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1. Introduction

The calculation of the electromagnetic mass differences of pions and kaons has
recently been quite an active topic [1]-[5] in the field of chiral perturbation studies.
This is partially due to the interest in the values of the light quark mass ratios, for
which we need to be able to separate electromagnetic from quark mass effects [6]-[8].
The realization that Dashen’s theorem [9], relating pion and kaon electromagnetic
mass differences in the limit of vanishing mu, md, ms, could be significantly violated
in the real world [3, 4, 5, 10] has added to the importance of a direct calculation of
these electromagnetic effects. Moreover these calculations have an intrinsic interest
as state of the art investigations of our ability to handle new types of chiral calcu-
lations. The classic studies of chiral perturbation theory [11, 12] are being extended
to calculations where one must obtain more detailed information of the intermediate
energy region using dispersion relations (or sometimes models). The electromagnetic
mass differences are nonleptonic amplitudes which are a challenge to calculate in a
controlled fashion. It is our goal in this paper to calculate these mass differences as
well as we can at present.

Our tool is the Cottingham method for calculating electromagnetic mass differ-
ences. As explained more fully in Section 3, this converts the mass differences ampli-
tude into a dispersion integral over the amplitudes for γπ inelastic scattering. As we
learned in the 1970’s from the study of γp inelastic scattering, the physics of such a
process is reasonably simple. The elastic scattering is well known. At low energies,
one sees the inelastic production of the low lying resonances. In our study we take
these resonances and their coupling constants from experimental data. At high ener-
gies one enters the deep inelastic region for which perturbative QCD can be used. It
turns out that in the pion mass difference the deep inelastic region cancels out both
at zeroth and first order in the quark masses. This leaves the mass differences to be
dominated by the lower energy region.

There are a series of constraints on the calculation which are important for giving
us control over our method and results. The most important of these are:

1. There exists a rigorous result for these mass differences, exact in the limit that
mq → 0, (q = u, d) which states that in this chiral limit the pion mass difference
is

∆m2
π = − 3α

4πF 2
π

∫

dsslns(ρV (s) − ρA(s)) , (1)

where ρV (s) and ρA(s) are the vector and axial vector spectral functions mea-
sured in e+e− annihilation and in τ decays [13]. This is a powerful constraint
because it requires that the full calculation differ from this only by terms of or-
der m2

π or higher, and must reduce to this as m2
π → 0. Many of these deviations

are kinematic in origin and hence are well tied down by this constraint.
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2. Dashen’s theorem states that in an SU(3) extensions of this same limit mq =
0, q = u, d, s) that the kaon mass difference is equal to the pion mass difference.
This means that similar physics enters both amplitudes and one is able to focus
more directly on SU(3) breaking.

3. The low energy structure of the Compton amplitudes γπ → γπ and γK → γK
are known rigorously from chiral perturbation theory [14]-[17] and the process
in the crossed channel γγ → ππ matches well with experiment [17].

4. QCD gives us important information about the high energy behavior of the
dispersive integral, with the result that ∆m2

π is finite up to order m2
q, while

∆m2
K has at most a logarithmic divergence at order mq, which is to be absorbed

into the u, d quark masses. This is very useful in pinning down the high energy
parts of the calculation.

5. The medium energy intermediate states are known directly from experiment.
This region is the most difficult to control purely theoretically, and so we rely
on experimental data to overcome our inability to provide a first-principles
theoretical calculation.

These properties are important ingredients for the reliability of our method. While
there are still some approximations and educated guesses involved in the matching
up of the various regions of the calculation, this method is more than just another
model and represents the real world as well as is possible in analytic calculations at
present.

While we estimate that our uncertainty is about 10% for pions, and 20% for kaons,
our calculated value for the pion mass difference agrees excellently with experiment
(∆mth

π = 4.54 ± 0.50 MeV vs. ∆mexpt
π = 4.60 MeV). In the case of kaons, our

calculated value is ∆mth
K = 2.6 ± 0.6 MeV, indicating a strong breaking of Dashen’s

theorem (∆mDT
K = 1.3MeV ) in agreement with many other recent works [3]-[5].

In the next section, we briefly review the physics and history of the calculations
of electromagnetic mass differences. Section 3 presents the basics of the Cottingham
method, while Section 4 describes our application of it to the pion mass difference.
The kaon mass difference is studied in Section 5, and we summarize our findings in
Section 6.

2. Review of the Problem

The mass differences of kaons and pions

∆mexpt
π ≡ mπ± − mπ0 = 4.5936 ± 0.0005 MeV ,

∆mexpt
K ≡ mK± − mK0 = −3.995 ± 0.0034 MeV , (2)

or
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∆m2
π = 2m(avg)

π ∆mπ = (1.2612 ± 0.0001) 10−3 GeV2 ,

∆m2
K = 2m

(avg)
K ∆mK = (−3.9604 ± 0.0035) 10−3 GeV2 , (3)

where m
(avg)
K,π ≡ 1

2
(m(K,π)± + m(K,π)0), are due to two sources: quark masses and

electromagnetic interactions. The difference in mass of the up and down quarks
can produce isospin breaking in hadron masses. However, because the quark mass
splitting is ∆I = 1 and the pion mass difference is only sensitive to ∆I = 2 effects,
the pion mass difference only receives contributions of second order, i.e., (md −mu)

2.
In fact the leading effect of this order is calculable in chiral perturbation theory

∆m2
π

)

QM
=

1

4

(mu − md)
2

(mu + md)(ms − m̂)
m2

π± , (4)

and is quite small. To the level of our approximations we will neglect this quark
mass effect and treat the pion mass difference as purely electromagnetic. The kaon
mass difference, on the other hand, does receive an important contribution linear in
md − mu

∆m2
K

)

QM
=

mu − md

mu + md

m2
π + O

(

(mu − md)
2
)

. (5)

This relation is one of the primary sources of information on quark mass ratios. For
it to be useful we need to known how much of the kaon mass difference is due to
electromagnetic interactions.

We have one handle on the electromagnetic mass differences which comes purely
from symmetry considerations. The electromagnetic interaction explicitly violates
chiral SU(3) symmetry, and its effect can be described within the chiral energy ex-
pansion. At lowest order, which is order p0, the unique effective Lagrangian with the
right symmetry breaking properties is

L0 = gEM Tr(QUQU+) . (6)

This Lagrangian produces no shift in the masses of neutral mesons and equal shifts
for π+ and K+, so that it results in

∆m2
π = ∆m2

K . (7)

This equality is known in the literature as Dashen’s theorem [9]. It is valid in the
limit of vanishing quark masses (u, d and s) and hence of massless pions and kaons.
There are a large number of effective Lagrangians possible with extra derivatives
and/or factors of the quark masses, so that Dashen’s theorem will receive corrections
of order ms or equivalently of order m2

K [18]. Unfortunately the coefficients of the
higher order Lagrangians are not known, so that one cannot obtain the corrections
to Dashen’s theorem from symmetry considerations. A direct calculation is required.

In order to obtain the electromagnetic mass shifts, one must calculate
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δm2 =
ie2

2

∫

d4x〈π(p) |TJµ(x)Jν(0)|π(p)〉Dµν
F (x) (8)

as in Figure 1.

Figure 1: Electromagnetic self-energy.

In momentum space this is

δm2 =
ie2

2

∫

d4q

(2π)4

gµνTµν(q
2, p · q)

q2 + iǫ
, (9)

where

Tµν(q
2, p · q) = i

∫

d4xe−iq·x〈π(p) |TJµ(x)Jν(0)|π(p)〉 . (10)

This calculation is different from standard calculations within chiral perturbation
theory, because we need to be able to explicitly calculate (and not just parametrize)
the medium energy and high energy contributions.

There are a few things that we know rigorously about the calculation. Within
QCD, the high energy renormalization of a quark mass involves a logarithmic di-
vergence which is proportional to the quark mass itself. Therefore the pion mass
difference can pick up divergence’s only proportional to the second power of the
quark masses, which will go into defining renormalized masses in Eq. (4). In our
approximation, or more strictly in the chiral limit, the pion electromagnetic mass
difference is finite. For the kaon there may appear a divergence of order αmu or αmd,
i.e., suppressed by one power of the light quark masses. This goes into a renormal-
ization of the quark masses in Eq. (5). In principle there is an ambiguity about
how much of the electromagnetic interaction goes into the renormalized values of the
quark masses. This can only be solved by a precise renormalization condition which
defines the renormalized quark masses. However because this ambiguity is propor-
tional to αmu and αmd, while the kaon mass difference needs only one factor of α or

(md − mu), this ambiguity is tiny and is far below the sensitivity of our calculation.
The earliest attempts at explicit calculations (Riazuddin [19] and Socolow [20])

appeared plausible but can now be recognized as mistreating the chiral portions of
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the calculation. The earliest valid method, and still a remarkably beautiful result,
came in the work of Das et. al. [21]. Here soft pion theorems were used to turn the
matrix element of Eq. (10) into a vacuum polarization function, which in turn can be
written as a dispersion relation in terms of the spectral functions of the vector and
axial vector currents, yielding the formula quoted in Eq. (1). Since QCD satisfies the
chiral and high energy properties assumed in the original derivations, this remains an
exact statement of QCD in the limit mu = md = 0. The original authors saturated
the spectral functions by a single vector and axial vector pole satisfying the Weinberg
sum rules [22], leading to a remarkably good value ∆mDas

π = 5.0 MeV. More recently
this sum rule has been explored using the measured spectral functions from e+e−

annihilation and τ decay, plus QCD constraints [13]. These show that the physics
of the pion mass difference is remarkably simple in the chiral limit with the most
important effects being those of the lightest resonance contributions. The Das et.
al. calculation remains a benchmark for other calculations and will be an important
constraint on our work.

Through the experience of the past decade of studies of chiral perturbation theory,
we have gained some insight into the physics of intermediate energies. This lead to
model attempts to calculate electromagnetic mass differences [5]. These calculations
showed a large breaking (up to a factor of 2) of Dashen’s theorem due to mass effects.
To a large extent the violation of Dashen’s theorem has a simple kinematic origin in
the pseudoscalar propagators of the one loop diagram.1 Lattice simulations have also
recently started to be applied to this problem. They also see a significant violation
of Dashen’s theorem, ( ∆mK = 1.9 MeV ) [10].

3. The Cottingham method and meson mass shift

The nonleptonic matrix element which we must calculate is given in Eq. (10). If
we decompose the Compton amplitude in terms of gauge invariant tensors, we can
define

Tµν(q
2, p · q) = D1µνT1(q

2, p · q) + D2µνT2(q
2, p · q) ,

D1µν = −gµν +
qµqν

q2
,

D2µν =
1

p2

(

pµ − p · q
q2

qµ

) (

pν −
p · q
q2

qν

)

. (11)

We have used the standard definitions for these tensors. Note that in the soft-pion
limit, i.e. pµ → 0, the combination D2µνT2 vanishes as we will see in the following
section.

1Ref. [5] has an error in one of the mass effects, as described later. We disagree with the
methodology of a paper which attempted to correct this problem [2], and agree with the critique of
[2] which is contained in [4].
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A first step consists of a rotation in the complex plane and a change of variables.
We work in the pion rest frame, p ·q = mπq0. Since the singularities in Tµν are located
just below the positive real axis and above the negative real axis in the complex q0

plane, the integration over q0 may be rotated to the imaginary axis, q0 → iq0, without
encountering any singularities. After this transformation the integral involves only
spacelike moments for photons, i.e., q2 ≡ −Q2 = − (q2

0 + ~q 2), and the mass shift
becomes

δm2 =
e2

2

∫

d3~q dq0

(2π)4

gµνTµν(~q, iq0)

q2
0 + ~q 2

. (12)

A change of variables from (~q, q0) to (Q2, ν), where ν = mπq0, involves

∫

d3~q dq0 = 2π
∫ ∞

0
dQ2

∫ −mπQ

mπQ

dν

m2
π

√

m2
πQ

2 − ν2 , (13)

which converts the mass shift to

δm2 =
e2

16π3

∫ ∞

0
dQ2

∫ mπQ

−mπQ

dν

m2
π

√

m2
πQ2 − ν2

Q2
gµνTµν(−Q2, iν)

=
e2

16π3

∫ ∞

0
dQ2

∫ mπQ

−mπQ

dν

m2
π

√

m2
πQ2 − ν2

Q2

+

[

−3T1(−Q2, iν) +

(

1 − ν2

m2
πQ

2

)

T2(−Q2, iν)

]

. (14)

This has reduced the mass shift to an integral over the forward Compton scattering
amplitude for space-like photons.

The reduced Compton amplitudes T1 and T2 are presently required to be evalu-
ated at imaginary momenta, iν. However they can be written in terms of physical
amplitudes via dispersion relations. The Compton amplitudes are known to obey
dispersion relations in the ν variable with that for T1 requiring one subtraction.

T1(q
2, ν) = T1(q

2, 0) +
ν2

π

∫ ∞

0

dν ′2

ν ′2

ImT1(q
2, ν ′)

ν ′2 − ν2
,

T2(q
2, ν) =

1

π

∫ ∞

0
dν ′2 ImT2(q

2, ν ′)

ν ′2 − ν2
. (15)

The imaginary part of the forward scattering amplitudes ImTi are defined as
electron scattering structure functions

1

π
ImTi(−Q2, ν) = Wi(−Q2, ν) , for i = 1, 2 . (16)

After employing these dispersion relations, the integral over ν can be done explicitly
with the result

6



∆m2 =
α

4π

∫ ∞

0

dQ2

Q2

{

−3

2
Q2T1(−Q2, 0)

+ 3Q2
∫ ∞

0

dν ′2

ν ′2
W1(−Q2, ν ′) Λ1

(

ν ′2

m2
πQ2

)

+
∫ ∞

0

dν ′2

m2
π

W2(−Q2, ν ′)Λ2

(

ν ′2

m2
πQ

2

)}

, (17)

where

Λ1(y) ≡ 1

2
+ y − y

√

1 +
1

y
,

Λ2(y) ≡ −3

2
− y + (1 + y)

√

1 +
1

y
. (18)

These manipulations have transformed the mass shifts into integrals over the structure
functions in the physical region, as well as the subtraction term T1(−Q2, 0). The
(Q2, ν) plane is shown in Fig. 3.1, as is the physical region where Wi 6= 0.

4. The pion EM mass difference

In this section, we describe the details of the calculation of the electromagnetic
mass difference of the pion. The exact result of the Das et al. [21] calculation
in the chiral limit involves the difference of spectral functions ρV (s) − ρA(s). This
difference is entirely determined by the leading vector and axial-vector resonances.
Therefore, our first step is to study the low energy chiral amplitudes supplemented
by the interactions of vector and axial-vector resonances. These have been previously
studied in a model field theoretic calculation [5]. We correct a technical mistake in
that work (which was also noted in [2]), and transform the results into our dispersive
framework. This allows us to show how the Cottingham method merges with the
chiral limit result of Das et al. as mπ → 0.

We subsequently generalize the calculation by treating the resonances more real-
istically and adding in other ingredients to the amplitude. The former improvement
involves the replacement of the “narrow-width” treatment of the resonances, which
occurs in any field theoretic treatment, by spectral functions which account for the
energy variation and width of the resonances. To complete the ingredients to the
calculation, we add resonance transitions not accounted for previously and also the
deep inelastic continuum. The resonance couplings follow from experiment, and their
presence in the Compton amplitude is confirmed by the comparison of theory and ex-
periment in γγ → π0π0 [14, 15, 17, 23]. The deep inelastic region cancels in the mass
difference to the order that we are working, so that we include only a few comments
on the matching of low and high energies.
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Lagrangian with spin-1 resonances

Our starting point for calculating the pion Compton scattering amplitude is a
Lagrangian which includes O(E2) chiral terms and O(E4) vector (JPC = 1−−) and
axial-vector (JPC = 1++) couplings, introduced by Ecker et al. [24, 25]. This La-
grangian provides an accurate description at low and medium energies (up to ∼ 1
GeV).

L = −1

4
FµνF

µν +
F 2

π

4
Tr
(

DµUDµU † + χU † + χ†U
)

−1

2
Tr
(

∇λVλν∇νV
νµ − 1

2
M2

V V µνVµν

)

+
FV

2
√

2
Tr (Vµνf

µν
+ ) +

iGV√
2

Tr (Vµνu
µuν)

−1

2
Tr
(

∇λAλν∇νA
νµ − 1

2
M2

AAµνAµν

)

+
FA

2
√

2
Tr (Aµνf

µν
− ) , (19)

The notation is defined in the appendix. The relevant terms after expanding the
above Lagrangian in terms of pion, photon and spin-1 resonance fields are

L = ieAµ(π+∂µπ− − π−∂µπ+) + e2AµAµπ
+π−

−eFV

2
F µνρ0

µν

(

1 − π+π−

F 2
π

)

+
iGV

F 2
π

ρ0
µν(∂

µπ+∂νπ− + ∂µπ−∂νπ+)

−2eGV

F 2
π

Aµρ0
µν(π

+∂νπ− + π−∂νπ+)

−ieFA

2Fπ

F µν
(

a−
1µν

π+ − a+
1µν

π−
)

. (20)

The Feynman diagrams which contribute to the pion Compton scattering ampli-
tude, given by the above Lagrangian, are shown in Fig. 2. It is convenient to classify
these diagrams in three groups, which correspond with three gauge invariant terms
of the amplitude.

The first term encloses the contribution given by Fig. 2.a, and Fig. 2.b,

T (1)
µν (q2, p·q) = − 2 D1µν

+ 4m2
π|Gπ(q

2)|2
(

1

m2
π − (p + q)2 − iǫ

+
1

m2
π − (p − q)2 − iǫ

)

D2µν ,

(21)

8



(a)

(b)

(c)

(d)

(e)

Figure 2: Compton scattering diagrams for the meson resonances. (a) Elastic diagram.
(b) Pseudoscalar seagull diagram. (c) Vector resonance seagull diagram. (d) Axial-vector
resonance intermediate state diagram. (e) Pion form factor diagrams.
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where we have used the vector resonance dominance approximation in the pion form
factor, i.e.,

FV GV

F 2
π

= 1 . (22)

This is equivalent to saturating the pion form factor with the rho meson resonance,

Gπ(q2) =
m2

ρ

m2
ρ − q2

. (23)

The second term, which we call the vector seagull, is given in Fig. 2.c. It differs
from the pseudoscalar seagull because one of the photon lines interacts through a
vector resonance,

T (2)
µν (q2, p·q) = − 2

F 2
V

F 2
π

q2

m2
ρ − q2

D1µν . (24)

The third group, due to the axial-vector intermediate state, given by the diagrams in
Fig. 2.d is

T (3)
µν (q2, p·q) =

F 2
A

F 2
πm2

A

(

(p·q + q2)
2
+ q2 (m2

A − (p + q)2)

m2
A − (p + q)2 − iǫ

+
(p·q − q2)

2
+ q2 (m2

A − (p − q)2)

m2
A − (p − q)2 − iǫ

)

D1µν

+
F 2

A

F 2
πm2

A

(

−m2
πq2

m2
A − (p + q)2 − iǫ

+
−m2

πq2

m2
A − (p − q)2 − iǫ

)

D2µν .

(25)

The numerical values that we use for the parameters involved in the previous five
equations are

mπ = mπ± = 0.13956995 ± 0.00000035 GeV ,

Fπ = 0.0924 ± 0.0003 GeV ,

mV = 0.7699 ± 0.0008 GeV and

FV = 0.1529 ± 0.0036 GeV . (26)

For the numerical results in the soft-pion limit, we use the axial-vector resonance
parameters, mA, and FA, obtained by the Weinberg sum rules [22] in the narrow-
width approximation,

10



F
(WSR)
A =

√

F 2
V − F 2

π = 0.1218 ± 0.0045 GeV ,

m
(WSR)
A =

FV mV

FA

= 0.9664 ± 0.0427 GeV . (27)

The p2 corrections to the final mA, and FA which we use in our final numerical answer
at the end of this section, even though necessary to cancel divergences, are minimal
and also have a minute effect on the numerical results for ∆mπ.

Beyond the narrow-width approximation

The above analysis utilizes zero-width ρ and a1 resonances. This “narrow-width”
approximation is a poor description for these resonances since they are not particu-
larly narrow, especially the a1. The full resonance spectrum can be taken into account
by employing the spectral function - Källen-Lehmann - representation [26, 27]. Fur-
thermore, this representation includes the effect of higher mass resonances with the
same quantum numbers such as ρ′’s in the vector case. The spectral function represen-
tation of these resonances generalizes the spin-1 resonance propagators encountered
in the Compton scattering amplitudes, T (i)

µν (q2, p · q), (for i = 1 to 3) given above,

1

m2 − q2 − iǫ
→
∫

ds
ρR(s)

s − q2 − iǫ
. (28)

The sum of the three terms, equations (21, 24, 25), of the pion forward Compton
scattering amplitude in the spectral function representation reads

Tµν(q
2, p·q) = D1µν

{

−2 − 2

F 2
π

∫ ∞

0
dsρR

V (s)
q2

s − q2

+
1

F 2
π

∫ ∞

0
ds

ρR
A(s)

s

(

(p·q + q2)
2
+ q2 (s − (p + q)2)

s − (p + q)2 − iǫ
+ (q → −q)

)}

+ D2µν

{

4m2
π|Gπ(q2)|2

(

1

m2
π − (p + q)2 − iǫ

+ (q → −q)

)

+
1

F 2
π

∫ ∞

0
ds

ρR
A(s)

s

(

−m2
πq2

s − (p + q)2 − iǫ
+ (q → −q)

)}

. (29)

The narrow-width result can be readily reproduced by letting,

ρR(NW )

V,A (s) = F 2
V,Aδ(s − m2

V,A) , (30)

where the values for FV , FA, mV and mA are given in Eqs. (26, 27).

The Cottingham approach
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Since we have a complete form for the Compton Scattering amplitude we could
directly calculate the pion EM mass difference with Eq. (9), avoiding the Cottingham
method altogether. Nevertheless, the Cottingham method [28] allows us to gain
control and insight into the calculation. This method requires the break down of the
scattering amplitude into subtraction and structure functions terms, which are easily
extracted from Eq. (29),

T1(−Q2, 0) = −2 +
2

F 2
π

∫ ∞

0
dsρR

V (s)
Q2

s + Q2

− 2

F 2
π

∫ ∞

0
dsρR

A(s)
Q2

s − p2 + Q2

(

1 − p2

s

)

,

W1(−Q2, ν) =
1

F 2
π

∫ ∞

0
ds

ρR
A(s)

s
(ν − Q2)2 δ(s − p2 + Q2 − 2ν) ,

W2(−Q2, ν) = 4m2
π

(

m2
ρ

m2
ρ + Q2

)2

δ(Q2 − 2ν)

+
1

F 2
π

∫ ∞

0
ds

ρR
A(s)

s
p2Q2 δ(s − p2 + Q2 − 2ν) , (31)

Before we describe each of these terms in detail, it is useful to be more familiar
with their domain in the (ν, Q2) plane. The subtraction term is the value of T1 along
the negative Q2 axis. The structure functions are limited by kinematics to a sector
of the first quadrant, their domain is better understood if we introduce the Bjorken
scaling variable, x = Q2

2ν
. The allowed kinematic ranges for the variables involved are:

0 ≤ Q2 ≤ ∞ ; c ≤ ν ≤ ∞ ; and 0 ≤ x ≤ 1 , where c =
Q2

2
. (32)

The domain of both structure functions in the (ν, Q2) plane, covers the area in
the first quadrant which lies between the positive ν axis (x = 0) and the elastic line,
(x = 1). This is the unshaded region shown in Fig. 3 for pion kinematics. Within this
sector, the figure shows other lines of constant-x which help describe the structure
functions in the scaling region. It also shows two lines of constant s = m2

R which mark
the region where the resonant intermediate states are the dominant contribution.

The scaling region for nucleons is the region above Q2 ∼ 1 GeV. It is described
by perturbative QCD. The relevant degrees of freedom are quarks and gluons, and
the structure functions are described in terms of quark distribution functions, which
depend only on x if we neglect logarithmic deviations. In this approximation, the
structure functions are constant along the constant-x lines.

The resonance region in the (ν, Q2) plane is described by the two dashed lines
parallel to the elastic or x = 1 line. These lines satisfy the equation for constant
squared invariant mass of intermediate resonant states,

M2
R = (p + q)2 = p2 + 2ν − Q2 . (33)

12
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Figure 3: (ν, Q2) plane. Units in GeV 2. Unshaded region is the domain of the structure
functions. Solid lines are for x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. Dashed lines are for M2

R =
1.6 and 3.2 GeV 2.

Since the graph is for pion values we choose the a1 as the first resonance, ma1 = 1.26
GeV. We also include a second resonance with mass mR =

√
2 ma1 in order to show

the position of possible higher resonances.
This resonance region is described by chiral Lagrangians which include spin-1

resonances such as Eq. (19), [24, 25]. The structure functions obtained through
the chiral Lagrangians in the narrow-width approximation are constrained to the
elastic line, the a1 line, plus other parallel lines corresponding to possible higher
resonances. If we include a finite width for the resonances, these lines become bands
whose thickness is proportional to the resonance width.

The usefulness of applying the Cottingham method arises from the breakdown of
the scattering amplitude into the three terms shown in Eq. (31). We gain control
because we can make reasonable assumptions and establish constraints on the pion
structure functions. At the same time, it is possible to relate the subtraction term to
the soft-pion limit.

All of the resonances couplings will contain form-factors which suppress the effect
of an individual resonance as Q2 → ∞. We will assume that the fall-off of all such
photon form-factors will involve a scale which is a typical vector meson mass. We now
turn to the procedure to introduce these form-factors in our dispersive framework.
This has a subtlety in that some naive structures for this form-factor could upset
the soft-pion limits in our formulas. We will chose a form which is well behaved in
the soft-pion limit. The form-factor also solves what would appear to be a problem
in the present inclusion of resonances, i.e. the structure function W1(Q

2, ν) given in
Eq. (31) has terms proportional to ν2 and Q4 which would generate divergences for
large Q2. This is does not occur in the presence of the form-factors. This divergent
behavior is clear if we calculate W1(Q

2, ν) along the lines of constant s = m2
R . We

use the delta function to eliminate the ν dependence, i.e., ν = 1
2
(s − p2 + Q2) , to

obtain

W
(cst s)
1 (Q2, ν) =

1

F 2
π

ρR
A(s)

s

1

4
(s − p2 − Q2)2 , (34)
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which diverges as Q4. A structure function for a given resonant state cannot diverge
for large Q2 without violating unitarity. For a single resonance, as it is the case
in question, the structure function must go to zero if we follow a line of constant
invariant mass, s, to high energies. In order to achieve this behavior, we introduce a
multiplicative factor which forces its convergence. This factor, K(ν, s) resembles the
form factor obtained for the elastic term through the vector meson dominance model.
In addition, it has the following properties,

K(ν = 0, s) = 1 ,

lim
Q2→∞

K(ν, s)(cst. s) ∼ 1

Q6
,

[

K(ν, s)(cst. s)
]

Q2=0
= 1 . (35)

These properties ensure that the subtraction term is left unchanged, and that the
structure function will converge for large Q2. The form factor is normalized in order
to agree with the previous result at Q2 = 0 for fixed s. The form factor that satisfies
these conditions is

K(ν, s) =

(

m2
V

m2
V + 2ν

)4 (

1 + η
2ν

s

)

, (36)

where

η =
s

s − p2





(

1 +
s − p2

m2
V

)4

− 1



 , (37)

and p2 = m2
π . We have chosen the appropriate value for the vector meson mass,

mV = mρ . The factor K(ν, s) above, also has the property of being very close to the
ρ contribution to the pion EM form factor for s = p2, as it can be seen in Fig. 4.

The inclusion of this factor in our analysis is easily achieved through the substi-
tution

ρR
A(s) → ρR

A(s) K(ν, s) . (38)

The structure functions and subtraction terms read

T1(−Q2, 0) = −2 +
2

F 2
π

∫ ∞

0
dsρR

V (s)
Q2

s + Q2

− 2

F 2
π

∫ ∞

0
dsρR

A(s)
Q2

s − p2 + Q2

(

1 − p2

s

)

,

W1(−Q2, ν) =
1

F 2
π

∫ ∞

0
ds

ρR
A(s)

s
K(ν, s) (ν − Q2)2 δ(s − p2 + Q2 − 2ν) ,
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Figure 4: Factor K(ν, s) and pion EM form factor. Pion EM form factor, solid line.
K(ν, m2

π), dashed line. K(ν, 1 GeV2), dash-dotted line. K(ν, 2 GeV2), dotted line.
Horizontal scale represents Q2 in GeV2.

W2(−Q2, ν) = 4m2
π

(

m2
ρ

m2
ρ + Q2

)2

δ(Q2 − 2ν)

+
1

F 2
π

∫ ∞

0
ds

ρR
A(s)

s
K(ν, s) p2Q2 δ(s − p2 + Q2 − 2ν) . (39)

The pion EM mass difference for the above functions is readily obtained with
Eq. (17). We choose to break it into terms corresponding to those shown in the above
equation with an extra subdivision of the W2 contribution which isolates the elastic
term

∆m2
π(Subtr.) =

α

4π

∫ ∞

0
dQ2 3

F 2
π

[

F 2
π −

∫ ∞

0
dsρR

V (s)
Q2

s + Q2

+
∫ ∞

0
dsρR

A(s)
Q2

s − p2 + Q2

(

1 − p2

s

)]

,

∆m2
π(W1) =

α

4π

∫ ∞

0
dQ2 6

F 2
π

∫ ∞

0
ds

ρR
A(s)

s

1

∆2

(

∆2

2
− Q2

)2

Λ1

(

∆4

4p2Q2

)

K

(

∆2

2
, s

)

,

∆m2
π(Elast.) =

α

4π

∫ ∞

0
dQ2

(

m2
ρ

m2
ρ + Q2

)2

Λ2

(

Q2

4p2

)

,

∆m2
π(W2) =

α

4π

∫ ∞

0
dQ2 1

2F 2
π

∫ ∞

0
ds

ρR
A(s)

s
∆2 Λ2

(

∆4

4p2Q2

)

K

(

∆2

2
, s

)

, (40)

where ∆2 = s − p2 + Q2, and Λi(y) (for i = 1, 2 ) are defined in Eq. (18).

High energy constraints

Even though, we can obtain an explicit formula for the pion EM mass difference
by adding all the contributions in Eqs. (40), it is necessary to analyze the upper limit
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of the Q2 integral. Adding all the different contributions in Eqs. (40), and expanding
the Q2 integrand in powers of 1/Q2n, we obtain,

−
(

3α

4πF 2
π

) [

−F 2
π +

∫ ∞

0
ds

[

ρR
V (s) − ρR

A(s)

(

1 − p2

s

)]]

1

Q0

+

(

3α

4πF 2
π

)

∫ ∞

0
ds s



ρR
V (s) − ρR

A(s)

(

1 − p2

s

)2




1

Q2
+ O

(

1

Q4

)

, (41)

where, p2 = m2
π. If the first two terms are not zero, they originate linear and loga-

rithmic divergences respectively. In order to obtain a finite pion EM mass difference
we cancel them explicitly generating two constraint equations,

∫ ∞

0
ds

[

ρR
V (s) − ρR

A(s)

(

1 − p2

s

)]

= F 2
π , (42)

∫ ∞

0
ds s

[

ρR
V (s) − ρR

A(s)

(

1 − 2
p2

s
+

p4

s2

)]

= 0 . (43)

These high Q2 constraints become the Weinberg sum rules in the soft pion limit,
which in the above equations is obtained by letting p2 = 0. We will see later a more
detailed explanation of this limit and its relation to the subtraction term.

Due to the introduction of the convergence factor K(ν, s), the above divergences
originate only from the subtraction term. We incorporate the high Q2 constraints in
the subtraction term of the pion EM mass difference Eq. (40) in order to make all
the contributions finite. The following procedure removes both divergences.

Subtract the linear divergence from the subtraction term by means of Eq. (42),

∆m2
π(Subtr.) =

α

4π

∫ ∞

0
dQ2 3

F 2
π

{

F 2
π −

∫ ∞

0
dsρR

V (s)
Q2

s + Q2

+
∫ ∞

0
dsρR

A(s)
Q2

s − p2 + Q2

(

1 − p2

s

)

−
[

F 2
π −

∫ ∞

0
dsρR

V (s) +
∫ ∞

0
dsρR

A(s)

(

1 − p2

s

)]}

=
α

4π

∫ ∞

0
dQ2 3

F 2
π

{

∫ ∞

0
dsρR

V (s)
s

s + Q2

−
∫ ∞

0
dsρR

A(s)
s − p2

s − p2 + Q2

(

1 − p2

s

)}

. (44)

Integrate over Q2 and cancel the correspondent logarithmic divergence by subtracting
Eq. (43) multiplied by ln ΛQ2 ,
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∆m2
π(Subtr.) =

lim
ΛQ2→∞

α

4π

3

F 2
π

{∫ ∞

0
dssρR

V (s) ln
ΛQ2 + s

s

−
∫ ∞

0
dsρR

A(s)(s − p2)

(

1 − p2

s

)

ln
ΛQ2 + s − p2

s − p2

−
[∫ ∞

0
dssρR

V (s) lnΛQ2 −
∫ ∞

0
dsρR

A(s)(s − p2)2 ln ΛQ2

]}

.

(45)

Add the terms and take the limit ΛQ2 → ∞, to obtain

∆m2
π(Subtr.) =

− α

4π

3

F 2
π

∫ ∞

0
ds

[

s ln s ρR
V (s) − (s − p2) ln(s − p2)ρR

A(s)

(

1 − p2

s

)]

.
(46)

The above contribution is free of divergences. Furthermore, in the soft-pion limit, i.e.
p2 = 0, it is equivalent to the Das et al. calculation [21]. Finally, we have a useful
formula to calculate δm(EM)

π free of divergences, which was mainly the product of the
Lagrangian introducing the chiral couplings of the spin-1 resonances. We proceed to
show the close relation of the subtraction term and the soft-pion limit and to see how
we reproduce the results of O(p4) chiral perturbation theory with the above scattering
amplitude.

Soft-pion limit and its relation to the subtraction term

In the following we will show that the subtraction term is given by the soft-
pion limit up to corrections of order p2. In this discussion we refer to non-contact
contributions as all contributions except the pion seagull term. This term is the only
one which has both photons interacting at the same vertex and therefore we treat it
differently in the following discussion.

The non-contact contributions to the Compton scattering amplitude have the form

T (NC)
µν (q2, p·q) = i

∫

dxe−iqx〈π|T (Vµ(x)Vν(0)) |π〉 . (47)

Consider the soft-pion theorem [29],

lim
pµ→0

〈πk(p)β|O|α〉 = − i

Fπ

〈β|
[

Qk
5, O

]

|α〉 , (48)

where β and α are arbitrary states and Qk
5 =

∫

d3xAk
0(x) is an axial charge. We also

need the commutators
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[

Qi
5, V

j
µ

]

= if ijkV k
µ ,

[

Qi
5, A

j
µ

]

= if ijkAk
µ . (49)

The result of applying the soft-pion theorem to Eq. (47) is

lim
pµ→0

T (NC)
µν (q2, p·q) = −i

∫

d4xeiqx−2

F 2
π

〈0|T (V µ
3 (x)V ν

3 (0) − Aµ
3 (x)Aν

3(0)) |0〉 . (50)

The two-current time ordered products are related to the spectral functions by

〈0|T (V µ
a (x)V ν

b (0)) |0〉 = iδab

∫ ∞

0
dsρV (s) (2gµν − ∂µ∂ν)

∫

d4k

(2π)4

e−ikx

k2 − s + iǫ
,

〈0|T (Aµ
a(x)Aν

b (0)) |0〉 = −iδabF
2
π∂µ∂ν

∫ d4k

(2π)4

e−ikx

k2 + iǫ

+iδab

∫ ∞

0
dsρA(s) (2gµν − ∂µ∂ν)

∫

d4k

(2π)4

e−ikx

k2 − s + iǫ
. (51)

Upon combining Eqs. (50) and (51), integrating over d4x, and using the resulting δ
function to integrate over d4k, we obtain

lim
pµ→0

T (NC)
µν (q2, p·q) =

−2
qµqν

q2 + iǫ
+

2

F 2
π

∫ ∞

0
ds

(

−gµν +
qµqν

q2

)

(ρV (s) − ρA(s))
q2

q2 − s + iǫ
.

(52)

The contact term or pion seagull contribution to the pion Compton scattering ampli-
tude is

T (C)
µν (q2, p·q) = 2gµν , (53)

which remains unchanged in the soft-pion limit. Adding both contributions to the
pion Compton scattering amplitude in the soft-pion limit, we obtain

lim
pµ→0

Tµν(q
2, p·q) = D1µν

{

−2 +
2

F 2
π

∫ ∞

0
ds(ρV (s) − ρA(s))

q2

q2 − s

}

. (54)

An alternative way of reproducing the soft-pion limit result above, is letting pµ →
0 in Eq. (29). In order to implement this limit the following relations are useful,

lim
pµ→0

D1µν = D1µν ,

lim
pµ→0

p2D2µν = 0 ,

lim
pµ→0

T1(q
2, p·q) = T1(q

2, 0)
∣

∣

∣

p2=0
. (55)
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From these relations it follows that the only surviving term in this limit is the sub-
traction term T1(q

2, 0),

lim
pµ→0

Tµν(q
2, p·q) = D1µν lim

pµ→0
T1(q

2, 0) . (56)

This gives the same result as Eq. (54) when we identify

lim
pµ→0

(

ρR
V (s) − ρR

A(s)
)

= (ρV (s) − ρA(s)) . (57)

We can now calculate the soft-pion limit to the pion EM mass difference,

lim
pµ→0

∆m2
π =

α

4π

∫ ∞

0
dQ2 3

F 2
π

{

F 2
π −

∫ ∞

0
ds (ρV (s) − ρA(s))

Q2

Q2 + s

}

, (58)

where Q2 = −q2. We follow the procedure described earlier in order to cancel the
linear and logarithmic divergences occurring in the above equation. The cancellation
of these divergences imposed by the finiteness of the pion EM mass difference requires

∫ ∞

0
ds (ρV (s) − ρA(s)) = F 2

π , (59)
∫ ∞

0
dss (ρV (s) − ρA(s)) = 0 . (60)

These are Weinberg sum rules [22], obtained in our case as a consequence of the
finiteness of δm(EM)

π in the soft-pion limit. Subtracting the linear and logarithmic
divergences in the same way as for the subtraction term, Eqs. (44-46), we obtain

lim
pµ→0

∆m2
π = − α

4π

3

F 2
π

∫ ∞

0
dss ln s (ρV (s) − ρA(s)) . (61)

This is the result obtained by Das et al. [21].
Finally, we evaluate Eq. (61) in the narrow-width approximation to obtain the

numerical result

lim
pµ→0

∆m(NW )
π = 4.685 MeV . (62)

Spectral functions

We seek an improved description of the physics of the resonance region with
the spectral functions ρR

V (s) and ρR
A(s) replacing the narrow-width description. The

ingredients to the spectral functions clearly are the same resonance states that are
revealed by the usual vector and axial-vector spectral functions ρV (s) and ρA(s). In
addition we have just seen that in the soft-pion limit there is an exact correspondence
ρR

V (s) − ρR
A(s) = ρV (s) − ρA(s). This leads us to utilize the experimental spectral
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functions determined in reference [13] in order to produce a shape for ρR
V (s) and

ρR
A(s). In both the soft-pion limit and the full Cottingham calculation at order m2

π,
the high energy continuum cancels in the mass shift. We therefore separate each
spectral function into two contributions, one due to the resonances and the other due
to the high energy continuum common to both vector and axial-vector channels. The
resonant part is chosen to match the resonances revealed in the phenomenological
analysis of the data in [13]. These spectral functions are then slightly altered to obey
the full constraint equations including p2 terms of Eqs. (85) and (86). A continuum
contribution, common to both vector and axial-vector channels, was included in [13],
but is here kept separate from the resonances. The result of this is that we identify

ρV,A(s) = ρR
V,A(s) + ρC

V,A(s) , (63)

with a continuum contribution

ρC(s) = ρC
V (s) = ρC

A(s) . (64)

The precise identification of the continuum is not unique, but since the difference
of spectral functions enters, reasonable variations do not produce a large final effect.
The specific form that we use is shown in Fig. 5.
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Figure 5: Vector and axial-vector spectral functions. The graph shows (V) ρR
V (s), (A)

ρR
A(s), and (C) ρC(s) versus s. The s scale is given in GeV2.

It is clear that the greatest source of model dependence in our calculation comes
form the numerical identification described above. Our procedure in setting up the
calculation in the Cottingham method is very general. However, we do not have
directly available the experimental structure functions for photons scattering off of
pions. We have used an identification which is valid in the chiral limit in order
to provide this numerical input. There could be shifts in the couplings of these
resonances which are of order m2

π. These could provide changes in the final answer
at order m2

π which would be of interest to us. This is partially relieved by the fact
that the analysis of [13] was carried out with real world data, not strictly in the chiral
limit. Thus the masses, widths and shapes of the resonances will accurately reflect
physics with m2

π 6= 0. Likewise we know that in the narrow-width approximation we
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have the right description, so that we don’t see a source of major uncertainty due to
the non-zero widths. This means that our model dependence comes from possible m2

π

dependences in the resonance couplings, and our implicit assumption is that these
are smaller than the m2

π dependence from the propagators. We have not been able to
find a way to do better than this in the phenomenological analysis.

Comparison O(E4) Chiral Perturbation Theory

We also like to compare our method to the standard chiral perturbation approach.
The lowest energy region of the pion structure function can be described by the chiral
SU(3) Lagrangian to order p4, originally developed by Gasser and Leutwyler [11, 12].
Besides the elastic and seagull terms, and ignoring pion loops, the only relevant terms
involved in the pion Compton scattering amplitude are the L9 and L10 terms,

L4 = − iL9Tr
(

F µν
R DµUDνU

† + F µν
L DµU

†DνU
)

+ L10Tr
(

U †F µν
R UFLµν

)

+ other . (65)

The pion forward Compton scattering amplitude resulting from this Lagrangian
was calculated by Bijnens and Cornet [14], and Donoghue et al. [15]. Their result,
up to pion loop contributions which are small, is

Tµν(p, q) = − 8p2q2

q4 − (2p·q)2

(

1 +
2Lr

9q
2

F 2
π

)2

D2µν

−2D1µν +
8Lr

10q
2

F 2
π

D1µν + loops , (66)

Expanding our narrow-width result in powers of external momenta pµ and qµ, we
obtain,

T (q2 exp.)
µν (q2, p·q) = D1µν

{

−2 − 2
F 2

V

F 2
π

q2

m2
ρ

+ 2
F 2

A

F 2
π

q2

m2
A

}

+ D2µν







4m2
π

(

1 +
q2

m2
V

)2 −2q2

q4 − (2p·q)2
+ 2

F 2
A

F 2
πm2

A

−m2
πq2

m2
A







+ higher order terms in (q2, p·q, p2) .

(67)

The relations for the L9 and L10 in terms of the spin-1 resonance parameters are
obtained by inspection from Eqs. (66) and (67).
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L9 =
F 2

π

2m2
V

,

L10 = −1

4

(

F 2
V

m2
V

− F 2
A

2m2
A

)

. (68)

This result is in agreement with Ecker et al. [24]. The above equation for L10 is also
the narrow-width approximation for the sum rule (W0) in reference [13]

Substituting the narrow-width parameters in Eq. (68) we obtain,

L9 = (7.20 ± 0.05) × 10−3 ,

L10 = −(5.89 ± 0.65) × 10−3 . (69)

These are seen to be within reasonable agreement with the experimental values,

L9 = (7.1 ± 0.3) × 10−3 ,

L10 = −(6.84 ± 0.3) × 10−3 . (70)

The difference between the values in Eq. (69) and (70) gives an estimate for the loop
contributions which we neglected in the O(p4) chiral Lagrangian calculation of the
Compton scattering amplitude. Besides the loop corrections, the difference can also
be due to the inaccuracy of the narrow-width approximation.

Scaling region

The low and intermediate energy regions of the structure functions are described
above. To complete the analysis of the structure functions we need to describe the
scaling region at large values of (ν, Q2). The ingredients and general behavior in
this region are well known. The structure functions become largely functions of the
Bjorken scaling variable x = Q2/2ν, with logarithmic Q2 variations predictable by
QCD [30]. This is easy to build into the Cottingham analysis [31]. However there is
not a need to describe the details here since the scaling region cancels in the difference
between the charged and neutral pions masses, to the order that we are working here.

In the limit that the u and d quark masses are equal, the deep inelastic structure
functions of the neutral and charged pions are equal. This leads to

∆mπ(Scaling) = 0 . (71)

To the extent that the u, d masses are different, the structure functions may differ.
However we are calculating the electromagnetic effect in the limit mu = md, so that
we are not sensitive to this effect.
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V → πγ contribution

To have a more complete phenomenological description of the Compton scattering
amplitude we also include the effect of intermediate vector meson diagrams shown in
Fig. 6. The motivation for introducing these diagrams is the experimental observation
of the radiative meson decays ω → πγ and ρ → πγ, and φ → πγ. The effective
Lagrangian which includes the V πγ vertices is

L = e

√
RV

2
ǫµναβFµνVα∂βπ , (72)

This Lagrangian is invariant under parity and charge conjugation transformations, as
well as under chiral rotations. The choice of including the EM field strength tensor
ensures gauge invariance, and the pion momentum dependence corresponds to the
correct soft-pion limit for the vertex.

π π
V

γ γ

π π
V

γ γ

Figure 6: Intermediate vector diagrams.

We introduce the spectral functions gV (s) to describe the intermediate states in
Fig. 6. The normalization of these functions is chosen in order to make the subtraction
term contribution compatible with the ones obtained for the axial-vector case. The
narrow-width approximation for gV (s) is

gV (s) = H2
V δ(s − m2

V ) = F 2
πRV δ(s − m2

V ) . (73)

The subtraction term and the structure functions for the intermediate vector meson
diagrams follow from the Lagrangian in Eq. (72),

T1(−Q2, 0) =
2

F 2
π

∫ ∞

0
dsgV (s)

p2Q2

s − p2 + Q2
,

W1(−Q2, ν) =
1

F 2
π

∫ ∞

0
dsgV (s)K(ν, s)(ν2 + p2Q2)δ(s − p2 + Q2 − 2ν) ,

W2(−Q2, ν) =
1

F 2
π

∫ ∞

0
dsgV (s)K(ν, s)p2Q2δ(s − p2 + Q2 − 2ν) , (74)
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where K(ν, s) is the factor defined in Eq. (36). The factor K(ν, s) ensures the Q2

convergence of the structure functions as in the intermediate axial-vector state case.
We only need to find the spectral function gV (s) in order to determine the above
functions.

There are four possible vector intermediate states for the pion Compton amplitude,
the ρ± for the charged pions, and the ρ0, ω and φ for the neutral pion. The coupling
constants, Rρ±, Rρ0 , Rω, and Rφ can be extracted from the radiative decays of these
vector mesons. We refer the reader to references [17, 23, 32, 33] for a review and
examples of obtaining such couplings. The couplings Rρ± and Rρ0 are the same if we
take isospin to be an exact symmetry. This means that the charged and neutral pion
EM self energies due to the ρ intermediate state would cancel in the pion EM mass
difference. However, the ω and φ intermediate state contributions do not present
such a cancellation. Since isospin breaking effects are generally of small magnitude,
we shall neglect the intermediate ρ contribution to the pion EM mass difference.

We can determine the ω coupling, Rω, from the experimental measurement of the
radiative decay ω → π0γ,

Rω =
24

α

m3
ω

(m2
ω − m2

π)3
Γω→πγ = 5.40 ± 0.32 GeV−2 . (75)

Likewise we determine the φ coupling, Rφ,

Rφ =
24

α

m3
φ

(m2
φ − m2

π)3
Γφ→πγ = 0.019 ± 0.002 GeV−2 , (76)

where we have used the experimental values listed by the Particle Data Group [34].
We do not consider the φ vector meson intermediate state further because its coupling
is an order of magnitude smaller than the experimental uncertainty of the ω coupling.

We are now ready to determine the spectral function gV (s). Since the only reso-
nance involved is the ω, we can safely use the narrow-width approximation of Eq. (73).
The width of the ω is only 1% of its mass. This is in contrast with the ρ and a1 res-
onances for which the widths are 20% and 33% of their mass respectively. In the
narrow-width approximation we only need mω, taken from [34], and HV , given by

HV = Fπ

√

RV = 0.215 ± 0.013 . (77)

We should be careful when comparing gV (s) to ρV,A(s) since they have different
units. The relationship among these structure functions will become clear in the
following subsection.

The intermediate vector meson subtraction term and structure function contri-
butions to the pion EM mass difference are obtained by combining Eq.s (17) and
(74),

∆m2
π(Subtr.) =

3α

4πF 2
π

∫ ∞

0
dQ2

∫ ∞

0
dsgV (s)

p2Q2

s − p2 + Q2
,

∆m2
π(W1) =

−α

4π

∫ ∞

0
dQ2 6

F 2
π
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×
∫ ∞

0
dsgV (s)K

(

∆2

2
, s

)

1

∆2

(

∆4

4
+ p2Q2

)

Λ1

(

∆4

4p2Q2

)

,

∆m2
π(W2) =

−α

4π

∫ ∞

0
dQ2 1

2F 2
π

∫ ∞

0
dsgV (s)K

(

∆2

2
, s

)

∆2Λ2

(

∆4

4p2Q2

)

, (78)

where ∆2 = s − p2 + Q2, p2 = m2
π, and the functions Λi(y), for i = 1, 2 are defined

in Eq. (18). The extra minus sign appears because the vector intermediate state
diagrams contribute to the neutral pion EM self energy.

General treatment of other possible contributions

At this point we have a fairly complete calculation of the pion EM mass difference
broken down into different contributions. We have included the spin-1 resonances
through their lowest order chiral couplings, the scaling, and the intermediate vector
resonance contributions to the pion EM mass difference. By analogy with the nucleon
structure functions, we are comfortable with our estimates of the structure function
contributions. These are small, and even a factor of two correction would amount
to a small correction to the total mass difference. Therefore, we concentrate in the
subtraction term contribution estimate.

The subtraction term has been obtained by calculating the pion Compton scat-
tering amplitude with the effective chiral Lagrangian for the vector and axial-vector
resonances of Eq. (19) and the effective Lagrangian for the intermediate vector meson
contribution of Eq. (72). In general, there could be other possible contributions to the
subtraction term. These could be introduced by higher order effective Lagrangians.
Their contributions to δmEM

π would be small since they would be of higher order in
the external momenta p2 and q2. The terms with higher powers of p2 are naturally
small, otherwise terms of higher order in q2 are in principle divergent. The finiteness
of δmEM

π requires that all the higher powers of q2 cancel in the same way that the
order 1 and 1/Q2 cancel due to the Weinberg sum rules in the soft-pion limit case.

We include all other possible contributions to the subtraction term, not yet ac-
counted for in the previous analysis, by introducing the remainder term,

2

F 2
π

∫ ∞

0
ds R(Q2, p2, s) . (79)

The purpose of including this term is to show explicitly the effect of possible correc-
tions to our current scattering amplitude and its role in the high energy constraints
and final formula for the EM mass difference.

There are some conditions required upon this remainder term. It cannot alter our
previous soft-pion limit result, therefore,

lim
pµ→0

∫ ∞

0
dsR(Q2, p2, s) = 0 . (80)

It is also convenient to use the following notation for its expansion in powers of 1/Q2,
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R(Q2, p2, s) = p2h1(p
2, s) +

p2h2(p
2, s)

Q2 + f(p2, s)
+ O

(

1

Q4

)

. (81)

We have explicitly introduced a factor of p2 in order to make sure that this term
vanishes in the soft-pion limit as given in Eq. (80). This limit also requires that the
functions hi(p

2, s) (for i = 1, 2) do not have a pole at p2 = 0. The above equation
is not a formal expansion in orders of 1/Q2 since we have introduced the function
f(p2, s) in the denominator of the second term. This has been done in order to make
the Q2 integral of this term convergent at low Q2. The reason for choosing the above
notation will be clear in the following extraction of the subtraction term contribution
to δmEM

π .
We rewrite the subtraction term contribution,

∆m2
π(Subtr.) =

−3α

8π

∫ ∞

0
dQ2T1(−Q2, 0) . (82)

The subtraction term including the remainder part, except its O(1/Q4) contributions
not present in h2, is

T1(−Q2, 0) = −2 +
2

F 2
π

∫ ∞

0
ds

{

ρR
V (s)

Q2

s + Q2

−ρR
A(s)

Q2

s − p2 + Q2

(

1 − p2

s

)

− gV (s)
p2Q2

s − p2 + Q2

+p2h1(p
2, s) +

p2h2(p
2, s)

Q2 + f(p2, s)

}

.

(83)

We expand the above equation in powers of 1/Q2 in order to obtain

T1(−Q2, 0) =

−2 +
2

F 2
π

∫ ∞

0
ds

[

ρR
V (s) − s − p2

s
ρR

A(s) − p2gV (s) + p2h1(p
2, s)

]

+
∫ ∞

0
ds

[

sρR
V (s) − (s − p2)2

s
ρR

A(s) − p2(s − p2)gV (s) + p2h2(p
2, s)

]

1

Q2

+O
(

1

Q4

)

.

(84)

The finiteness of δm2
π requires the cancellation of the linear and logarithmic diver-

gences, resulting in the constraints,
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∫ ∞

0
ds

{

[

ρR
V (s) − ρR

A(s)
]

+ p2

[

ρR
A(s)

s
− gv(s) + h1(p

2, s)

]}

= F 2
π , (85)

∫ ∞

0
ds

{

[

sρR
V (s) − sρR

A(s)
]

+p2
[

2ρR
A(s) − sgV (s)

]

+ p4

[

gV (s) − ρR
A(s)

s

]

+ p2h2(p
2, s)

}

= 0 . (86)

These constraints also reduce to the Weinberg sum rules when we let p2 = 0. The role
of the functions hi(p

2, s) (for i = 1, 2) is to include all other possible contributions. The
above constraints must be satisfied exactly, otherwise the pion EM mass difference
would be divergent.

We can use the Weinberg sum rules, Eqs. (59) and (60), to further simplify the
previous equations,

p2
∫ ∞

0
ds

[

ρR
A(s)

s
− gv(s) + h1(p

2, s)

]

= 0 , (87)

p2
∫ ∞

0
ds

{

[

2ρR
A(s) − sgV (s)

]

+ p2

[

gV (s) − ρR
A(s)

s

]

+ h2(p
2, s)

}

= 0 . (88)

We can use solutions available for the functions ρR
A(s) [13] and gV (s) to estimate the

integrals for the remainder terms,

∫ ∞

0
dsp2h1(p

2, s) =
∫ ∞

0
dsp2

[

gv(s) −
ρR

A(s)

s

]

= 3.0 × 10−4 , (89)
∫ ∞

0
dsp2h2(p

2, s) =
∫ ∞

0
ds

{

p2
[

2ρR
A(s) − sgV (s)

]

+ p4

[

gV (s) − ρR
A(s)

s

]}

= 6.1 × 10−4 . (90)

As expected, these values are small when compared to the integrals involving ρR
V (s)

which are the larger terms in the constraint equations,

∫ ∞

0
dsρR

V (s) = 3.83 × 10−2 , (91)
∫ ∞

0
dssρR

V (s) = 5.62 × 10−2 , (92)

The remainder term R(Q2, p2, s) allows us to satisfy the constraints exactly since it
introduces a small correction to the previous constraint equations. We can proceed to
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find the subtraction term contribution by following the steps that we used previously
in order to obtain Eqs. (44)-(46)

∆m2
π(Subtr.) =

−3α

4πF 2
π

∫ ∞

0
ds

{

ρR
V (s)s ln s − ρR

A(s)
(s − p2)2

s
ln
(

s − p2
)

−gV (s)p2(s − p2) ln
(

s − p2
)

+ p2h2(p
2, s) ln f(p2, s)

}

.

(93)

Even though the functions f(p2, s) and h2(p
2, s) are undetermined, we have seen in

equation (90) that their contributions to the constraint Eq. (86) are small.

Numerical result

The total pion electromagnetic mass difference is given by the addition of the
elastic term of Eqs. (40), the structure function terms of Eqs. (40) and (78), and the
subtraction constant term of Eq. (93). The results for the narrow-width approxima-
tion and for the corresponding spectral functions is given in Table 1.

Table 1: ∆mEM
π results.

Narrow-width ρR
A(s), ρR

V (s)
(MeV) (MeV)

Subtr. 4.306 4.124
Elastic 0.500 0.500
Str. Fn. a1 int. st. 0.028 0.041
Str. Fn. ω int. st. -0.127 -0.127
Total calculated 4.707 4.538
Experiment 4.594 4.594

We see from the results that the dominant contribution comes from the subtraction
term, which is largely the effect of vector and axial-vector resonances, with modest
dependence on p2 = m2

π. The elastic term gives the only other significant contribution.
The modification due to non-zero width is also not large. The overall result is in
excellent agreement with experiment.

5. The kaon EM mass difference

Having set up and tested our methodology for the pion, we now proceed to the
calculation of the kaon electromagnetic mass difference. The most important effect is
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that the larger mass of the kaon leads to kinematic corrections in the various formulae.
There are also changes in the mass, width and couplings of the resonances which we
extract from the data

The kaon calculation is very similar to the pion one described in the previous
section, therefore we will concentrate on the differences that arise in the kaon case.
The kaon counterpart for the Lagrangian of Eq. (20) expanded in terms of kaon,
photon, and spin-1 resonance fields is

L = ieAµ(K+∂µK
− − K−∂µK

+) + e2AµAµK
+K− ,

−eFV

2
F µν

(

ρ0
µν +

√
2

3
φµν +

1

3
ωµν

)

+
eFV

4F 2
K

F µν
(

ρ0
µν +

√
2φµν + ωµν

)

K+K−

+
iGV

F 2
K

(

ρ0
µν +

√
2φµν + ωµν

)

∂µK+∂νK
−

+
iGV

F 2
K

(

−ρ0
µν +

√
2φµν + ωµν

)

∂µK
0∂νK0 ,

−ieFA

2FK

F µν
(

K−
1µν

K+ − K+
1µν

K−
)

, (94)

where we have used ideal mixing for the vector meson resonances.
The major difference between the kaon and pion Lagrangians - Eqs. (20) and (94)

respectively - is that in the kaon case all the three nonet vector resonances contribute.
Another difference is that there is an elastic contribution to the neutral kaon self-
energy. This contribution vanishes in the ideal mixing approximation together with
the limit where all the vector resonance masses are equal.

The contribution to the kaon Compton scattering amplitude given by the Feynman
diagrams of Figs. 2.a and 2.b is

T (1)(K)
µν (q2, p·q) = −2D1µν + 4m2

KD2µν

×
[

(GK+(q2))2 − (GK0(q2))2
]

(

1

m2
K − (p + q)2 − iǫ

+ (q → −q)

)

,
(95)

where

GK+,0(q2) ≡
∫

du
u

u − q2
δK+,0(u) , (96)

and

δK+,0(u) ≡ ±1

2
δ(u − m2

ρ) +
1

3
δ(u − m2

φ) +
1

6
δ(u − m2

ω) . (97)
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We have subtracted the neutral kaon contribution in order to be able to use this
equation in the following kaon EM mass difference formulas.

The vector seagull contribution, Fig. 2.c, is

T (2)(K)
µν (q2, p·q) = −2

F 2
V

F 2
K

∫

du
q2

u − q2
δK+(u)D1µν . (98)

Finally, the axial-vector resonance intermediate state contribution, Fig. 2.d, is

T (3)(K)
µν (q2, p·q) =

F K
A

2

F 2
Km2

K1A





(p·q + q2)
2
+ q2

(

m2
K1A

− (p + q)2
)

m2
K1A

− (p + q)2 − iǫ
+ (q → −q)



D1µν

+
F K

A

2

F 2
Km2

K1A





−m2
Kq2

m2
K1A

− (p + q)2 − iǫ
+ (q → −q)



D2µν .

(99)

The axial vector intermediate state for the kaon is less straightforward than for the
pion since the axial-vector meson K1A

is an ill-determined mixture of the physical
states K1(1270) and K1(1400) [34]. We will treat this issue later when we estimate
the spectral function for the axial-vector intermediate state.

The breakdown into structure functions and subtraction term of the Compton
scattering amplitude given by the above three terms T (i)(K)

µν , (for i = 1 to 3), in the
spectral function representation is

T1(−Q2, 0) = −2 +
2

F 2
K

∫ ∞

0
dsρK

V (s)
Q2

s + Q2

− 2

F 2
K

∫ ∞

0
ds ρK

V (s)
Q2

s − p2 + Q2

(

1 − p2

s

)

,

W1(−Q2, ν) =
1

F 2
K

∫

ds
ρK

A (s)

s
(ν − Q2)2 K̃(ν, s)δ(s − p2 + Q2 − 2ν) ,

W2(−Q2, ν) = 4m2
Kδ(Q2 − 2ν)

[

(GK+(−Q2))2 − (GK0(−Q2))2
]

+
1

F 2
K s

∫

ds
ρK

A (s)

s
p2Q2K̃(ν, s)δ(s − p2 + Q2 − 2ν) , (100)

where ν = p ·q = mKq0, and p2 = m2
K . We have also introduced the convergence

factor

K̃(ν, s) =
∫

du
(

u

u + 2ν

)4 (

1 + η̃(u)
2ν

s

)

δK+(u) , (101)
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where

η̃(u) =
s

s − p2





(

1 +
s − p2

u

)4

− 1



 , (102)

and p2 = m2
K .

The definition of the kaon vector spectral function is

ρK
V (s) ≡ 1

2
ρR

ρ (s) +
1

2
ρR

φ (s) +
1

6
ρR

ω (s) , (103)

where ρR
ρ (s) is the spectral function introduced in Fig. 5, and the other two are due

to the φ and ω intermediate states. For these last two it is appropriate to use the
narrow-width approximation.

We also include the VPγ vertices in the same way as we did for the pions. The
effective Lagrangian that we use for the K∗Kγ vertex is

L = e

√
RV

2
K̃(ν, m2

K∗) ǫµναβ FµνVα∂βK , (104)

The subtraction term and structure functions that follow from the above Lagrangian,
including the K0 functions with an extra minus sign to be able to insert them directly
in the kaon EM mass difference formula are

T1(−Q2, 0) =
2

F 2
K

∫ ∞

0
dsgK

V (s)
p2Q2

s − p2 + Q2
,

W1(−Q2, ν) =
1

F 2
K

∫ ∞

0
dsgK

V (s)(ν2 + p2Q2) K̃(ν, s)δ(s − p2 + Q2 − 2ν) ,

W2(−Q2, ν) =
1

F 2
K

∫ ∞

0
dsgK

V (s)p2Q2 K̃(ν, s)δ(s − p2 + Q2 − 2ν) . (105)

The narrow-width approximation is justified in this case due to the small width of
the K∗ intermediate states. Therefore, we use the following definition,

gK
V (s) ≡ H2

K∗0 δ(s − m2
K∗0) − H2

K∗+ δ(s − m2
K∗+) . (106)

Unlike in the pion case, there is an intermediate vector meson contribution for the
neutral kaon as well as for the charged kaon, in the SU(3) limit. For the pions, the
intermediate ρ meson contribution canceled in the SU(2) limit, (since charged and
neutral ρ couplings become equal), leaving only the intermediate ω and φ contribu-
tions to the neutral pion Compton scattering amplitude.

We determine the K∗ couplings from the radiative decays K∗ → Kγ ,

R
K∗+ =

24

α

m3
K∗+

(m2
K∗+

− m2
K)3

Γ
K∗+→K+γ

= 0.70 ± 0.06 GeV−2 ,

R
K∗0 =

24

α

m3
K∗0

(m2
K∗0

− m2
K)3

Γ
K∗0→K0γ

= 1.61 ± 0.14 GeV−2 ,
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from which we obtain the values for

HK∗+ = FK

√

RK∗+ = 0.093 ± 0.004 ,

H
K∗0 = FK

√

R
K∗0 = 0.143 ± 0.006 . (107)

In the kaon case, the mass difference need not be finite because there can be
divergences which are absorbed into the renormalized masses of the up and down
quarks. However this effect is relatively small because it is proportional to αmu or
αmd compared to the dominant electromagnetic mass-shift which is simply of order
α. We assume that the renormalization of the up and down quark masses has been
carried out, although the precise renormalization prescription is hard to define because
of the small size of this effect. The remaining electromagnetic effects are finite.

We can now determine the full high Q2 constraints for a finite kaon EM self
energy given by combining Eqs. (100) and (105), and including the remainder terms
introduced in Eq. (81),

∫ ∞

0
ds

{

[

ρK
V (s) − ρK

A (s)
]

+ p2

[

ρK
A (s)

s
− gK

v (s) + hK
1 (p2, s)

]}

= F 2
K , (108)

∫ ∞

0
ds

{

[

sρK
V (s) − sρK

A (s)
]

+p2
[

2ρK
A (s) − sgK

V (s)
]

+ p4

[

gK
V (s) − ρK

A (s)

s

]

+ p2hK
2 (p2, s)

}

= 0 , (109)

where p2 = m2
K . These equations are similar to the ones encountered in the pion case.

Using the above constraints and all available data for the vector spectral function,
ρR

V (s) and the narrow-width approximation for gV (s), and the ω, φ, ω(1420), ω(1600),
and φ(1680) resonances we obtain for h1 = h2 = 0

∫

dsρK
A (s)

(

1 − p2

s

)

= 0.0170(12) GeV2 , (110)

∫

ds sρK
A (s)

(

1 − p2

s

)2

= 0.0406(16) GeV4 , (111)

where p2 = m2
K .

We try first the narrow-width approximation to the axial-vector spectral function

ρK(NW )

A (s) = F K
A

2

(NW )

[

cos2 θKδ(s − m2
K1(1400))

+ sin2 θKδ(s − m2
K1(1270)) + R2

Kδ(s − m2
K1(HR))

]

. (112)
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This parametrization includes the K1(1270) and K1(1400) resonances as well as a
higher mass resonance K1(HR). The input parameters to ρK

A for this calculation are

θK =
π

4
and mK1(HR) = 2.0 GeV . (113)

These choices are sensible but arbitrary. They fix the values of F K
A and RK through

the constraint Eqs. (110) and (111). The obtained values for F K
A and RK show a

sizeable dependence on the choice of mK1(HR). The results for the different contribu-
tions to δmEM

K obtained by this narrow-width approximation are given in Table 2.
In particular we find that the subtraction term contribution is very large. How-
ever, this contribution varies from δm

(Subtr.)
K ∼ 2.3 MeV for mK1(HR) = 1.8 GeV to

δm
(Subtr.)
K ∼ 3.1 MeV for mK1(HR) = 2.4 GeV. These numerical results only constitute

a very rough estimate. This is already indicated by the large dependence in mK1(HR),
and once again, it involves the narrow-width approximation for broad resonances.

There is another constraint on the axial-vector spectral function due to τ decay

BR(τ → ντK1 → ντKππ) = Eτ

∫ m2
τ

0
dsρK

A (s)

(

1 − s

m2
τ

)2 (

1 +
2s

m2
τ

)

, (114)

where

Eτ =
G2

µm
3
τ |Vus|2

8πΓτ

= 0.6633 GeV−2 . (115)

The data for the tau lepton decay, τ → ντKππ , gives the branching ratios [35],

BR(τ− → ντK
−π+π−) = (0.40 ± 0.09)% , (116)

BR(τ− → ντK
0
π−π0) = (0.41 ± 0.07)% , (117)

BR(τ− → ντK
−π0π0) = (0.09 ± 0.03)% , (118)

BR(τ → ντKππ) = (0.90 ± 0.12)% . (119)

The last branching ratio is the sum of the three different decay channels with the
uncertainties added in quadrature. Even though we expect these branching ratios to
be dominated by the axial-vector channels specially the K1(1270) and the K1(1400),
there should also be a contribution due to the vector resonance K∗(1410) [36]. This
resonance will contribute through the decay process K∗(1410) → K∗(892)π → Kππ.
The branching ratio for K∗(1410) → K∗(892)π is greater than 40% at 95% confidence
level [34], and BR(K∗(892) → Kπ) ∼ 100% . Therefore, the tau branching ratio into
the strange axial-vector channels should be somewhat lower than stated in Eq. (119).

We obtain the shape of ρK
A (s), up to mKππ = 2.1 GeV, from diffractive production

experimental data obtained by the ACCMOR collaboration in 1981 [37]. The data was
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extracted from 200,000 examples of the reaction K−p → K−π−π+p. The intensity
for the 1+ channel gives us the shape of ρK

A (s).
We add a high energy tail to the data, up to mKππ = 2.54 GeV, which decreases

quadratically. The constraint equations favor this quadratic choice instead of other
simple parametrizations. The final normalization of the spectral function is obtained
by enforcing the constraint Eqs. (110) and (111). If we define

ρK
A (s) ≡ F K

A

2
ρA(s) , where

∫

dsρA(s) = 1 , (120)

we obtain F K
A = 0.144 GeV, and the ρA(s) given in Fig. 7.
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Figure 7: ρ(i)(s) vs. mKππ (GeV), for i = 1 to 3 .

The choice of ρK
A results in an estimate for the tau branching ratio for the K∗(1410)

vectorial resonance,

BR(τ → ντK
∗(1410)) = (0.46 ± 0.13)% . (121)

this value could be extracted from data by doing an angular momentum analysis of
the Kππ final state.

The final results for the different contributions to ∆mK are given in Table 2. We
estimate the uncertainty of the total kaon EM mass difference to be σ(∆mK) ∼ 0.6
MeV.

Our result is about 100% greater than Dashen’s result. This result is in better
agreement with earlier references [3, 5, 38], and with the recent investigation [4], but
in disagreement with Baur and Urech [2]. Given the uncertainty of our result, we
feel more comfortable by saying that we find a modification of Dashen’s theorem of
between 160% and 240% .

6. Conclusions

The calculation of nonleptonic amplitudes is in general one of the most difficult
tasks for analytic strong interaction techniques. The elecromagnetic mass differences
of the pseudoscalar mesons seems to us to be the most favorable case to attempt a
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Table 2: ∆mEM
K results.

Narrow-width ρK
A (s), ρK

V (s)
(MeV) (MeV)

Subtr. 2.56 1.80
Elastic 0.92 0.92
Str. Fn. K1 int. st. 0.05 0.07
Str. Fn. K∗ int. st. -0.18 -0.18
Total calculated 3.35 2.61
Dashen 1.27 1.27

controlled calculation. There turn out to be several favorable circumstances that help
in this endeavor. As we have exploited above, the relevant current-current products
have several connections to known phenomenology, and have important constraints
due to the long distance chiral behavior and the short distance properties of QCD.

The calculation of the known pion mass difference was quite successful. It turns
out that intermediate mass scales (around 1 GeV) are the most important for this
matrix element, and these are well represented by resonance contributions. In fact
this structure is already visible in the old calculation in the soft pion limit given by
Das et al. where the vector and axial vector spectral functions determine the mass
difference in the chiral limit. There are calculable corrections and even new diagrams
that come in as one includes a non-zero pion mass, but the pion mass is still small
enough that one does not change the general anatomy of the matrix element.

In the case of the kaon mass difference, the experimental result is not known.
We find a large deviation from the prediction of Dashen’s theorem, which is valid in
the limit of massless kaons. While the magnitude of this effect is larger than most
SU(3) breaking effects in chiral calculations, we stress that its origin is in reasonably
well-known and mundane effects, and does not represent any breakdown of chiral
symmetry. The main effect seems to be the kaon mass in the propagator of the Born
diagram, which hence is a rather long distance effect, while the remaining dependence
comes from the known shift in resonance masses due the the strange quark mass. This
mass difference is important for the extraction of the u − d quark mass difference.

Appendix

The notation used for the O(E2) chiral terms in the Lagrangian of Eq. (19) is

U = exp
(

i
√

2Φ/F
)

,
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Φ =





















π0

√
2

+
η8√
6

π+ K+

π− − π0

√
2

+
η8√
6

K0

K− K0 − 2√
6
η8





















,

χ = 2B0







mu 0 0
0 md 0
0 0 ms





 ,

DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ) , (122)

where vµ, aµ are the external fields. In order to include EM one needs to define

aµ = 0 , vµ = eQAµ , (123)

where Aµ is the photon field, and should not be confused with the axial-vector an-
tisymmetric tensor field which has two Lorentz indices, Aµν . Q is the quark charge
matrix, for the u, d and s quarks,

Q =







2
3

0 0
0 −1

3
0

0 0 −1
3





 . (124)

The notation used for Lagrangian containing the chiral couplings of the vector
and axial-vector meson resonances, Eq. (19) is

uµ = iu†DµUu† = u†
µ ,

fµν
± = uF µν

L u† ± u†F µν
R u ,

F µν
R,L = ∂µ(vν ± aν) − ∂ν(vµ ± aµ) − i[vµ ± aµ, vν ± aν ] ,

Vµν =





















ρ0

√
2

+
ω8√

6
ρ+ K∗+

ρ− − ρ0

√
2

+
ω8√

6
K∗0

K∗− K∗0 − 2√
6
ω8





















µν

,

Aµν =





















a0
1√
2

+
f1√
6

a+
1 K+

1

a−
1 − a0

1√
2

+
f1√
6

K0
1

K−
1 K0

1 − 2√
6
f1





















µν

, (125)

∇λRµν = ∂λRµν + [Γλ, Rµν ] ,
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Rµν = Vµν , Aµν ,

Γµ =
1

2

{

u†[∂λ − i(vλ + aλ)]u + u[∂λ − i(vλ − aλ)]u
†
}

. (126)

From the kinetic terms of the Lagrangian in equation (19) one derives the free
propagator for the antisymmetric tensor field representation [24],

〈0|TRµν(x)Rρσ(y)|0〉 =
−i

M2

∫ d4k

2π4

e−i(x−y)

M2 − k2 − iǫ

×
[

gµρgνσ

(

M2 − k2
)

+ gµρkνkσ − gµσkνkρ − (µ ↔ ν)
]

,

(127)

where the normalization is given by

〈0|Rµν |R(ǫ, p)〉 =
−i

M
[pµǫν(p) − pνǫµ(p)] . (128)
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