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A Brief Introduction to Chiral Perturbation Theory

Barry R. Holstein
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01003, USA

Received XXX

A brief introduction to the subject of chiral perturbation theory (χpt) is presented,
including a discussion of effective field theory and applications of χpt in the arena of
purely mesonic interactions as well as in the πN sector.

1 Introduction

For the past three decades or so the holy grail sought by particle/nuclear knights
has been to verify the correctness of the “ultimate” theory of strong interactions—
quantum chromodynamics (QCD). The theory is, of course, deceptively simple on
the surface. Indeed the form of the Lagrangian1)

LQCD = q̄(i 6D −m)q − 1

2
tr GµνG

µν . (3)

is elegant, and the theory is renormalizable. So why are we still not satisfied? While
at the very largest energies, asymptotic freedom allows the use of perturbative tech-
niques, for those who are interested in making contact with low energy experimental
findings there exist at least three fundamental difficulties:

i) QCD is written in terms of the ”wrong” degrees of freedom—quarks and
gluons—while low energy experiments are performed with hadronic bound
states;

ii) the theory is non-linear due to gluon self interactions;

iii) the theory is one of strong coupling—g2/4π ∼ 1—so that perturbative meth-
ods are not practical.

Nevertheless, there has been a great deal of recent progress in making contact
between theory and experiment using the technique of ”effective field theory”, which
exploits the chiral symmetry of the QCD interaction. In order to understand how

1) Here the covariant derivative is

iDµ = i∂µ − gAa

µ

λa

2
, (1)

where λa (with a = 1, . . . , 8) are the SU(3) Gell-Mann matrices, operating in color space, and the
color-field tensor is defined by

Gµν = ∂µAν − ∂νAµ − g[Aµ, Aν ] , (2)
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this is accomplished, we first review symmetry breaking as well as the concept
of effective interactions. Then we show how these ideas can be married via chiral
perturbation theory and indicate a few contemporary physics applications.

2 Symmetry and Symmetry Breaking

The importance of symmetry in physics is associated with Noether’s theorem,
which states that associated with any symmetry in physics is a corresponding con-
servation law. Thus, for example,

i) translation invariance implies conservation of momentum;

ii) time translation invariance implies conservation of energy;

iii) rotational invariance implies conservation of angular momentum

These, however, are perhaps the only exact symmetries in nature. All others are
broken in some way and there are in general only three types of symmetry breaking
which can occur:

Explicit: The most familiar is explicit symmetry breaking, wherein the breaking
occurs in the Lagrangian itself. As an example, consider the harmonic oscillator
Lagrangian

L =
1

2
mẋ2 − 1

2
mω2x2 (4)

which is clearly symmetric under spatial inversion—x→ −x. Correspondingly, the
ground state (lowest energy) configuration—x = 0, which is found via ∂L

∂x
= 0—also

shares this symmetry. On the other hand, if we add a linear potential (constant
force) into the system, the Lagrangian becomes

L =
1

2
mẋ2 − 1

2
mω2x2 + λx (5)

The ground state is now given by x = λ/mω2, which no longer is invariant un-
der spatial inversion, but this is to be expected because of the explicit symmetry
breaking term—λx—in the Lagrangian.

Spontaneous: Less familiar but still relatively common is spontaneous symmetry
breaking, wherein the Lagrangian of a system possesses a symmetry but the ground
state does not. A simple classical physics example of this is the case of a thin hoop
of radius R immersed in a gravitational field and rotating about a vertical axis at
fixed angular velocity ω. A bead which can move without friction along the hoop
is then described by the Lagrangian[1]

L =
1

2
m(R2θ̇2 + ω2R2 sin2 θ) +mgR cos θ (6)

where θ is the angle subtended by the bead from the bottom of the hoop. Clearly
the Lagrangian is invariant under reflection—L(θ) → L(−θ)—but the ground state

2 A Czech. J. Phys. 49 (1999)
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configuration is given by

∂L

∂θ
= mω2R2 sin θ(cos θ − g

mω2R
) = 0, (7)

which has the stable equilibirium solution θ = + cos−1 g
ω2R

or θ = − cos−1 g
ω2R

if
g

ω2R
< 1. Obviously in this situation the ground state breaks the symmetry under

θ → −θ, even though the Lagrangian does not—this is an example of spontaneous

symmetry breaking.
Anomalous: Finally, we consider anomalous or quantum mechanical symmetry

breaking wherein the Lagrangian at the classical level is symmetric, but the symme-
try is broken upon quantization. Obviously there are no classical physics examples
of this phenomenon and, to my knowledge, every manifestation except one is in the
arena of quantum field theory. The one example from ordinary quantum mechan-
ics involves the breaking of scale invariance by a two-dimensional delta function
potential[2]. To set the stage, first consider a free particle of mass m, which satisfies
the time-independent Schrodinger equation

− 1

2m
∇2ψ =

k2

2m
ψ (8)

A general partial wave solution can be written as

ψℓ(~r) =
1

r

∑

ℓ

aℓχℓ(r)Pℓ(cos θ) (9)

where χ(r) satisfies the differential equation
(

− d2

dr2
+
ℓ(ℓ+ 1)

r2
+ k2

)

χℓ(r) = 0 (10)

Obviously there exists a scale invariance here—the Schrodinger equation is invariant
under the scale transformation r → λr, k → k/λ, a consequence of which is that
the solution must be a function only of k times r and not of k or r alone. For
example, a free particle solution can be written in the form

ψ(~r) = eikz = eikr cos θ r→∞−→ 1

2ikr

∑

ℓ

(2ℓ+ 1)Pℓ(cos θ)(eikr − e−i(kr−ℓπ)) (11)

Note that there exists a phase shift ℓπ of the outgoing spherical wave with respect to
its incoming counterpart. This phase shift is, however, k− independent as required
by scale invariance. On the other hand if we include a potential V (r) then the
solution has the asymptotic form

ψ(+)(~r)
r→∞−→ eikz +

eikr

r
fk(θ) (12)

where the scattering amplitude fk(θ) is given by

fk(θ) =
∑

ℓ

(2ℓ+ 1)
e2iδℓ(k) − 1

2ik
Pℓ(cos θ) (13)
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In this case there exists an additional phase shift δℓ(k) in each partial wave, which
breaks the scale invariance, but this is to be expected because of the presence of
the (symmetry violating) potential.

In the case of two dimensions, one can write the scattering wave function in the
asymptotic form

ψ(+)(~r)
r→∞−→ eikz +

1√
r
ei(kr+ π

4
)fk(θ) (14)

with scattering amplitude

fk(θ) = −i
∞
∑

m=−∞

e2iδm(k) − 1√
2πk

eimθ (15)

where now we expand in terms of exponentials eimθ instead of Legendre polynomi-
als. What is special about two dimensions is that it is possible to introduce a scale

invariant potential V (~r) = gδ2(~r). The associated differential cross section is found
to be

dσ

dΩ

k→∞−→ π

2k ln( k2

µ2 )
(16)

which corresponds to pure m = 0 scattering with an energy dependent phase shift

cot δ0(k) =
1

π
ln
k2

µ2
− 2

g
(17)

The scale invariance present at the classical level (no scattering cross section since
we have a delta function potential) is then violated upon quantization.

Interestingly, QCD makes use of all three forms of symmetry breaking!

3 Effective Field Theory

The power of effective field theory is associated with the feature that there exist
many situations in physics involving two scales, one heavy and one light. Then if one
is working at energies small compared to the heavy scale, one can fully describe the
interactions in terms of an “effective” picture, which is written only in terms of the
light degrees of freedom, but which fully includes the influence of the heavy mass
scale through virtual effects. A number of good review articles exist concerning the
subject[3].

Before proceeding to QCD, however, it is useful to study this idea in the simpler
context of ordinary quantum mechanics, in order to get familiar with the concept.
Specifically, we examine the question of why the sky is blue, whose answer can
be found in an analysis of the scattering of photons from the sun by atoms in
the atmosphere—Compton scattering[4]. First we examine the problem using tra-
ditional quantum mechanics and consider elastic (Rayleigh) scattering from (for
simplicity) single-electron (hydrogen) atoms. The appropriate Hamiltonian is then

H =
(~p− e ~A)2

2m
+ eφ (18)

4 A Czech. J. Phys. 49 (1999)
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and the leading—O(e2)—amplitude for Compton scattering is given by the Kramers-
Heisenberg form

Amp = − e2/m
√

2ωi2ωf

[

ǫ̂i · ǫ̂∗f +
1

m

∑

n

(

ǫ̂∗f · < 0|~pe−i~qf ·~r|n > ǫ̂i· < n|~pei~qi·~r|0 >
ωi + E0 − En

+
ǫ̂i· < 0|~pei~qi·~r|n > ǫ̂∗f · < n|~pe−i~qf ·~r|0 >

E0 − ωf − En

)]

(19)

where |0 > represents the hydrogen ground state having binding energy E0.
Here the leading component is the familiar ω-independent Thomson amplitude

and would appear naively to lead to an energy-independent cross-section. However,
this is not the case. Indeed, by expanding in powers of ω and using a few quantum
mechanical tricks, then provided that the energy of the photon is much smaller than
a typical excitation energy—as is the case for optical photons—the cross section
can be written as

dσ

dΩ
= λ2ω4|ǫ̂∗f · ǫ̂i|2

(

1 + O
(

ω2

(∆E)2

))

(20)

where

λ = αem

∑ 2|zn0|2
En − E0

(21)

is the atomic electric polarizability, αem = e2/4π is the fine structure constant,
and ∆E ∼ mα2

em is a typical hydrogen excitation energy. We note that αemλ ∼
a2
0× αem

∆E
∼ a3

0 is of order the atomic volume, as will be exploited below, and that the
cross section itself has the characteristic ω4 dependence which leads to the blueness
of the sky—blue light scatters much more strongly than red[5].

Now while the above derivation is certainly correct, it requires somewhat detailed
and lengthy quantum mechanical manipulations which obscure the relatively simple
physics involved. One can avoid these problems by the use of effective field theory
methods. The key point is that of scale. Since the incident photons have wavelengths
λ ∼ 5000A much larger than the ∼ 1A atomic size, then at leading order the
photon is insensitive to the presence of the atom, since the latter is electrically
neutral. If χ represents the wavefunction of the atom, then the effective leading
order Hamiltonian is simply

H
(0)
eff = χ∗

(

~p2

2m
+ eφ

)

χ (22)

and there is no interaction with the field. In higher orders, there can exist such atom-
field interactions and this is where the effective Hamiltonian comes in to play. In
order to construct the effective interaction, we demand certain general principles—
this Hamiltonian must satisfy fundamental symmetry requirements. In particular
Heff must be gauge invariant, must be a scalar under rotations, and must be even
under both parity and time reversal transformations. Also, since we are dealing with

Czech. J. Phys. 49 (1999) A 5
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Compton scattering, Heff should be quadratic in the vector potential. Actually,
from the requirement of gauge invariance it is clear that the effective interaction
can utilize only the electric and magnetic fields

~E = −~∇φ− ∂

∂t
~A, ~B = ~∇× ~A (23)

since these are invariant under a gauge transformation

φ→ φ+
∂

∂t
Λ, ~A→ ~A− ~∇Λ (24)

while the vector and/or scalar potentials are not. The lowest order interaction then

can involve only the rotational invariants ~E2, ~B2 and ~E · ~B. However, under spatial
inversion—~r → −~r—electric and magnetic fields behave oppositely— ~E → − ~E
while ~B → ~B—so that parity invariance rules out any dependence on ~E · ~B. Likewise
under time reversal—t → −t—we have ~E → ~E but ~B → − ~B so such a term is
also ruled out by time reversal invariance. The simplest such effective Hamiltonian
must then have the form

H
(1)
eff = χ∗χ[−1

2
cE ~E

2 − 1

2
cB ~B

2] (25)

(Terms involving time or spatial derivatives are much smaller.) We know from

electrodynamics that 1
2 ( ~E2 + ~B2) represents the field energy per unit volume, so by

dimensional arguments, in order to represent an energy in Eq. 25, cE , cB must have
dimensions of volume. Also, since the photon has such a long wavelength, there
is no penetration of the atom, so only classical scattering is allowed. The relevant
scale must then be atomic size so that we can write

cE = kEa
3
0, cB = kBa

3
0 (26)

where we anticipate kE , kB ∼ O(1). Finally, since for photons with polarization ǫ̂

and four-momentum qµ we identify ~A(x) = ǫ̂ exp(−iq·x), then from Eq. 23, | ~E| ∼ ω,

| ~B| ∼ |~k| = ω and
dσ

dΩ
∝ | < f |Heff |i > |2 ∼ ω4a6

0 (27)

as found in the previous section via detailed calculation. Clearly the effective in-
teraction method provides and efficient and insightful way in which to perform the
calculation.

4 Application to QCD: Chiral Perturbation Theory

Now let’s apply these ideas to the case of QCD. The relevant invariance in this
case is “chiral symmetry.” The idea of ”chirality” is defined by the operators

ΓL,R =
1

2
(1 ± γ5) =

1

2

(

1 ∓1
∓1 1

)

(28)

6 A Czech. J. Phys. 49 (1999)
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which project left- and right-handed components of the Dirac wavefunction via

ψL = ΓLψ ψR = ΓRψ with ψ = ψL + ψR (29)

In terms of these chirality states the quark component of the QCD Lagrangian can
be written as

q̄(i 6D −m)q = q̄Li 6DqL + q̄Ri 6DqR − q̄LmqR − q̄RmqL (30)

The reason that these chirality states are called left- and right-handed can be seen
by examining helicity eigenstates of the free Dirac equation. In the high energy (or
massless) limit we note that

u(p) =

√

E +m

2E

(

χ
~σ·~p

E+m
χ

)

E≫m−→
√

1

2

(

χ
~σ · p̂χ

)

(31)

Left- and right-handed helicity eigenstates then can be identified as

uL(p) ∼
√

1

2

(

χ
−χ

)

, uR(p) ∼
√

1

2

(

χ
χ

)

(32)

But

ΓLuL = uL ΓRuL = 0

ΓRuR = uR ΓLuR = 0 (33)

so that in this limit chirality is identical with helicity—

ΓL,R ∼ helicity!

With this background, we now return to QCD and observe that in the limit as
m→ 0

LQCD
m=0−→ q̄Li 6DqL + q̄Ri 6DqR (34)

would be invariant under independent global left- and right-handed rotations

qL → exp(i
∑

j

λjαj)qL, qR → exp(i
∑

j

λjβj)qR (35)

(Of course, in this limit the heavy quark component is also invariant, but since
mc,b,t >> ΛQCD it would be silly to consider this as even an approximate sym-
metry in the real world.) This invariance is called SU(3)L

⊗

SU(3)R or chiral
SU(3) × SU(3). Continuing to neglect the light quark masses, we see that in a
chiral symmetric world one would expect to have sixteen—eight left-handed and
eight right-handed—conserved Noether currents

q̄Lγµ

1

2
λiqL , q̄Rγµ

1

2
λiqR (36)

Czech. J. Phys. 49 (1999) A 7
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Equivalently, by taking the sum and difference, we would have eight conserved
vector and eight conserved axial vector currents

V i
µ = q̄γµ

1

2
λiq, Ai

µ = q̄γµγ5
1

2
λiq (37)

In the vector case, this is just a simple generalization of isospin (SU(2)) invariance
to the case of SU(3). There exist eight (32 − 1) time-independent charges

Fi =

∫

d3xV i
0 (~x, t) (38)

and there exist various supermultiplets of particles having identical spin-parity and
(approximately) the same mass in the configurations—singlet, octet, decuplet, etc.

demanded by SU(3) invariance.
If chiral symmetry were realized in the conventional fashion one would expect

there also to exist corresponding nearly degenerate same spin but opposite par-
ity states generated by the action of the time-independent axial charges F 5

i =
∫

d3xAi
0(~x, t) on these states. Indeed since

H |P 〉 = EP |P 〉
H(Q5|P 〉) = Q5(H |P 〉) = EP (Q5|P 〉) (39)

we see that Q5|P 〉 must also be an eigenstate of the Hamiltonian with the same
eigenvalue as |P >, which would seem to require the existence of parity doublets.
However, experimentally this does not appear to be the case. Indeed although the

Jp = 1
2

+
nucleon has a mass of about 1 GeV, the nearest 1

2

−
resonance lies nearly

600 MeV higher in energy. Likewise in the case of the 0− pion, which has a mass
of about 140 MeV, the nearest corresponding 0+ state (if it exists at all) is nearly
700 MeV or so higher in energy.

The resolution of this apparent paradox is that the axial symmetry is sponta-
neously broken, in which case Goldstone’s theorem requires the existence of eight
massless pseudoscalar bosons, which couple derivatively to the rest of the universe.
That way the state Q5|P > is equivalent to |Pa >, where a signifies one of these
massless bosons, and in this way the problem of parity doublets is avoided. Of
course, in the real world such massless 0− states do not exist. This is because in
the real world exact chiral invariance is broken by the small quark mass terms
which we have neglected up to this point. Thus what we have in reality are eight
very light (but not massless) pseudo-Goldstone bosons which make up the pseu-
doscalar octet. Since such states are lighter than their other hadronic counterparts,
we have a situation wherein effective field theory can be applied—provided one is
working at energy-momenta small compared to the ∼ 1 GeV scale which is typical
of hadrons, one can describe the interactions of the pseudoscalar mesons using an
effective Lagrangian. Actually this has been known since the 1960’s, where a good
deal of work was done with a lowest order effective chiral Lagrangian[6]

L2 =
F 2

π

4
Tr(∂µU∂

µU †) +
m2

π

4
F 2

πTr(U + U †) . (40)

8 A Czech. J. Phys. 49 (1999)
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where the subscript 2 indicates that we are working at two-derivative order or one
power of chiral symmetry breaking—i.e. m2

π. Here U ≡ exp(
∑

λiφi/Fπ), where
Fπ = 92.4 is the pion decay constant. This Lagrangian is unique—if we expand to
lowest order in ~φ

Tr∂µU∂
µU † = Tr

i

Fπ

~τ · ∂µ
~φ× −i

Fπ

~τ · ∂µ~φ =
2

F 2
π

∂µ
~φ · ∂µ~φ

Tr(U + U †) = Tr(2 − 1

F 2
π

~τ · ~φ~τ · ~φ) = const.− 2

F 2
π

~φ · ~φ (41)

we reproduce the free pion Lagrangian, as required.
At the SU(3) level, including a generalized chiral symmetry breaking term, there

is even predictive power—one has

F 2
π

4
Tr∂µU∂

µU † =
1

2

8
∑

j=1

∂µφj∂
µφj + · · · (42)

F 2
π

4
Tr2B0m(U + U †) = const. − 1

2
(mu +md)B0

3
∑

j=1

φ2
j

− 1

4
(mu +md + 2ms)B0

7
∑

j=4

φ2
j −

1

6
(mu +md + 4ms)B0φ

2
8 + · · ·

(43)

where B0 is a constant and m is the quark mass matrix. We can then identify the
meson masses as

m2
π = 2m̂B0

m2
K = (m̂+ms)B0

m2
η =

2

3
(m̂+ 2ms)B0 , (44)

where m̂ = 1
2 (mu+md) is the mean light quark mass. This system of three equations

is overdetermined, and we find by simple algebra

3m2
η +m2

π − 4m2
K = 0 . (45)

which is the Gell-Mann-Okubo mass relation and is well-satisfied experimentally[7].
Expanding to fourth order in the fields we also reproduce the well-known and
experimentally successful Weinberg ππ scattering lengths.

However, when one attempts to go beyond tree level, in order to unitarize the
results, divergences arise and that is where the field stopped at the end of the
1960’s. The solution, as proposed a decade later by Weinberg[8] and carried out
by Gasser and Leutwyler[9], is to absorb these divergences in phenomenological

Czech. J. Phys. 49 (1999) A 9
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constants, just as done in QED. What is different in this case is that the theory
is nonrenormalizabile in that the forms of the divergences are different from the
terms that one started with. That means that the form of the counterterms that are
used to absorb these divergences must also be different, and Gasser and Leutwyler
wrote down the most general counterterm Lagrangian that one can have at one
loop, involving four-derivative interactions

L4 =

10
∑

i=1

LiOi = L1

[

tr(DµUD
µU †)

]2

+ L2tr(DµUDνU
†) · tr(DµUDνU †)

+ L3tr(DµUD
µU †DνUD

νU †) + L4tr(DµUD
µU †)tr(χU † + Uχ†)

+ L5tr
(

DµUD
µU †

(

χU † + Uχ†
))

+ L6

[

tr
(

χU † + Uχ†
)

]2

+ L7

[

tr
(

χ†U − Uχ†
)

]2

+ L8tr
(

χU †χU † + Uχ†Uχ†
)

+ iL9tr
(

FL
µνD

µUDνU † + FR
µνD

µU †DνU
)

+ L10tr
(

FL
µνUF

RµνU †
)

(46)

where the covariant derivative is defined via

DµU = ∂µU + {Aµ, U} + [Vµ, U ] (47)

the constants Li, i = 1, 2, . . . 10 are arbitrary (not determined from chiral symmetry
alone) and FL

µν , F
R
µν are external field strength tensors defined via

FL,R
µν = ∂µF

L,R
ν − ∂νF

L,R
µ − i[FL,R

µ , FL,R
ν ], FL,R

µ = Vµ ±Aµ. (48)

Now just as in the case of QED the bare parameters Li which appear in this
Lagrangian are not physical quantities. Instead the experimentally relevant (renor-
malized) values of these parameters are obtained by appending to these bare values
the divergent one-loop contributions—

Lr
i = Li −

γi

32π2

[−2

ǫ
− ln(4π) + γ − 1

]

(49)

By comparing predictions with experiment, Gasser and Leutwyler were able to
determine empirical numbers for each of these ten parameters. Typical values are
shown in Table 1, together with the way in which they were determined.

The important question to ask at this point is why stop at order four deriva-
tives? Clearly if two-loop amplitudes from L2 or one-loop corrections from L4 are
calculated, divergences will arise which are of six-derivative character. Why not
include these? The answer is that the chiral procedure represents an expansion in
energy-momentum. Corrections to the lowest order (tree level) predictions from one
loop corrections from L2 or tree level contributions from L4 are O(E2/Λ2

χ) where
Λχ ∼ 4πFπ ∼ 1 GeV is the chiral scale[10]. Thus chiral perturbation theory is a

10 A Czech. J. Phys. 49 (1999)
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Coefficient Value Origin
Lr

1 0.65 ± 0.28 ππ scattering
Lr

2 1.89 ± 0.26 and
Lr

3 −3.06 ± 0.92 Kℓ4 decay
Lr

5 2.3 ± 0.2 FK/Fπ

Lr
9 7.1 ± 0.3 π charge radius

Lr
10 −5.6 ± 0.3 π → eνγ

Table 1. Gasser-Leutwyler counterterms and the means by which they are determined.

low energy procedure. It is only to the extent that the energy is small compared
to the chiral scale that it makes sense to truncate the expansion at the one-loop
(four-derivative) level. Realistically this means that we deal with processes involv-
ing E < 500 MeV, and, for such reactions the procedure is found to work very
well.

In fact Gasser and Leutwyler, besides giving the form of the O(p4) chiral La-
grangian, have also performed the one loop integration and have written the result
in a simple algebraic form. Users merely need to look up the result in their paper
and, despite having ten phenomenological constants, the theory is quite predictive.
An example is shown in Table 2, where predictions are given involving quanti-
ties which arise using just two of the constants—L9, L10. The table also reveals at
least one intruguing problem—a solid chiral prediction, that for the charged pion
polarizability, is possibly violated although this is not clear since there are three
experimental results, only one of which is in disagreement. Clearing up this discrep-
ancy should be a focus of future experimental work. Because of space limitations we
shall have to be content to stop here, but interested readers can find applications
to other systems in a number of review articles[16].

Reaction Quantity Theory Experiment
π+ → e+νeγ hV (m−1

π ) 0.027 0.029± 0.017[11]
π+ → e+νee

+e− rV /hV 2.6 2.3 ± 0.6[11]

γπ+ → γπ+ (αE + βM ) (10−4 fm3) 0 1.4 ± 3.1[12]

αE (10−4 fm3) 2.8 6.8 ± 1.4[13]
12 ± 20[14]
2.1 ± 1.1[15]

Table 2. Chiral Predictions and data in radiative pion processes.
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5 χpt and Nucleons

For applications invlolving nucleons it is important to note that the same ideas
can be applied within the sector of meson-nucleon interactions, although with a
bit more difficulty. Again much work has been done in this regard[17], but there
remain important challenges[18]. Writing the lowest order chiral Lagrangian at the
SU(2) level is straightforward—

LπN = N̄(i 6D −mN +
gA

2
/uγ5)N (50)

where gA is the usual nucleon axial coupling in the chiral limit, the covariant deriva-
tive Dµ = ∂µ + Γµ is given by

Γµ =
1

2
[u†, ∂µu] −

i

2
u†(Vµ +Aµ)u− i

2
u(Vµ −Aµ)u†, (51)

and uµ represents the axial structure

uµ = iu†∇µUu
† (52)

Expanding to lowest order, we find

LπN = N̄(i/∂ −mN )N + gAN̄γ
µγ5

1

2
~τN · ( i

Fπ

∂µ~π + 2 ~Aµ)

− 1

4F 2
π

N̄γµ~τN · ~π × ∂µ~π + . . . (53)

which yields the Goldberger-Treiman relation, connecting strong and weak cou-
plings of the nucleon system[19]

FπgπNN = mNgA (54)

Using the present best values for these quantities, we find

92.4MeV × 13.05 = 1206MeV vs. 1189MeV = 939MeV× 1.266 (55)

and the agreement to better than two percent strongly confirms the validity of
chiral symmetry in the nucleon sector. Actually the Goldberger–Treiman relation
is only strictly true at the unphysical point gπNN(q2 = 0) and one expects about a
1% discrepancy to exist. An interesting ”wrinkle” in this regard is the use of the so-
called Dashen-Weinstein relation, which accounts for lowest order SU(3) symmetry
breaking effects, to predict this discrepancy in terms of corresponding numbers in
the strangeness changing sector[20].

However, any realistic approach must also involve loop calculations as well as
the use of a Foldy-Wouthuysen transformation in order to assure proper power
counting. This approach goes under the name of heavy baryon chiral perturbation
theory (HBχpt) and interested readers can find a compendium of such results in
the review article[18]. For our purposes we shall have to be content to examine just
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one application—measurement of the generalized proton polarizability via virtual
Compton scattering. First recall from section 3 the concept of polarizability as the
constant of proportionality between an applied electric or magnetizing field and the
resultant induced electric or magnetic dipole moment—

~p = 4παE
~E, ~µ = 4πβM

~H (56)

The corresponding interaction energy is

E = −1

2
4παEE

2 − 1

2
4πβMH2 (57)

which, upon quantization, leads to a proton Compton scattering cross section

dσ

dΩ
=

(αem

m

)2
(

ω′

ω

)2

[
1

2
(1 + cos2 θ)

− mωω′

αem

[
1

2
(αE + βM )(1 + cos θ)2 +

1

2
(αE − βM )(1 − cos θ)2 + . . .].(58)

It is clear from Eq.(58) that, from careful measurement of the differential scattering
cross section, extraction of these structure dependent polarizability terms is possible
provided that

i) the energy is large enough that these terms are significant compared to the
leading Thomson piece and

ii) that the energy is not so large that higher order corrections become important

and this has been accomplished recently at SAL and MAMI, yielding[21]

αexp
E = (12.1 ± 0.8 ± 0.5)× 10−4fm3, βexp

M = (2.1∓ 0.8 ∓ 0.5)× 10−4fm3 (59)

A chiral one loop calculation has also been performed by Bernard, Kaiser, and
Meissner and yields a result in good agreement with these measurements[22]

αtheo
E = 10βtheo

M =
5e2g2

A

384π2F 2
πmπ

= 12.2 × 10−4fm3 (60)

The idea of generalized polarizability can be understood from the analogous venue
of electron scattering wherein measurement of the charge form factor as a function
of ~q2 leads, when Fourier transformed, to a picture of the local charge density
within the system. In the same way the virtual Compton scattering process—γ∗ +
p → γ + p can provide a measurement of the ~q2-dependent electric and magnetic
polarizabilities, whose Fourier transform provides a picture of the local polarization

density within the proton. On the theoretical side our group has performed a one
loop HBχpt calculation and has produced a closed from expression for the predicted
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polarizabilities[23]

ᾱ
(3)
E (q̄) =

e2g2
Amπ

64π2F 2
π

4 + 2 q̄2

m2
π
−
(

8 − 2 q̄2

m2
π
− q̄4

m4
π

)

mπ

q̄
arctan q̄

2mπ

q̄2
(

4 + q̄2

m2
π

) ,

β̄
(3)
M (q̄) =

e2g2
Amπ

128π2F 2
π

−
(

4 + 2 q̄2

m2
π

)

+
(

8 + 6 q̄2

m2
π

+ q̄4

m4
π

)

mπ

q̄
arctan q̄

2mπ

q̄2
(

4 + q̄2

m2
π

) . (61)

In the electric case the structure is about what would be expected—a gradual falloff
of αE(q̄) from the real photon point with scale rp ∼ 1/mπ. However, the magnetic
generalized polarizability is predicted to rise before this general falloff occurs—
chiral symmetry requires the presence of both a paramagnetic and a diamagnetic
component to the proton. Both predictions have received some support in a soon
to be announced (and tour de force) MAMI measurement at q̄ = 600 MeV[24].
However, since parallel kinematics were employed in the experiment the desired
generalized polarizabilities had to be identified on top of an enormous Bethe-Heitler
background. A Bates measurement, to be performed by the OOPS collaboration
next spring, will take place at q̄ = 240 MeV and will use the cababilities of the
OOPS detector system to provide a 90 degree out of plane measurement, which
will be much less sensitive to the Bethe-Heitler blowtorch. We anxiously await the
results.

6 Summary

Above we have discussed some of the consequences of the feature that the
SU(3)L×SU(3)R chiral symmetry of QCD is broken spontaneously in the axial sec-
tor, implying the existence of eight pseudo-Goldstone bosons which, because they
are considerably lighter than the remaining hadronic spectrum, can be treated via
an effective field theory—chiral perturbation theory. The predictions arising from
such calculations are rigorous consequences of the underlying chiral symmetry of
QCD and are subject to experimental tests using TAPS or other detectors at low
energy machines. A taste of the predictive power is given above, but readers seeking
a more substantial meal can find extensive summaries in various other sources[16].
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