Important as they are, the above measurements by no means exhaust
the set of interesting problems. It has become increasingly evident that
the database for charm hadrons is also in a state of rapid expansion, and
that physically important levels of sensitivity are being achieved. Perhaps
the most impressive example of this to-date is the recent observation of the
nonleptonic decay D0 → K+π−, with branching ratio[5]

BD0→K+π−

BD0→K−π+

= 0.0077 ± 0.0025 ± 0.0025 . (3)

This transition has been interpreted as evidence of a doubly Cabibbo sup-
pressed transition rather than of D0-D̄0 mixing.

The discussion in this paper will be directed towards a somewhat different
aspect of charm physics, the flavor-changing radiative decays. These transi-
tions require the joint occurrence of weak and electromagnetic interactions.
From Table 1[6],[7],[8], we see that no such events (involving emission of real
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or virtual photons) have yet been observed. However, these decays are an
active area of study, and data gathered in ongoing fixed-target experiments
are establishing markedly improved bounds. Our objective in the analysis
to follow will be to provide up-to-date predictions for flavor-changing ra-
diative transitions of charm systems. Since the experimental situation for
charm mesons is at present more favorable than for charm baryons, we shall
restrict our attention to the former. Even with this restriction, it is a tall
order to supply accurate theoretical values. It has become evident over a
long period of time that theoretical calculations of D-meson weak decays are
not particularly trustworthy, due in part to the absence of a rapidly conver-
gent approximation scheme and also to the presence of significant hadron
dynamical effects in the D meson mass region. Despite this, we feel that one
can make some definite statements, such as the relative importance of long-
range and short-range effects and of the various types of final states which can
reasonably be anticipated. We shall base our analysis on a variety of theoret-
ical techniques, from operator-product expansion and renormalization-group
methods to more phenomenological approaches like vector-meson-dominance
(VMD). Measurement of radiative charm decays would probe the long dis-
tance contributions and thus provide further insight in the extrapolation of
calculational techniques to the B sector.

Table 1 Status of Electroweak-induced Charm Decays

Mode Branching Ratio
D0 → ρ0γ < 1.4 × 10−4

D0 → φ0γ < 2.0 × 10−4

D0 → K̄0e+e− < 1.7 × 10−3

D0 → ρ0e+e− < 4.5 × 10−4

D0 → ρ0µ+µ− < 8.1 × 10−4

D+ → π+e+e− < 2.5 × 10−3

D+ → π+µ+µ− < 2.9 × 10−3

D+ → K+e+e− < 4.8 × 10−3

D+ → K+µ+µ− < 9.2 × 10−3

Let us summarize the contents to follow. In Section 2, we consider the
short-range component in radiative charm decays, primarily the charm coun-
terpart of the penguin amplitude which dominates the radiative B-meson
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decays. In addition to addressing c-quark physics, our analysis contains a
purely theoretical advance by removing an unnecessary assumption made in
earlier studies involving b-quark applications. Section 3 begins our analysis
of the so-called ‘long-distance’ contributions with an analysis of pole dia-
grams, which are induced by the weak mixing of pseudoscalar and/or vector
charm mesons with noncharm states. In Section 4, we continue our study
of long distance effects by turning our attention to a study of VMD ampli-
tudes. Our conclusions and recommendations for future studies are given in
Section 5. There is also an Appendix in which the applicability of VMD to
certain light-meson decays is commented on.

2 Short Distance Contributions

Examples of diagrams which mediate the short-distance transition ampli-
tudes for radiative charm decay are depicted in Fig. 1. They have in com-
mon that the photon emission occurs in a region of spacetime determined
by the propagator of the W -boson. In view of the large W -mass MW, this
region has a very limited extent compared to the length scale of the strong
interactions, hence the name ‘short-distance’. Looking ahead, our conclusion
regarding such short-distance amplitudes will be that in radiative decays of
charm mesons they are small relative to long-distance effects, even though
they receive large enhancements from QCD corrections. As described earlier,
this is of course in stark contrast to B decay.

Figure 1. Short-distance Effects

In recognition of the importance attached to the electromagnetic penguin
transition in radiative B decays, we give a brief pedagogical comparison
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between the role played by this effect for B and for D decay. The two
transitions in question are given at the quark-level by

b(p, λ) → s(p′, λ′) + γ(q, σ)

c(p, λ) → u(p′, λ′) + γ(q, σ) . (4)

To highlight the crucial role played by the quark masses and CKM matrix
elements, let us at first ignore the effect of QCD radiative corrections. The
relevant Feynman diagrams are then depicted in Figs. 1(a),1(c) and the pen-
guin amplitude for the transition of a heavy quark Q to a much lighter quark
q and an on-shell photon is given by[9]

A(EM peng)
Q→qγ = (5)

eGF

4
√

2π2

∑

i

λiF2(xi) ūq(p
′, λ′)ǫµ†(q, λ)σµνq

ν [mQPR + mqPL]uQ(p, λ) ,

where PR(L) are the right(left)-handed helicity projection operators, xi ≡
m2

i /M
2
W, λi ≡ Vis

∗Vib for Ab→sγ and λi ≡ Vci
∗Vui for Ac→uγ. The function F2

gives the contribution of each internal quark to the electromagnetic penguin
loop,

F2(x) =

Q

[

x3 − 5x2 − 2x

4(x − 1)3
+

3x2 ln x

2(x − 1)4

]

+
2x3 + 5x2 − x

4(x − 1)3
− 3x3 ln x

2(x − 1)4
, (6)

with Q being the charge of the internal quark. For b → sγ the sum is carried
out over the quarks u, c, t and the term proportional to the s-quark mass in
Eq. (5) is generally neglected, whereas for c → uγ, one sums over the quarks
d, s, b and ignores the corresponding term proportional to the u-quark mass.

Let us get acquainted with some of the numerical values. In Table 2,
we first display the magnitude of the function F2 and then fold in the CKM
dependence for the b → sγ transition (we take mu = 5 MeV, mc = 1.5 GeV,
mt = 174 GeV, and the central values of the CKM matrix elements as given
in Ref. [6]).

Table 2 Contributions to b → s + γ

Quark F2 |VibV
∗

is |F2

u 2.27 × 10−9 1.29 × 10−12

c 2.03 × 10−4 7.34 × 10−6

t 0.39 1.56 × 10−2
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Dominance of the t-quark intermediate state is evident, even upon including
the CKM factors. Its effect is so large that the other intermediate states are
numerically negligible and hence are typically omitted. The corresponding
situation is given for c → uγ in Table 3 (with md = 11 MeV, ms = 150 MeV,
and mb = 4.9 GeV).

Table 3 Contributions to c → u + γ

Quark F2 |V ∗
ci Vui|F2

d 1.57 × 10−9 3.36 × 10−10

s 2.92 × 10−7 6.26 × 10−8

b 3.31 × 10−4 3.17 × 10−8

The amplitude for c → uγ differs from that of b → sγ in two important
respects, (i) there is no single intermediate state which dominates, and (ii)
the overall magnitude is much smaller.

Neglecting the final state fermion mass, the QCD uncorrected decay rate
Γ

(0)
Q→qγ is given by

Γ
(0)
Q→qγ =

αG2
F

128π4
m5

Q

∣

∣

∣

∣

∑

i

λiF2(xi)

∣

∣

∣

∣

2

. (7)

To obtain the branching fraction, the inclusive rate is scaled to that of the
semi-leptonic decay Q → q′ℓν. This procedure removes uncertainties in the
calculation due to the overall factor of m5

Q which appears in both expressions,
and reduces the ambiguities involved with the imprecisely determined CKM
factors. Taking the above numerical values for the internal quark masses, and
using the values of the semi-leptonic branching ratios as given in Ref. [6], this
yields

Bb→sγ =
3α

2π
· |VtbV

∗
tsF2(xt)|2

|Vcb|2
[

g(mc/mb) +
|Vub|2
|Vcb|2 g(mu/mb)

] · BB→Xℓν ,

= 1.29 × 10−4 , (8)

Bc→uγ =
3α

2π
· |V ∗

csVusF2(xs) + V ∗
cbVubF2(xb)|2

|Vcs|2
[

g(ms/mc) +
|Vcd|2
|Vcs|2 g(md/mc)

] · BD+→Xℓ+ν ,
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= 1.39 × 10−17 .

Here, the function g(x) is the usual phase space factor in semi-leptonic me-
son decay, where constituent values of the final-state quark masses have been
used.[10] The QCD uncorrected c → uγ transition is seen to have an unob-
servably small branching fraction.

We next examine the impact of the QCD radiative corrections on the
above branching ratios. We begin by reviewing the calculation for the b → sγ
transition, which will serve as the foundation of our subsequent discussion of
c → uγ. The QCD corrections are calculated[11, 12] via an operator product
expansion based on the effective hamiltonian

H
|∆b|=1
eff = −4GF√

2
λt

8
∑

k=1

ck(µ)Ok(µ) , (9)

where the {Ok} are a complete set of renormalized dimension-six operators
involving light fields which govern the b → s transitions. They consist of
two current-current operators O1,2, four strong penguin operators O3−6, and
electro- and chromo-magnetic dipole operators O7 and O8,

O1 = (c̄αγµPLbβ)(s̄βγ
µPLcα) ,

O2 = (c̄αγµPLbα)(s̄βγµPLcβ) ,

O3 = (s̄αγµPLbα)
∑

q

(q̄βγ
µPLqβ) ,

O4 = (s̄αγµPLbβ)
∑

q

(q̄βγµPLqα) ,

O5 = (s̄αγµPLbα)
∑

q

(q̄βγ
µPRqβ) , (10)

O6 = (s̄αγµPLbβ)
∑

q

(q̄βγµPRqα) ,

O7 =
e

16π2
mb(s̄ασµνPRbα)F µν ,

O8 =
gs

16π2
mb(s̄ασµνT

a
αβPRbβ)Gaµν .

The above effective hamiltonian is then evolved from the electroweak scale
down to µ ∼ mb by the Renormalization Group Equations (RGE).

In the RG analysis, the Wilson coefficients are to be evaluated perturba-
tively at the W scale where the matching conditions are imposed and then
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evolved down to the renormalization scale µ. The expressions for the {ck}
at the W scale are

c1,3−6(MW ) = 0 ,
c7(MW ) = −1

2
F2(xt) ,

c2(MW ) = 1 ,
c8(MW ) = −1

2
D(xt) .

(11)

with

D(x) =
x3 − 5x2 − 2x

4(x − 1)3
+

3x2 ln x

2(x − 1)4
. (12)

The solution to the RGE at the leading logarithmic order is given by

ceff
k (µ) = U5

kℓ(µ, MW )cℓ(MW ) , (13)

where U5
kℓ denotes the evolution matrix in a five-flavor context and is deter-

mined by
U5(m1, m2)kn = Okℓ

[

η~aℓ

]

O−1
ℓn . (14)

In the above we define η ≡ αs(m2)/αs(m1) and ~aℓ ≡ γD
ℓℓ/2β0 (not summed on

ℓ), where β0 = 11 − 2nf/3 and γD = O−1 γ(eff) T O is the diagonalized form
of the 8 × 8 anomalous dimension matrix. We use the scheme-independent
form of the matrix γeff , which is given explicitly in Ref. [13] in terms of the
number of Q = +2/3 and Q = −1/3 quarks present in the effective theory.

Scaling again to the semi-leptonic decay, the branching fraction is now
given by

Bb→sγ =
6α

π
·
∣

∣

∣

∣

VtbV
∗
ts

Vcb

∣

∣

∣

∣

2

· |ceff
7 (µ)|2

g(mc/mb) +
|Vub|2
|Vcb|2 g(mu/mb)

· BB→Xℓν , (15)

The numerical values of the separate contributions to ceff
7 (µ) are, with mt =

174 GeV (for illustration purposes), µ = mb = 4.87 GeV, and αs(MZ) =

0.124 as determined by LEP[14],

ceff
7 (µ) = 0.670 c7(MW ) + 0.091 c8(MW ) − 0.172 c2(MW ) ,

= 0.670(−0.195) + 0.091(−0.097) − 0.172 . (16)

Taking the overall CKM factor in the branching fraction to be unity, and
|Vub|/|Vcb| = 0.08, this procedure yields

Bb→sγ =
(

2.92+0.77
−0.59

)

× 10−4 . (17)
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The central value corresponds to µ = mb, while the upper and lower er-
rors represent the deviation due to assuming µ = mb/2 and µ = 2mb, re-
spectively. We see that this value compares favorably to the recent CLEO
measurement[2] of the inclusive rate cited earlier in Eq. (2). When com-
pared with the uncorrected result of Eq. (9), the QCD corrections are seen
to increase the branching ratio by roughly a factor of 2.

We take this opportunity to reflect further on the size of the QCD correc-
tions. Earlier estimates[15] of these corrections found that the enhancements
to the b → sγ branching fraction were more than an order of magnitude for
mt < MW . This is because the effect of the QCD radiative correction to the
weak vertex is to replace the GIM power suppression in Eq. (5) by a logarith-
mic suppression. We explicitly illustrate this effect in Fig. 2, where we show
the dependence of the c7 Wilson coefficient on the mass of a single internal
quark using the calculational procedure described above. In the lower of the
two curves, the dependence of c7 determined at scale µ = mW is displayed,
while the upper curve corresponds to the evolved c7 evaluated at µ = mb. We
see that c7(µ = mb) is a reasonably flat function of the intermediate quark
mass, and that the corrections are substantial for light internal quarks, with
an increase of 3-4 orders of magnitude in the rate for mq = 5 − 10 GeV. For
the case of one heavy internal quark, e.g., b → sγ with mt > MW , we see
that the GIM mechanism no longer plays such a crucial role and the QCD
enhancements are not as dramatic.
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Figure 2. Dependence of c7 on Intermediate-quark Mass

We now consider the case of radiative charm transitions. The |∆c| = 1
effective hamiltonian can be written as

H
|∆c|=1
eff =

−4GF√
2

λb

10
∑

k=1

ck(µ)Ok(µ) , (18)

with λi = V ∗
ciVui as defined previously. The CKM structure of the operators

differs dramatically from the b → sγ case. Here, both O1 and O2 have two
contributions which have approximately equal CKM weighting since λs ≃
λd. We stress that extreme caution must be exercised in order to correctly
incorporate these terms. To be precise we explicitly separate O1 and O2 into
two operators according to their CKM structure,

O1a = (ūαγµPLsβ)(s̄βγ
µPLcα) , O1b = (ūαγµPLdβ)(d̄βγ

µPLcα) ,

O2a = (ūαγµPLsα)(s̄βγ
µPLcβ) , O2b = (ūαγµPLdα)(d̄βγ

µPLcβ) ,

(19)

and write the remaining |∆c| = 1 operators in a form analogous to their
|∆b| = 1 counterparts,

O3 = (ūαγµPLcα)
∑

q

(q̄βγµPLqβ) ,
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O4 = (ūαγµPLcβ)
∑

q

(q̄βγ
µPLqα) ,

O5 = (ūαγµPLcα)
∑

q

(q̄βγµPRqβ) , (20)

O6 = (ūαγµPLcβ)
∑

q

(q̄βγ
µPRqα) ,

O7 =
e

16π2
mc(ūασµνPRcα)F µν ,

O8 =
gs

16π2
mc(ūασµνT

a
αβPRcβ)Gaµν ,

where the terms proportional to mu in O7,8 have again been neglected. Since
the quantity −λb has been factorized in Eq. (18) above, the values of the
corresponding Wilson coefficients at the matching scale are now

c1a(MW ) = 0 ,
c2a(MW ) = −λs/λb ,

c1b(MW ) = 0 ,
c2b(MW ) = −λd/λb .

(21)

The values of the Wilson coefficients for c3−6(MW ) are the same as in Eq. (11),
and the coefficients c7,8(MW ) are modified to

c7(MW ) = −1

2

[

λs

λb

F2(xs) + F2(xb)

]

,

c8(MW ) = −1

2

[

λs

λb
D(xs) + D(xb)

]

, (22)

with each containing intermediate s-quark and b-quark contributions. Due to
the CKM dependence, c7,8(MW ) now contain both real and imaginary terms
which in principle must be evolved separately. We note that the real parts of
the xs-dependent terms are numerically the same order of magnitude as the
xb terms. Now we evolve the effective theory down to the scale µ ∼ mc. This
takes place in two successive steps; first, we go from the electroweak scale
down to mb working in an effective 5 flavor theory, and then to µ < mb in
an effective 4 flavor theory. This procedure is similar to what is performed
for the |∆s| = 1 kaon transitions[16], where the effective theory is evolved to
µ ∼ 1 GeV in 3 successive steps. We then have

Re ceff
k (µ) = U4

kℓ(µ, mb)U
5
ℓn(mb, MW )Re cn(MW ) ,

Im ceff
k (µ) = U4

kℓ(µ, mb)U
5
ℓn(mb, MW )Im cn(MW ) , (23)

10



and
|ceff

7 (µ)|2 = |Re ceff
7 (µ)|2 + |Im ceff

7 (µ)|2 . (24)

The renormalization group evolution matrices U4 and U5 are determined
as in Eq. (14) now using a 10 × 10 anomalous dimension matrix γeff . We
take the anomalous dimensions of the split operators O1a−b and O2a−b to be
exactly those for O1 and O2, respectively, as the anomalous dimensions do
not depend on the CKM structure of the operator. We use the form of γeff

as given in Ref. [13], taking care to keep nf = 4 and 5 as needed. The relative

numerical values of the contributions to ceff
7 (µ) with µ = mc = 1.5 GeV are

ceff
7 (mc) ≃ Re ceff

7 (mc) ,

= 0.458 c7(MW ) + 0.125 c8(MW ) − 0.312[c2a(MW ) + c2b(MW )] ,

= 0.458(−0.241 × 10−6) + 0.125(−0.139 × 10−5) − 0.312

(

−λs − λd

λb

)

,

= 0.458(−0.241 × 10−6) + 0.125(−0.139 × 10−5) − 0.312 , (25)

where the CKM unitarity condition λs +λd = −λb has been used to simplify
the final term. Incidentally, it should be stressed that the choice of −λb as a
prefactor in Eq. (18) was quite arbitrary, and we could have pulled out some
other factor, say λs (or λd). This would have affected the Wilson coefficients
at the matching scale, but the final result would have remained, as it must,
unchanged.

We now compute the branching fraction. We evaluate αs in the MS
scheme (using αs(MZ) = 0.124 as before) and extend the range down to the

charm scale using the Bernreuther matching conditions[17] at the threshold
µ = mb = 4.87 GeV. Note that we have also taken the CKM matrix elements
to be real and have neglected any possible imaginary components. Given the
small values of c7,8(MW ), this approximation is well justified. It is clear from
the above that the c2(MW ) term completely dominates, due to the small
contributions to c7,8(MW ) from the light internal quark masses. This is in
stark contrast to b → s transitions (and likewise to s → d), where the heavy
internal t-quark forces the the magnetic dipole coefficients to be competitive
with c2(MW ). This can be seen explicitly by comparing the above with

11



Eq. (16). The QCD-corrected branching fraction is then

Bc→uγ =
6α

π
·
∣

∣

∣

∣

V ∗
cbVub

Vcs

∣

∣

∣

∣

2

· |ceff
7 (µ)|2

g(ms/mc) +
|Vcd|2
|Vcs|2 g(md/mc)

· BD+→Xℓ+ν ,

= (4.21 − 7.94) × 10−12 , (26)

where the lower (upper) value in the numerical range corresponds to the
scale µ = 2mc(mc). We see that the effects of the QCD corrections are quite
dramatic in charm radiative decays, and that the rate is given almost entirely
as a consequence of operator mixing. The stability of this result can be tested
once the complete next-to-leading order corrections to the magnetic dipole
transitions are known.

Finally, we wish to comment further on the CKM dependence of the
|∆b| = 1 and |∆c| = 1 effective hamiltonians. We consider each case sepa-
rately:

(i) |∆b| = 1 transition: Here, the the t-quark contribution is seen to
dominate in every respect. Thus, for the dipole operators O7 and O8, the u-
quark and c-quark loops are omitted because they are numerically tiny (e.g.,
see Table 2). Likewise, due to the smallness of the u-quark CKM factors,

the approximation is made in the literature[12] to omit any current-current
operators containing u-quark fields. This explains why only the c-quark
dependent operators O1,2 appear in the |∆b| = 1 operator basis of Eq. (10).
This assumption also explains another aspect of the analysis. Ordinarily one
would expect O1,2 to be accompanied by the CKM factor −λc, yet it is the
prefactor λt which appears in the effective hamiltonian of Eq. (9). This is
because the tiny value of λu has allowed one to write the CKM unitarity
relation as λc ≃ −λt and thus remove dependence upon λu.

(ii) |∆c| = 1 transition: In this case, the CKM dependence is more
complicated since no single quark-loop is dominant. One must expand the
operator basis as we did in Eq. (19). However, we wish to take note of a
seemingly remarkable feature which occurs upon carrying out the RG analy-
sis. The operators O2a and O2b turn out to have equal anomalous dimensions
and thus c2a and c2b have the same numerical coefficient in Eq. (25). The
most elegant way to understand this result is to exploit the U -spin symmetry
present in the system of operators O1a,1b and O2a,2b. Thus, suppose instead
of proceeding as we did, we replaced the operators O2a and O2b of Eq. (19)
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with the equivalent set O′
2a and O′

2b, where

O2a → O′
2a ≡ 1

2
(O2a + O2b)

=
1

2

[

(ūαγµPLsα)(s̄βγ
µPLcβ) + (ūαγµPLdα)(d̄βγ

µPLcβ)
]

,

O2b → O′
2b ≡ 1

2
(O2a − O2b) (27)

=
1

2

[

(ūαγµPLsα)(s̄βγ
µPLcβ) − (ūαγµPLdα)(d̄βγ

µPLcβ)
]

,

along with a corresponding replacement of coefficients,

c2a → c′2a and c2b → c′2b . (28)

The matching conditions for the modified coefficients would then have be-
come

c′2a(MW ) =
λs + λd

−λb

= 1 and c′2b(MW ) =
λs − λd

−λb

, (29)

with analogous replacements made also for O1a and O1b. Since the mixing
of O2a and O2b with O7 has no dependence on the mass of the internal
s and d quarks, the operator O′

2b does not contribute to the process c →
u + γ due to cancellation between the s-quark and d-quark contributions.
This cancellation is in fact just the manifestation of an underlying U -spin
symmetry. That is, in the limit of neglecting quark mass, O′

2b carries U -spin
1 and thus cannot couple to a photon. This decoupling occurs via the very
s-quark and d-quark cancellation under discussion. As a consequence, the
other operator O′

2a must have the the same anomalous dimension as O2a

under RG flow, and we obtain the result cited above.
As a corollary, it is clear that in the |∆b| = 1 transition, the approxima-

tion made of omitting the u-quark current-current operators is quite unnec-
essary. One could just as easily deal with an expanded operator basis con-
taining u-quark fields analogous to that of Eq. (19) or by invoking an SU(4)
version of u-quark/c-quark U -spin symmetry and proceeding as above.

3 Long Distance Pole Contributions

As seen in the previous section, the short distance contributions to charm
radiative decays give very small branching ratios, even when the large QCD
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enhancement is taken into account. There will, however, be additional con-
tributions that appear as exclusive modes for which the momentum scale of
the intermediate quarks is a strong interaction scale and not the short dis-
tance scale MW . This forces us to view the intermediate states as hadrons
rather than quarks. These long distance contributions can be partitioned
into two basic classes. The first corresponds, at the quark level, to annihi-
lation diagrams cq̄1 → q2q̄3 where a photon line is attached to any of the
four quark lines. In terms of hadronic degrees of freedom, these give rise to
the set of contributions which include the pole diagrams. The second type
of contribution corresponds to the underlying quark processes c → q1q̄2q,
followed by q̄2q → γ. At the hadronic level, this is the so-called vector meson
dominance mechanism. We shall discuss the pole amplitudes in this section,
leaving consideration of the VMD mechanism for Section 4.

The pole amplitudes are but a subset of an entire class of long-distance
contributions, including the two-particle intermediate states and proceeding
to all higher n-particle intermediate states. However, of these the most phe-
nomenologically accessible are the single-particle or pole terms. The relevant
diagrams, appearing in Figs. 3(a,b), are seen to fall into either of two basic
classes. We shall refer to transitions as type I if weak-mixing occurs before
photon emission, i.e. if the incoming D meson experiences weak-mixing, and
as type II if photon emission occurs before weak-mixing, i.e. if the final
state meson is created via weak-mixing. In principle, the intermediate states
occurring in the type I and type II amplitudes consist respectively of all pos-
sible virtual spin-zero and spin-one particles. We shall find it practicable,
however, to take into account only the lightest such virtual particles.

Figure 3. Pole Contributions

In analyzing long range effects for flavor-changing D decays, we shall
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employ the effective weak hamiltonian of Bauer, Stech and Wirbel[19] (BSW),

Hw = −GF√
2

[: a1(ūd′)(s̄′c) + a2(s̄
′d′)(ūc) :] , (30)

where the colons denote normal-ordering and d′, s′ are the CKM-mixed fields

d′ = Vud d + Vus s ,

s′ = Vcs s + Vcd d . (31)

We shall work in the 2 × 2 basis of quark flavors,

V =

(

Vud Vus

Vcd Vcs

)

≃
(

0.975 0.222
−0.222 0.975

)

. (32)

Specific forms for the Cabibbo-favored and Cabibbo-suppressed hamiltonians
will be given shortly. The quark fields occur in left-handed combinations,
denoted by

(q̄1q2) ≡ q̄1γµ(1 + γ5)q2 , (33)

and a1, a2 are free parameters whose values will generally depend on the
mass scale being probed. Here, they are determined by fitting to D → K̄π
data[20],

a1(m
2
c) = 1.2 ± 0.1 , a2(m

2
c) = −0.5 ± 0.1 . (34)

Pole Amplitudes of Type I

Among the possible exclusive D decays, the most promising for experi-
mental detection occur in the class of vector meson–photon (V γ) final states,

D(p) → V (k, λ) + γ(q, σ) . (35)

For these, the transition amplitude has the gauge invariant form

MD→V γ = ǫ†µ(k, λ)ǫ†ν(q, σ)
[

Apv (pµpν − gµνq · p) + iApcǫµναβkαpβ

]

. (36)

The parity-violating and parity-conserving amplitudes are denoted by Apv

and Apc respectively, and each carries the dimension of inverse energy. Both
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amplitudes are generally required because the weak interaction does not re-
spect parity invariance. The D → V γ decay rate is given by

ΓD→V γ =
|q|3
4π

(|Apv|2 + |Apc|2) , (37)

where q is the decay momentum in the D rest frame,

|q| =
m2

D − m2
V

2mD

. (38)

Which particular combination of the parity-conserving and parity-violating
amplitudes contributes to the decay process will depend upon the weak-
mixing amplitude. In principle, a charm meson can mix with a sequence
of either scalar {Sn} or pseudoscalar {Pn} mesons. Although some work

on scalar-mixing has been done,[18] the outcome is rather model-dependent
because detailed experimental and theoretical understanding about scalar
states is lacking. In this paper, we shall therefore consider only the weak-
mixing of charm mesons with light pseudoscalar mesons and thus work with
only parity-conserving (PC) pole amplitudes.

It is appropriate at this point to comment on the notation to be employed
from this point on in both Section 3 and Section 4. We shall denote fP as
the decay constant of pseudoscalar meson P and define hV γP as the coupling
constant for the EM interaction vertex of the photon γ with the mesons
V , P . Also, the decay constant of vector meson V is given in terms of the
V -to-vacuum matrix element of the vector current,

〈0|V a
µ |V b(q, λ)〉 = δab m

2
V

fV
ǫ∗µ(q, λ) ≡ δabgV ǫ∗µ(q, λ) . (39)

Note that we define two equivalent parameterizations, gV (with units of
GeV2) and fV (dimensionless), for the vector decay constant. We have found
that employing gV in the discussion of pole amplitudes alleviates notational
confusion which would otherwise occur between the vector and pseudoscalar
decay constants fV and fP . However, it is traditional to use fV in discussing
VMD amplitudes, and we do so in Section 4. The constants {fV } are ob-
tained from ΓV →l+l− data and have recently been compiled in Table 1 of
Ref. [3].

Now, a pseudoscalar state P which is created by weak mixing will prop-
agate virtually until it eventually decays into the final state. This latter

16



transition is electromagnetic and hence parity-conserving. It has the ampli-
tude

MV γP = hV γP ǫ†µ(k, λ)ǫ†ν(q, σ)ǫµναβkαpβ . (40)

The absolute value of the coupling constant hV γP can be inferred phenomeno-
logically by using

|hV γP |2 =

{

12πΓV →Pγ/|q|3 (MV > MP )
4πΓP→V γ/|q|3 (MP > MV ) .

(41)

The general type I decay amplitude AI for D → V γ is then given by

Apc
I (D → V γ) =

∑

n

hV γPn
· 1

m2
D − m2

Pn

· 〈Pn|H(eff)
w |D〉 . (42)

With Fig. 3(a) as a guide, the notation should be self-evident.
Predictions for D → V γ decay amplitudes will be obtained below in

terms of both type I and type II pole amplitudes, and in the next section we
shall do the same by using VMD amplitudes. We can, however, accomplish
somewhat more. In principle, the discussion for V γ final states extends to
a larger set of meson-photon final states Mγ, where the only restriction on
meson M is that it have spin greater than zero. For each different type of Mγ
final state, there will be a gauge invariant D-decay amplitude like Eq. (36)
and an MγP interaction vertex like Eq. (40). However, the generic form
of Eq. (42) continues to hold, except that hV γPn

is replaced by hMγPn
. Of

course, to have predictive power requires knowledge of the hMγPn
coupling

constant. Fortunately, much has been learned about radiative decays in light
meson systems over the years. In particular, there are varying amounts of
experimental evidence for 17 such transitions in the listing of Ref. [6]. Of
these, 10 involve 1− → 0− mesonic transitions, 3 involve 2+ → 0−, 2 involve
1+ → 0− and 2 involve 0− → 1−. This information allows us to extend the
analysis of type I amplitudes from just V γ final states to include both Aγ
and Tγ configurations as well, where ‘A’ and ‘T ’ stand for axialvector and
tensor mesons respectively. The Aγ final states are very analogous to the
V γ decays in that the coupling constant hAγPn

is found via Eq. (41) and the
D → Aγ decay amplitude has the same form as Eq. (37). For the Tγ final
states, one uses instead

|hTγP |2 =
40πΓT→Pγ

|q|5 (43)
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as well as

ΓD→Tγ =
|q|5
4π

|Apc
I |2 . (44)

To summarize, we shall include in our study of type I amplitudes certain
D → Aγ and D → Tγ transitions. For the type II or VMD amplitudes,
however, we shall limit our calculations to just the V γ final states.

Cabibbo-favored (CF) transitions:
In this case, the BSW hamiltonian becomes

H(CF)
w = −VudVcs

∗ GF√
2

[: a1(ūd)(s̄c) + a2(s̄d)(ūc) :] . (45)

The calculation of weak-mixing matrix elements of D’s with the light pseu-
doscalar mesons is straightforward and results are tabulated in Table 4. The
fact that these mixing amplitudes are evaluated in vacuum saturation makes
the forms in Table 4 easy to interpret. Thus, for example, in Cabibbo-favored
D+

s decay, it is the term in the BSW hamiltonian with coefficient a1 which
contributes, and as such, the weak-mixing matrix element is naturally pro-
portional to the decay constants fπ and fD+

s
.

Table 4 Cabibbo-favored Mixing Amplitudes

Mixing Matrix Element

D+
s → π+ a1VudVcs

∗fπfD+
s
m2

D+
s
GF/

√
2

D0 → K̄0 a2VudVcs
∗fKfDm2

D0GF/
√

2
D+ → π+ 0

For the decay constants of the light mesons we use

fπ = 131 MeV and fK = 161 MeV . (46)

The present situation for the decay constants fD and fDs
of the charm mesons

is somewhat problematic. Experiment provides the upper limit for fD,

fD < 290 MeV , (47)
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as obtained from the branching ratio determination BrD+→µ+νµ
< 7.2×10−4

at 90% confidence-level[21]. Thus only theoretical estimates exist for fD.
These occur in three categories, lattice theoretic[22], QCD sum rule[23] and
quark model fits to color-hyperfine mass splittings[24]. Estimates fall in the
range 185 < fD(MeV) < 262. We shall adopt the value

f latt.
D ≃ 216 MeV , (48)

which is an average over the lattice estimates[25] and falls between the other
two types of determinations.

Recently, the following experimental results (in units of MeV) for fDs

were announced by CLEO[26], WA75[27] and BES[28],

fDs
=











344 ± 37 ± 67 (CLEO)
232 ± 45 ± 52 (WA75)
434+153 +35

−133 −33 (BES) ,
(49)

where the CLEO value is inferred from the ratio ΓD+
s →µ+νµ

/ΓD+
s →φπ+ along

with the branching ratio BD+
s →φπ+ . In our numerical analysis, we shall use

the following weighted average of the above decay constants,

f expt.
Ds

= 299 MeV . (50)

For the sake of comparison, we note that this value is somewhat larger than
the central value of a weighted average taken from a compilation of existing
lattice estimates,[25]

f latt.
Ds

= 242 MeV . (51)

The only other ingredients needed are the radiative coupling constants hMγP ,
which were defined earlier. Putting together all the necessary ingredients and
ranging over the set of final state mesons M = ρ(770), K∗(892), b1(1235),
a1(1270), a2(1320) and K∗

2 (1430) yields the magnitudes of type I pole-model
amplitudes (in units of GeV−1) given in Table 5.

Table 5 Type I Cabibbo-favored Decay

Mode |Apc
I | (GeV−1)

D+
s → ρ+γ 8.2 × 10−8

D+
s → b+

1 (1230)γ 7.2 × 10−8

D+
s → a+

1 (1270)γ 1.2 × 10−7

D+
s → a+

2 (1320)γ 2.1 × 10−7

D0 → K̄∗0γ 5.6 × 10−8
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These values should be considered as upper bounds for the following rea-
son. We have considered the lightest possible intermediate states, pions and
kaons, because only for these particles is there sufficient data for determining
coupling constants. However, the pion and kaon intermediate states propa-
gate far off-shell. Instead of having a squared momentum near the mass-shell
value q2 = m2

π, the virtual pion must carry q2 = m2
Ds

≫ m2
π and similarly

for the kaon. This effect could well suppress the transition amplitude.
In principle, one is to sum over all pion-like and kaon-like intermediate

states. Other possible contributions should be heavier and thus less affected
by this suppression effect. For pion-like intermediate states, the next state in
order of increasing mass would be π(1300) and beyond that the unconfirmed
state π(1770). Although there is not sufficient data to make a numerical
estimate of their effect, we can anticipate for such states that

(i) the propagator contribution will indeed be larger,
(ii) the weak-mixing between a ground state D meson and a radially

excited meson Pn will be wave-function suppressed,
(iii) the radiative coupling constant hMγPn

might well be relatively smaller
due to phase space competition with other decay modes of the massive meson
Pn.

We would expect the net result of these effects to decrease the overall
contribution from the excited states.

Cabibbo-suppressed (CS) transitions:
The weak-mixing now proceeds according to the weak hamiltonian

H(CS)
w = −GF√

2

[

: a1

(

VudVcd
∗(ūd)(d̄c) + VusVcs

∗(ūs)(s̄c)
)

+a2

(

VusVcs
∗(s̄s)(ūc) + VudVcd

∗(d̄d)(ūc)
)

:
]

, (52)

The action of the (d̄d) and (s̄s) operators on the vacuum when expressed in
terms of the pseudoscalar meson states becomes

(d̄d) = −0.7071π0 + 0.58η + 0.40η′

(s̄s) = −0.57η + 0.82η′ , (53)
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where an η − η′ mixing angle θP = −20o is adopted.[29] In addition, we
take[29]

fη ≃ fη′ ≃ fπ . (54)

The mixing amplitudes which are relevant for Cabibbo-suppressed decay ap-
pear in Table 6. Observe that we have simplified the notation for D0 transi-
tions by expressing VudVcd

∗ in terms of VusVcs
∗.

Table 6 Cabibbo-suppressed Mixing Amplitudes

Mixing Matrix Element

D+ → π+ a1VudV
∗
cdfπfD+m2

D+GF /
√

2

D+
s → K+ a1VusV

∗
csfKfDs

m2
Ds

GF /
√

2
D0 → π0 0.7071a2VusV

∗
csfD0fπm2

D0GF/2
D0 → η -1.15a2VusV

∗
csfD0fηm

2
D0GF/2

D0 → η′ 0.42a2VusV
∗
csfD0fη′m2

D0GF /2

The analysis for Cabibbo-suppressed decays proceeds analogous to that
for Cabibbo-favored decays, with one significant complication. For each of
the Cabibbo-favored transitions, only one amplitude contributes. For D0

decay, however, all the Cabibbo-suppressed pole amplitudes contain a sum
over π0, η and η′ intermediate states. It is important to get the relative
phases of the interfering amplitudes correct. We have therefore performed
an analysis of the nine V 0 → P 0γ couplings in light of the most recent data,
where V 0 = ρ0, ω0, φ0 and P 0 = π0, η and η′.[30] The magnitudes of the
Cabibbo-suppressed amplitudes are displayed in Table 7.

Table 7 Type I Cabibbo-suppressed Decay

Mode |Apc
I | (GeV−1)

D+ → ρ+γ 1.3 × 10−8

D+ → b+
1 (1230)γ 1.2 × 10−8

D+ → a+
1 (1270)γ 4.9 × 10−9

D+ → a+
2 (1320)γ 3.4 × 10−8

D+
s → K∗+γ 2.8 × 10−8

D+
s → K∗+

2 (1430)γ 6.0 × 10−8

D0 → ρ0γ 4.8 × 10−9

D0 → ω0γ 6.1 × 10−9

D0 → φ0γ 7.4 × 10−9
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Pole Amplitudes of Type II

Analogous to the type I D → V γ decay amplitude of Eq. (42) we have

Apc
II(D → V γ) =

∑

n

〈V |H(eff)
w |D∗

n〉 ·
1

m2
D − m2

D∗

n

· hD∗

nγD (55)

for the corresponding type II transition. From the viewpoint of phenomenol-
ogy, the type II transitions are more problematic than are those of type I
because less experimental input is available. Thus, we shall need to rely a
bit more heavily on theoretical predictions.

The first difficulty is that the couplings hD∗0γD0, hD∗+γD+ , and hD∗+
s γD+

s

have not yet been experimentally measured. This is because, although the
relevant photonic branching ratios have been measured, only upper bounds
exist for the full widths of the associated spin-one exited states, D∗0, D∗+

and D∗+
s ,

ΓD∗0 < 2100 keV =⇒ ΓD∗0→D0γ < 764 keV

ΓD∗+ < 131 keV =⇒ ΓD∗+→D+γ < 1.44 keV (56)

ΓD∗+
s

< 4500 keV =⇒ ΓD∗+
s →D+

s γ < 4500 keV .

Fortunately, predictions for the ΓD∗0→D0γ, ΓD∗+→D+γ and ΓD∗+
s →D+

s γ transi-

tions have appeared in the literature recently.[31, 32, 33, 34] There is some
spread in predictions, and so we choose the representative values,

ΓD∗0→D0γ = 20 keV , ΓD∗+→D+γ = 0.5 keV , ΓD∗+
s →D+

s γ = 0.3 keV , (57)

which implies

hD∗0γD0 = 0.542 GeV−1 ,

hD∗+γD+ = −0.087 GeV−1 , (58)

hD∗+
s γD+

s
= −0.066 GeV−1 ,

where we have adopted the phases implied by the quark model. A rough check
on whether the above values are reasonable is afforded by the nonrelativistic
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quark model, in which

hD∗0γD0 = 2e
[

1

Mc

+
1

Mu

]

,

hD∗+γD+ = e
[

2

Mc

− 1

Md

]

, (59)

hD∗+
s γD+

s
= e

[

2

Mc
− 1

Ms

]

,

where the {Mk} are constituent quark masses, distinct from the current
masses {mk} of Section 2. If we take Mc ≃ 1.64 GeV, as implied by a fit to D
and D∗ masses, then the relations in Eqs. (57-59) yield Mu ≃ Md = 0.48 GeV
and Ms ≃ 0.53 GeV.

The other of the difficulties concerns the weak-mixing matrix elements.
For type II transition amplitudes, the mixing occurs between charm and light
vector mesons, as in

〈ρ+|H(eff)
w |D∗+

s 〉 ≃ a1VudVcsgρ+gD∗+
s

GF /
√

2 . (60)

In the above, the gV are the vector meson decay constants defined in Eq. (39)
and whose determination we shall discuss shortly. As with the type I am-
plitudes, we have employed vacuum saturation. To determine the action of
the (d̄d) and (s̄s) operators upon the vacuum we employ the ideally-mixed
vector meson states, so that

(d̄d) =
ω − ρ0

√
2

and (s̄s) = φ . (61)

For the light 1− mesons, the collection {gV } of vector decay constants can
be determined by referring to the vacuum-to-meson matrix elements of Jµ

em

given in Table 1 of Ref. [3]. Together with isospin and SU(3) relations along
with quark model insights, these generate all the needed values, e.g.

gρ+ ≃ 0.17 GeV2 , gK∗ ≃ m2
K∗

m2
ρ

gρ+ ≃ 0.22 GeV2 , . . . . (62)

To estimate the D∗+
s and D∗0 decay constants, we invoke the heavy-quark-

symmetry relations,

gD∗

s
= mDs

fDs
≃ 0.588 GeV2 ,

gD∗ = mDfD ≃ 0.403 GeV2 . (63)
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The magnitudes of the type II amplitudes thus calculated are given in Table 8.

Table 8 Type II Decays

Mode |Apc
II | (GeV−1)

D+
s → ρ+γ 1.9 × 10−8

D0 → K̄∗0γ 5.9 × 10−8

D+ → ρ+γ 3.6 × 10−9

D+
s → K∗+γ 5.1 × 10−9

D0 → ρ0γ 4.7 × 10−9

D0 → ω0γ 6.9 × 10−9

D0 → φ0γ 1.6 × 10−8

D∗ excitations with spins not equal to one will not contribute to type II
amplitudes if we adhere strictly to the hamiltonian of Eq. (30)[3] and continue
to work within the vacuum saturation framework. The reason is that mesons
with J > 1 cannot have a nonzero matrix element with the vacuum via the
current q̄γµ(1 + γ5)c. The possibility of an intermediate charm meson with
J = 0 is disallowed since it could only mix with a final-state J = 0 particle
and the decay of a spinless particle to another spinless particle plus a photon
is forbidden.

Although we have considered just final state vector mesons in Table 8,
it should be obvious that in principle the spin-one intermediate D∗ states
can also mix weakly with axialvector final state mesons. Unfortunately, one
knows less about the decay constants of axialvector mesons than one does of
the vector mesons.

4 Long Distance VMD Contributions

The VMD contribution to charm meson radiative decay is depicted in Fig. 4,
where a D meson is seen to (i) decay weakly into a final state of a vector meson
V and a meson M of nonzero spin, followed by (ii) an electromagnetic VMD
conversion of V into a photon. Roughly speaking, in the VMD approach the
D → Mγ amplitude is obtained by multiplying the D → MV amplitude
by the factor e/fV where e is the electric charge and fV is the dimensionless
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version of the vector meson decay constant defined in Eq. (39). It is important
to keep in mind that in the VMD process D → MV , the vector meson V is
off-shell. Thus, to obtain the VMD amplitude for D → Mγ will require an
extrapolation from p2

V = m2
V to p2

V = 0 for both the V → γ vertex and the
D → MV transition. For our considerations, the main intermediate states
will involve virtual rho and phi mesons. We shall employ the observation
made in Ref. [35] that the rho-gamma vertex seems to be unaffected by
the extrapolation whereas the phi-gamma vertex is reduced by a factor of
ηφ ≃

√
2. In the following, we will consider a number of examples for the

case M = V , and so we shall be working with VMD chains which begin with
the process D → V V . Since the V V final states have L = 0, 1, 2 as allowed
orbital angular momentum values, the VMD amplitude will in general have a
parity-conserving part Apc

VMD corresponding to the V V P -wave and a parity-
violating part Apv

VMD corresponding to the V V S-wave and/or D-wave.

Figure 4. VMD Contribution

In practice, there are two means for determining the D → MV part of a
VMD amplitude for D → Mγ:

1. One can input D → MV experimental data directly in order to phe-
nomenologically determine the D → MV amplitude. In this approach,
it is crucial to maintain gauge invariance. A careful discussion of
how to construct a gauge invariant amplitude was recently given in
Ref. [3] (which considered this type of empirical VMD contribution
to B → K∗γ), so we need not detail this procedure here. Since the
database for D → MV transitions is unfortunately small, the ability
to generate VMD amplitudes using this phenomenological method is
limited.

25



2. One can employ some theoretical description to model the D → MV
amplitude. Since the models currently available do not always reli-
ably reproduce branching ratios and polarizations of final-state vec-
tor mesons in decays of heavy mesons,[36] this method is also not
beyond criticism. For definiteness, we shall continue to employ the
BSW model[19] introduced in Section 3.[37] Within this approach, the
squared VMD amplitude for the important case where M is a vector
meson becomes

|AVMD|2 =
G2

F |V ∗
cqVqu|2

2m2
Dk2

a2
i (m

2
c)f

2
XI

×
[

(mD + mY )2A2
1(q

2
0) +

4k2m2
DV 2(q2

0)

(mD + mY )2

]

×
(

4πα

f 2
V

)

, (64)

where |k| is the photon spatial momentum, q represents either of the d
or s light quarks, and I is a process-dependent isospin coefficient. The
BSW coefficients a1(m

2
c) and a2(m

2
c) which correspond to the color-

favored and color-suppressed operators are given in Eq. (34). The
remaining notation is explained by noting that in the factorization
approximation for D → MV , one of the final state particles, which
we call X (either M or V ), couples directly to the vacuum and the
other, which we call Y (either V or M), appears in the D-to-Y matrix
element of the charged weak current Jµ

ch. Thus the quantity fX is the
decay constant of X, and A1(q

2) and V (q2) are the semileptonic form
factors defined by

〈Y (pY )|Jµ
ch|D(P )〉 =

2V (q2)

mD + mY
ǫµνρσǫ∗νPρpY σ + 2mY iA0(q

2)
ǫ∗.q

q2
qµ

+i

[

(mD + mY )A1(q
2)ǫ∗µ − ǫ∗.qA2(q

2)

mD + mY

(P + py)
µ

−2mY A3(q
2)

ǫ∗.q

q2
qµ

]

. (65)

In the VMD amplitude, the form factors are to be evaluated at q2
0 = 0

if X = V and at q2
0 = m2

M if X = M . Throughout, we shall make

use of the form factors as measured[38] in D → K∗lν and also employ
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SU(3) relations as needed. This should provide a good estimate of
the form factors appearing in the D-to-ρ and D-to-φ matrix elements.
Whenever the form factors are to be evaluated at momentum transfers
other than at q2 = 0, we shall use a monopole form to extrapolate from
q2 = 0. This amounts simply to dividing the form factors at q2 = 0 by
the quantity 1 − q2/m2

pole.

In the following, we shall give VMD predictions for a number of specific
D → Mγ decays, grouped as Cabibbo favored, singly suppressed or doubly
suppressed. In the few cases where we can employ both the above approaches,
we shall refer to them respectively as ‘Meth. 1’ and ‘Meth. 2’. Given the
lack of abundant D → MV data, however, we shall be forced to adopt the
theoretical approach of Meth. 2 in most cases.

Before we can proceed, there is another topic which must be addressed,
the dynamical complication of significant Final State Interactions (FSI). Al-
though presumably not a problem in B → MV decays, detectable FSI are
known to exist in the D-meson mass region. This can produce an ambiguity
in the VMD analysis because FSI will inherently be part of any VMD am-
plitude obtained from D → MV data, but will not be present in the BSW
construction. It is difficult to remove the effect of FSI from the phenomeno-
logical VMD amplitude because the vector meson V is to be taken off-shell,
and FSI might have an important kinematic dependence, i.e. the p2

V depen-
dence of the FSI has also to be taken into account. Consequently, any FSI
effects entering in data may not be present to the same extent in the VMD
amplitudes. As regards the factorization construction (Meth. 2 above), the
exclusion of any FSI effects in the BSW amplitude amounts de facto to a
specific prescription for the p2

V -dependence of the FSI. There is some infor-
mation on the p2

V -dependence of the γ − V couplings and of certain matrix
elements, but it is not possible at this time to separate the two effects. As
we show in the Appendix, the effect for ρ emission in A2(1320) decay can
be as much as a factor of two. By contrast, no such suppression is seen in
ρ-photoproduction, although in φ-photoproduction an effective reduction of
about

√
2 in amplitude is observed and a somewhat smaller effect of

√
1.5 is

seen in ω-photoproduction.

Cabibbo-favored Modes
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D0 → K̄0∗γ: This is an instance in which the phenomenological approach
is applicable since experimental information on the D → MV intermediate
state is available. There is a branching ratio determination[6] BD0→K̄∗0ρ0 =
(1.6 ± 0.4)% and the amplitude is known to be (i) almost all transverse and
(ii) almost all S-wave.1 This allows us to write the VMD contribution to
D0 → K̄∗0γ as

Apv
VMD =

e

fρ
· aD0→K̄∗0ρ0

mDEγ
, Apc

VMD ≃ 0 , (Meth. 1) (66)

where we follow the notation of Ref. [3] and denote aD0→K̄∗0ρ0 as the phe-
nomenological S-wave amplitude for D0 → K̄∗0ρ0. With ΓD0→K̄∗0ρ0 = 2.53×
10−14 GeV and aD0→K̄∗0ρ0 = 1.63×10−6 GeV, this yields Apv

VMD(D0 → K̄∗0γ)
of about 6.8 × 10−8 GeV−1. The data on D0 → K̄∗0ρ0 is consistent with no
parity-conserving (P -wave) contribution.

Alternatively, the factorization approach of Eq. (64) predicts both am-
plitudes. In this case, we take ai = a2, and the vector meson to be mixed
with the photon is the ρ0, so that V = ρ0 and X = K̄0∗. The form factors
needed are those entering in D → ρ semileptonic transitions. Making use
of the measured D → K∗ form factors implies I = 1/2. To extrapolate
the form factors from q2 = 0 to q2 = m2

K∗, we use a monopole form where
the D∗ is the nearest singularity. The parity-violating and parity-conserving
amplitudes are given in Eq. (64) by the terms involving the A1 and V form
factors respectively. Using fK∗ = 0.2 GeV2 we obtain

Apv
VMD = 5.1 × 10−8 GeV−1 , Apc

VMD = 3.8 × 10−8 GeV−1 . (Meth. 2)
(67)

We notice that Apv
VMD is in reasonable agreement with the one obtained from

the use of data from the nonleptonic mode, given the large uncertainties
involved in these predictions. Indeed, the factorization estimate for the D0 →
K̄0∗ρ0 S-wave amplitude gives aD0→K̄∗0ρ0 = 1.3×10−6 GeV−1 which is within
20% of the experimental value. It also predicts a P -wave branching fraction
of 0.15% for D0 → K̄0∗ρ0, which is below the current upper limit of 0.30%.

1The Particle Data Group also lists branching ratios of (3.0 ± 0.6)% and (2.1 ± 0.6)%

for S-wave and D-wave respectively.[6] These values are completely consistent with the
fact that the total transverse mode (which must be entirely S-wave by the absence of any
P -wave) is (1.6 ± 0.5)% and that the S-wave (longitudinal) must cancel with the D-wave
to produce the net zero longitudinal branching ratio.
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D+
s → ρ+γ: The VMD amplitude for this decay proceeds via D+

s → φρ+

followed by φ-γ mixing. Although the branching ratio for D+
s → φρ+ is

known to be (6.5±1.6
1.8 %), no information on helicities or partial waves exists,

so we cannot apply the phenomenological method here. Turning instead to
the factorization approach of Eq. (64), we have X = V = φ and Y = M = ρ+.
Therefore we require the D+

s → φ semileptonic form factors evaluated at
q2
0 = m2

ρ. Although there is experimental information on these decays, the
branching fraction and the form factors depend strongly on BD+

s →φπ+, which
is still very uncertain. Thus, again making use of D → K∗ data, taking I = 1
and with a decay constant of gρ ≃ 0.17 GeV2, we find

Apv
VMD = 3.2 × 10−8 GeV−1 and Apc

VMD = 2.8 × 10−8 GeV−1 . (68)

The Cabibbo-favored VMD amplitudes are summarized in Table 9.

Table 9 Cabibbo-favored VMD Amplitudes

Mode |AVMD| (10−8 GeV−1)
Parity-conserving Parity-violating

D0 → K̄∗0γ 3.8 5.1-6.8
D+

s → ρ+γ 3.2 2.8

Singly Cabibbo-suppressed Modes

D0 → ρ0γ: This process can proceed via two different intermediate states,
namely ρ0φ and ρ0ρ0. There is one known branching ratio BD0→ρ0φ =
(1.9 ± 0.5) × 10−3 with no helicity (or partial wave) information. Letting
ηT be the transverse fraction of the observed branching ratio, ηS the S-wave
fraction in the transverse mode, and ηP the P -wave fraction, we then obtain
for the S-wave amplitude of D0 → ρ0φ,

aD0→ρ0φ = mD

√

4πΓD0→ρ0φηT ηS

|k| = 7 × 10−7√ηT ηS GeV , (69)

and for the corresponding P -wave,

bD0→ρ0φ

mφmρ
=

√

4πΓD0→ρ0φηT ηP

|k|3 = 1.46 × 10−6√ηT ηP GeV−1 , (70)
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where again we employ the notation of Ref. [3] in denoting bD0→ρ0φ as the
phenomenological P -wave amplitude for D0 → ρ0φ. Then, multiplying by
the VMD factor e/fφ, we obtain the Meth. 1 estimate

Apv
VMD = 0.60 × 10−8 GeV−1 and Apc

VMD = 1.0 × 10−8 GeV (71)

for ηT ∼ 0.5 and ηS ∼ 0.66. On the other hand, there is no available
experimental information for D0 → ρ0ρ0, other than BD0→π+π−π+π− = (8.3±
0.9) × 10−3 which can be taken as an upper limit. Let us also estimate the
D0 → ρ0γ mode in the factorization approach, which can be used to predict
both the off-shell amplitudes, D0 → ρ0φ and D0 → ρ0ρ0. In both cases we
need the D0 → ρ0 form factors, for which I = 1/2. Using Eq. (64) we obtain

Apv
VMD(ρ0φ → ρ0γ) = 0.22 × 10−8 Gev−1

Apc
VMD(ρ0φ → ρ0γ) = 0.18 × 10−8 Gev−1

Apv
VMD(ρ0ρ0 → ρ0γ) = 0.75 × 10−8 Gev−1

Apc
VMD(ρ0ρ0 → ρ0γ) ≃ 0 . (72)

Our estimate for the parity-conserving ρ0ρ0 → ρ0γ transition is based on the
observation that an on-shell P -wave ρ0ρ0 state is forbidden by Bose statistics
and hence the associated off-shell amplitude will be suppressed. First, let us
compare the first two rows in Eq. (72) with the results obtained in Eq. (71)
by making use of the ρ0φ data. We can see that the factorization amplitudes
are lower, as caused by smaller predictions for the nonleptonic intermediate
modes. In general, factorization predictions will be modified by FSI. For
instance, in the case at hand there could be a large enhancement due to
K∗K̄∗ → ρ0φ rescattering effects.[39] If this is the case, this effect strongly
depends on the kinematics and it is different in the off-shell nonleptonic am-
plitudes entering in the calculation of the VMD diagrams. The factorization
approach provides a prediction which is free from FSI effects. In these cases
we will take these two estimates as the allowed range. On the other hand,
factorization predicts that the ρ0ρ0 intermediate state provides most of the
VMD amplitude. When both intermediate states are taken into account in
the factorization estimate, the predictions of Eq. (71) and Eq. (72) roughly
agree. This will not be the case for the following mode.
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D0 → φγ: Now, there is only one nonleptonic intermediate state, φρ0.
The amplitudes as extracted from D0 → φρ0 data are

Apv
VMD =

e/fρ

e/fφ
Apv

VMD|D0→ρ0γ = 2.1 × 10−8 GeV−1 ,

Apc
VMD = 3.5 × 10−8 GeV−1 . (73)

On the other hand, factorization predicts the much smaller amplitudes

Apv
VMD = 0.7 × 10−8 GeV−1 and Apc

VMD = 0.6 × 10−8 GeV−1. (74)

Part of the difference between the predictions in Eq. (73) and Eq. (74) may
be due to the presence of FSI effects in the on-shell amplitude measured and
used in Eq. (73) and the assumed absence of FSI in Eq. (74). In Table 10 we
include both predictions as the allowed range.

D0 → ωγ: This mode is very similar to D0 → ρ0γ and we obtain from the
factorization approach of Meth. 2

Apv
VMD = 0.7 × 10−8 GeV−1 and Apc

VMD = 0.6 × 10−8 GeV−1 . (75)

D+ → ρ+γ: Here, the mode D+ → ρ+ρ0 should give the dominant contri-
bution to the VMD amplitude, implying the Meth. 2 amplitudes

Apc
VMD = 1.9 × 10−8 GeV−1 and Apv

VMD = 1.6 × 10−8 GeV−1 . (76)

Incidentally, the expectation for D+ → ρ+ρ0 is that its branching ratio should
be at least 0.4%.

D+
s → K∗+γ: Proceding analogously, we use the factorization estimate of

D+
s → K∗+ρ0 to express the VMD amplitudes for D+

s → K∗+γ as

Apv
VMD =

e

fρ

GF√
2

a2√
2
(mDs

+ mK∗)mρfρ

A1
mDs

Eγ , (77)

Apc
VMD =

m3
Ds

Eγ

mK∗mρ
Apv

VMD · 2

(mDs
+ mK∗)2

V

A1
.
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Upon taking the form factors to be identical to those in D+ → K̄∗0 in the
SU(3) limit, we have

Apv
VMD = 1.0 × 10−8 GeV−1 and Apc

VMD = 0.9 × 10−8 GeV−1 . (78)

Our VMD predictions for the magnitudes of the Cabibbo-suppressed tran-
sition amplitudes are summarized in Table 10.

Table 10 Cabibbo-suppressed VMD Amplitudes

Mode |AVMD| (10−8 GeV−1)
Parity-conserving Parity-violating

D+ → ρ+γ 1.6 1.9
D+

s → K∗+γ 0.9 1.0
D0 → ρ0γ 0.2 − 1.0 0.5 − 1.0
D0 → ω0γ 0.6 0.7
D0 → φ0γ 0.6 − 3.5 0.9 − 2.1

Doubly Cabibbo-Suppressed Modes

Finally, to estimate the size of the doubly Cabibbo-suppressed modes, we
consider the D+ → K∗+γ transition. Upon computing the amplitudes using
the factorization expression of Eq. (64), we obtain

Apv
VMD = 4.2 × 10−9 GeV−1 and Apc

VMD = 4.4 × 10−9 GeV−1 . (79)

Similarly, we find for the mode D0 → K∗0γ

Apv
VMD = 1.75× 10−9 GeV−1 and Apc

VMD = 1.83× 10−9 GeV−1 . (80)

5 Summary and Conclusions

The existing database for direct evidence of radiative D decays is meagre,
as has been shown in Table 1. However, interesting levels of experimental
sensitivity are currently being attained and we can anticipate the detection of
radiative signals in the not-too-distant future. Our motivation in undertaking
the study reported here has been to stimulate such experimental efforts.
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As shown here, weak radiative decays of charmed mesons are not domi-
nated by the short distance penguin diagrams of Figs. 1(a),1(c), but rather
by long distance processes involving nonperturbative strong interaction dy-
namics. From the standpoint of probing the inner workings of the Standard
Model, one might have naively hoped to use radiative charm decays in order
to observe the short distance process c → uγ. This would be in analogy
with radiative B-meson decay, where the amplitude is dominated by the
penguin transition b → sγ and receives a large enhancement from QCD ra-
diative corrections. By contrast, the corresponding c → uγ charm transition
is minuscule at lowest order and would require an unexpectedly large QCD
enhancement to become detectable. To our knowledge, the calculation per-
formed here of the QCD radiative correction to c → uγ is the first explicit
and detailed analysis of this system given in the literature. In addition, we
were able to employ U -spin arguments to clarify the role played by neutral,
flavor-changing operators such as ūcq̄q which contribute to the expanded
operator basis in the RG analysis. Our conclusion that the c → uγ QCD
radiative corrections are substantially larger than for b → sγ is due in part to
the large operator mixing at the lower renormalization scale associated with
the c-quark and in part to the disparate sizes of the Wilson coefficients at the
matching scale of the contributing operators. Nevertheless, the radiatively-
corrected c → uγ penguin transition remains extremely small. The main
sources of suppression are the small quark masses and also the CKM factors
|V ∗

cbVub|2 occurring in the numerator of the c → uγ branching fraction in
Eq. (26). In the Wolfenstein parameterization, with sin θc = λ, this CKM
dependence amounts to a λ10 suppression in decay rate.

On the other hand, we have shown in Sections 3 and 4 that long distance
contributions are several orders of magnitude larger. A very rough estimate
of the typical branching ratio to be expected is

BD→Mγ ∼ αemBnon−lept.
D→M , (81)

where Bnon−lept.
D→M is the branching ratio for the nonleptonic D decay to some

final state M . Thus, typical branching ratios of order Bnon−lept.
D→M ∼ (0.001 −

0.05) would induce radiative branching ratios in the range BD→Mγ ∼ (7 ×
10−6 → 4 × 10−4). In Sections 3 and 4 we have performed a more detailed
analysis by modeling the nonperturbative dynamics.

Inspecting the long distance contributions to the set of exclusive processes
D0 → ργ, D0 → ωγ, Ds → K∗+γ and D+ → ρ+γ for which c → uγ is
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the underlying transition, we see that the VMD and pole amplitudes carry a
single factor λ, therefore representing an enhancement of λ4 over the penguin
amplitude. As can be seen in Table 11 the expected branching fractions for
these modes are in the 10−6−10−4 range, whereas we estimate Bc→uγ ∼ 10−12.
As a consequence, c → uγ is not a good process to test the validity of the
Standard Model. That is, a hypothetical contribution from new physics
would have to be extremely large in order to overcome the long distance
physics.

The situation is very different in radiative B decays. The short distance
transition b → sγ has the same CKM structure as the corresponding long
distance contributions. For instance, the mode B → K∗γ might conceivably
have long distance contamination of the order of 20% in the rate [3]. Although
this is small compared to the charm case, it would be desirable to reduce the
uncertainty in the calculation of these effects in order to subtract them from
the measured signal. Moreover, long distance effects could also be affecting
the inclusive b → sγ branching ratio, therefore limiting the precision with
which the Standard Model can be tested in these decays.

The various amplitudes are summarized in Table 11 and are given there in
units of 10−8 GeV−1. In principle, the most conservative attitude is to take all
relative signs as unknown, which would render the calculation of branching
ratios highly uncertain. Fortunately, with the aid of the quark model we can
reduce this ambiguity. The relative sign of Pole-II to Pole-I contributions is
affected by (i) a minus sign difference in the pole denominators, (ii) an extra
minus sign in type-II amplitudes due to the vector meson propagator, and
(iii) minus sign differences in the V Pγ couplings between the c-quark and
light-quark EM sectors. In a quark description of a q1q̄2 meson, this latter
sign is inferred by studying

hV Pγ = e
(

q1

m1
+

q2

m2

)

. (82)

Although this line of reasoning narrows down the range of predictions sig-
nificantly, experimental data will be needed to obtain information regarding
the relative phase between the pole and VMD contributions. In this regard,
it will be helpful to note that, at least in our approach, the parity-violating
amplitudes arise solely from the VMD process.
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Table 11 Amplitude and Branching Fraction Predictions

Mode Apc Apv BD→Mγ (10−5)
P-I P-II VMD VMD

D+
s ρ+γ 8.2 −1.9 ±3.2 ±2.8 6 − 38

D0K̄∗0γ 5.6 −5.9 ±3.8 ±(5.1 − 6.8) 7 − 12
D+

s b+
1 γ 7.2 — — — ∼ 6.3

D+
s a+

1 γ 1.2 — — — ∼ 0.2
D+

s a+
2 γ 2.1 — — — ∼ 0.01

D+ρ+γ 1.3 −0.4 ±1.6 ±1.9 2 − 6
D+b+

1 γ 1.2 — — — ∼ 3.5
D+a+

1 γ 0.5 — — — ∼ 0.04
D+a+

2 γ 3.4 — — — ∼ 0.03
D+

s K∗+γ 2.8 −0.5 ±0.9 ±1.0 0.8 − 3
D+

s K∗+
2 γ 6.0 — — — ∼ 0.2

D0ρ0γ 0.5 −0.5 ±(0.2 − 1.0) ±(0.6 − 1.0) 0.1 − 0.5
D0ω0γ 0.6 −0.7 ±0.6 ±0.7 ≃ 0.2
D0φ0γ 0.7 −1.6 ±(0.6 − 3.5) ±(0.9 − 2.1) 0.1 − 3.4
D+K∗+γ 0.4 −0.1 ±0.4 ±0.4 0.1 − 0.3
D0K∗0γ 0.2 −0.3 ±0.2 ±0.2 ≃ 0.01

Finally, let us comment on the inclusive photon spectrum. In the B
system, the quark transition b → sγ provides a useful framework for pre-
dicting properties of the hadronic inclusivedecay B → Xsγ. Thus, one
estimates the B → Xsγ decay rate by computing the b → sγ decay rate
and normalizing relative to the semileptonic decays to eliminate undue de-
pendence on the mass mb. Likewise, one predicts the photon energy spec-
trum in B → Xsγ decay by referring to the underlying two-body b → sγ
decay.[40],[41] If quarks were free, there would be a monochromatic photon
spike at Eγ = (m2

b − m2
s)/2mb ≃ mb/2. In reality, the photon spectrum be-

comes broadened via hadronization of the s-quark jet. The individual strange
mesons (K∗(892), K1(1270), etc) which populate the inclusive final state Xs

originate predominantly from the s-quark jet hadronization. These explana-
tions of B → Xsγ inclusive decay are in accordance with the spectator model,
and so isospin symmetry should manifest itself event-by-event. For example,
the rates for isospin-related modes such as B0 → K∗0γ and B− → K∗−γ
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should be equal. A deviation from this pattern would constitute evidence for
either non-spectator or new-physics contributions. In a heavy-quark effec-
tive theory description, such non-spectator effects would occur at subleading
level.

The theoretical description of charm inclusive decay could hardly be more
different. Now, there is no emergent light-quark jet which hadronizes to form
the set of final states. Instead, the ‘black box’ of long-range effects such
as pole-amplitudes, VMD-amplitudes, etc dominates the physics. Thus, to
determine the photon energy spectrum in D → Xuγ, one would sum over
the most important of the exclusive radiative modes. Presumably this would
yield a reasonable description at least over the part of phase space where the
photon energy is largest. It would be prudent to be on the lookout for the
unexpected. For example, exclusive modes in light meson radiative decay are
known to exhibit rather large isospin-violating effects, as in

ΓK∗0→K0γ

ΓK∗+→K+γ

= 2.27 ± 0.30 and
Γρ0→π0γ

Γρ+→π+γ

= 1.76 ± 0.49 . (83)

If this effect were to be maintained mode by mode in the exclusive D decays,
it would lead to interesting levels of isospin violation in the inclusive decay.
Of our results, Table 11 indicates that the likeliest possibility for isospin
violation would appear to be in D0 → ρ0γ/D+ → ρ+γ.

Charm radiative decays give us the opportunity to study various aspects
of long distance dynamics. We have seen that the theoretical predictions of
the branching fractions are, in some cases, rather uncertain due to model
dependence. Experimental information will therefore be needed to complete
the theoretical picture of these decays. It is an interesting irony that the
understanding gained from future observation of different D radiative decays
can then be used to predict more confidently the size of such effects in B
decays.
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Appendix: VMD in Light-Meson Radiative Decay

The original application of VMD for analyzing hadronic radiative decays
occurred in the light meson sector.[42] In order to test the VMD method using
an up-to-date database, we too shall consider (briefly) light meson radiative
decays in this Appendix. As we shall see from our study of two particularly
clean examples, the situation is encouraging but not uniformly so. First, we
shall revisit the original arena for testing VMD, the ρ and ω decays into pion-
photon final states. Then we shall analyze decays of a higher mass state, the
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tensor meson A+
2 (1320). We stress that in each of these cases the transition

is purely electromagnetic, unlike the more complicated electroweak decays
treated in the main body of the paper. Therefore, the ‘pole’ amplitudes do
not occur here since there is no weak mixing, so one obtains a clean look at
the VMD contribution.

Radiative Decays of the Vector Mesons ρ and ω

There are three electromagnetic P -wave decays in the ρ – ω system,

ω → π0γ , ρ+ → π+γ and ρ0 → π0γ . (84)

In the VMD approach, these are described in terms of two electromagnetic
mixing amplitudes, ω–γ and ρ–γ, and one strong interaction vertex, gωρπ.

Due to the off-shell nature of the VMD amplitudes, different momentum
regions occur in the ωρπ vertex for the transitions of Eq. (84). In ω → πγ, the
intermediate ρ propagates at q2 = 0 whereas for ρ → πγ it is the intermediate
ω which propagates at q2 = 0. Part of the VMD folklore built up over the
years is that extrapolation of the light vector meson squared-momenta from
the meson mass-shell to the photon mass-shell does not strongly affect the
decay amplitude. The ratio of ρ and ω decay widths can be used to test this
as follows. Recall that for the VMD description of 1− → 0−γ transitions, the
strong vertex gωρπ is related to the decay width Γ via

gωρπ =

[

f

e

2

· 12πΓ

|q|3
]1/2

, (85)

where f → fρ for ω decay and f → fω for ρ decay. Noting that the decay
momenta in ω → πγ and ρ → πγ are almost equal, one has

∣

∣

∣

∣

fω

fρ

∣

∣

∣

∣

=

√

√

√

√

Γω→π0γ

Γρ+→π+γ

= 3.24 ± 0.19 , (86)

provided the same strong vertex is used in each decay. In the above, we have
used the charged-ρ decay width in view of its superior accuracy. The value
appearing in Eq. (86) is seen to be in accord with that inferred from vector
meson decay into lepton pairs (cf Table 1 of Ref. [3]),

∣

∣

∣

∣

fω

fρ

∣

∣

∣

∣

= 3.39 ± 0.10 . (87)

40



Alternatively, one can use each of these radiative decays to extract deter-
minations of gωρπ as in Eq. (85), and one finds

gωρπ =











(11.73 ± 0.35) GeV−1 (ω → π0γ)
(12.40 ± 0.64) GeV−1 (ρ+ → π+γ)
(16.40 ± 2.1) GeV−1 (ρ0 → π0γ) .

(88)

The ω → π0γ and ρ+ → π+γ determinations are seen to be consistent within
experimental error. This is significant because these decays involve different
momentum extrapolations as discussed above. The larger coupling obtained
from ρ0 → π0γ decay has substantially larger errors. We now turn to a
different transition in which, if one accepts the data at face value, a non-
negligible momentum dependence is present.

Decays of the Tensor Meson A+
2 (1320)

The meson A+
2 (1320) has been observed to decay into both the πρ and πγ

modes, with branching ratios

BA2→πρ = 0.701 ± 0.027 and BA2→πγ = (2.8 ± 0.6) · 10−3 . (89)

These data turn out to provide a particularly clean test of the VMD method
in two respects. First, there is just a single partial wave in the final state. As a
consequence, the decay rates alone can be used to test VMD without any need
for polarization information of the final state particles. The occurrence of a
single orbital angular momentum in the final state follows from conservation
of parity and of angular momentum. Thus we have

P : + = (−)2(−)L =⇒ L = 0, 2, 4, . . . (90)

J : |2| = |1 + L| =⇒ L = 1, 2, 3 (91)

which implies that L = 2. In addition, of the three light vector mesons ρ, ω, φ,
only the ρ can appear together with a pion in a final state of A2 decay. The
reason is that the decay A2 → π V (V is a vector meson) proceeds through
the strong interactions and conservation of G-parity forbids the πω and πφ
modes. Thus, the rho is the only light vector meson involved in the VMD
determination and interference with ω or φ mediated processes is absent.
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The amplitude for the transition A+
2 (p) → π(q)+ρ0(k) can be written as

Aπρ =
gπρ

m2
A

ǫµναβpµǫ
†
ν(k)qαhβσ(p)qσ , (92)

where gπρ is a dimensionless quantity and hβσ(p) is the spin-two polarization
tensor of the A2. From the decay rate relation,

ΓA+

2
→π+ρ0 =

g2
πρ

40π

q5
πρ

m4
A

, (93)

one determines a magnitude for the coupling gπρ. This can be used, in turn,
to predict the radiative coupling gπγ via the VMD formula

gVMD
πγ =

e

fρ
gπρ , (94)

and we find
gVMD

πγ = 1.99 ± 0.06 . (95)

Alternatively, it is possible to determine the pion-photon coupling directly.
Analogous to Eq. (92), we can write down a gauge-invariant photon-emission
transition,

Aπγ =
gπγ

m2
A

ǫµναβpµǫ
†
ν(k)qαhβσqσ . (96)

Fixing the coupling gπγ in terms of the decay rate

ΓA+

2
→π+γ =

g2
πγ

40π

q5
πγ

m4
A

, (97)

yields the value
gexpt

πγ = 0.98 ± 0.11 . (98)

Thus, one obtains a factor-of-2 discrepancy between the empirical ampli-
tude and the VMD prediction, with the VMD value being the larger. Several
possible explanations for the lack of agreement come to mind. Although
the radiative branching ratio given in Eq. (89) has reasonably small error
bars, the signal is based on only one experiment. Alternatively, there may
be unexpectedly large momentum dependence in the A2πρ vertex. Thus, as
one proceeds from the rho mass-shell (k2 = m2

ρ) to the photon mass-shell
(k2 = 0), a ’softening’ might occur in the VMD estimate. However, to our
knowledge there is no previous evidence for such momentum dependence for
the ρ extrapolation.
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